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Abstract—Energy Efficiency (EE) is a key performance metric
to design future wireless networks. Since Directional Antennas
(DAs) focus the transmission energy towards the destination, it
has been shown as a cost-effective solution when used in a back-
haul network. In this paper we propose a new joint optimization
framework of energy consumption and throughput in backhaul
Wireless Mesh Networks (WMNs) equipped with DAs. We first
formulate the joint optimization problem as a Mixed Integer
Linear Problem (MILP) using a weighted objective function of
both the consumed energy and the throughput. Then, we propose
to use the Ant-Q algorithm, a Reinforcement Learning (RL)
based approach, to reduce the solution complexity and enhance
its convergence. Considering a discrete power control scheme,
we define a new routing scheme based on the Ant-Q heuristic
to select jointly the transmission beam and the transmission
power. Using ILOG Cplex to find the optimal solution and NS-3
to conduct extensive simulations, we show the effectiveness and
the accuracy of the proposed routing algorithm. Moreover, we
analyze the optimization tradeoff depending on the beamwidth,
the network topology, the gateway position and the optimization
weight factor.

keywords: Energy Efficiency, Wireless Mesh Network, Direc-
tive Antennas, Ant-Q algorithm, Reinforcement learning.

I. INTRODUCTION

As green computing and networking is a primary environ-
mental issue, future wireless networks are expected to increase
their energy-efficiency (EE) while transmitting massive data
traffic up to tens of Exabytes per month [1] with different
QoS parameters. However, within the requirements of 5G
systems to be deployed in the coming years, it is recommended
that the 1000 times capacity increase must be achieved at
similar or lower power consumption as today’s networks [2].
However, on the other hand, some of today’s networks already
require energy savings, especially when there is an inherent
power supply deficit, like in rural and poorly developed areas.
Consequently, the design of energy-efficient networks are of
great interest in both industrial and academic research.

Several advanced solutions in communication techniques are
proposed in the 5G-PPP initiative to address the EE challenge
such as Cloud-RAN, massive MIMO, Base Stations (BSs)
cooperation, heterogeneous and hierarchical cellular networks,

etc. In [3], an investigation of the EE in Cloud-RANs is
proposed by minimizing the total network power consumption
by taking into account both the BSs and the backhaul network
power consumption. In [4] and [5] innovative models are
proposed to optimize the EE for 5G networks while taking
advantage of the emerging techniques of OFDMA, MIMO,
sleeping strategies of BSs, Coordination MultiPoint (CoMP),
and relay transmission. However, most of these related work
on EE mainly focuses on urban environments where dense
network infrastructure is deployed. In this paper, we tackle
the problem of EE in poorly-covered areas as: suburban,
rural, and desert region. Their characteristics are different from
urban ones, and many challenges have to be addressed at both
the economic and the energetic sides. Indeed, many blocking
factors exist, such as a poor communication infrastructure for
Internet penetration in suburban and rural areas. The problem
is even more severe in desert environments due to the lack
of energy suppliers. Furthermore, the lack of infrastructure
requires higher costs for network planning, deployment, and
maintenance. In such conditions, the goal of ensuring a highly
energy-efficient network is hardly achievable.

An innovative and low-cost solution to deal with these issues
is to use self-configured Wireless Mesh Networks (WMNs)
[6] to connect outdoor multi-mode access points to a remote
macro base station. A multi-mode access point is a Low Power
Node (LPN) embedding cellular (4G/LTE) and WiFi mesh
technologies. The WiFi mesh nodes form a local backhaul
network to gather and relay cellular terminals’ data to the
macro base station through a few gateways. Therefore, opti-
mizing the wireless backhaul network’s energy consumption is
an essential task in poorly-covered regions with limited energy
sources and infrastructure.

In this paper, we tackle the problem of EE in poorly-covered
areas as their characteristics are different from urban ones,
and where many challenges have to be addressed at both the
economic and the energetic sides. However, many blocking
factors exist, such as a poor communication infrastructure for
Internet penetration in suburban and rural areas. The problem
is even more severe in desert environments due to the lack
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of energy suppliers. Furthermore, the lack of infrastructure
requires higher costs for network planning, deployment, and
maintenance. In such conditions, the goal of ensuring a highly
energy-efficient network is hardly achievable.

Directional Antennas (DAs1) have proved their efficiency
in terms of improving the network throughput and reducing
the consumed energy [7]. DAs can focus the transmission
power toward the desired receiver without radiating in all
directions as Omni-directional Antennas (OAs). DAs provide
many advantages for WMNs, where multi-hop communica-
tions are generally used. Indeed farthest nodes can be reached
through the shortest paths because of the high antenna gain
that improves the transmission range. By following this, spatial
reuse is improved, and concurrent transmissions can occur
without collisions. In [7], the relationship between the antenna
beams number, and the number of links in a WMN used to
relay data from a source to a destination has been defined
for chain and grid topologies. It is shown that the more
antennas are directive, the less is the number of links on
the communication path. In other words, directive antennas
shorten the routes. Hence, packets are forwarded through
fewer intermediate hops to the destination by enhancing the
transmission service.

To the best of our knowledge, no previous work except
[8] addressed the problem of joint energy consumption and
throughput optimization in WMNs equipped with DAs. Some
related work were limited to OAs-based WMNs [9]–[11] and
some others considered only the throughput optimization in
case of DAs WMNs [12]. In [8], the optimization problem
is presented, and the optimal solution using CPLEX solver
is computed for small size networks. The obtained results
showed an energy-saving gain of 30% and up to 20% of
throughput while using DAs.

This work aims to develop a routing scheme that takes
advantage of spatial diversity offered by DAs by selecting the
beamwidth and the transmission power level intelligently and
adaptively.

To achieve this goal, several main contributions are pre-
sented here as follow :

• we provide an optimization framework with a weighted
objective function to capture the energy consumption and
the throughput tradeoff.

• we develop a heuristic based on Ant Colony and Q-
learning algorithms to resolve the optimization problem
and reduce its complexity. The problem is formulated as
a Mixed Integer Linear Program (MILP).

• we design a routing scheme based on two algorithms:
the Directional Neighbors Discovery algorithm (DNDa)
and the Ant-Q for Energy Efficient Routing over Beams
(AQ-EERoB). The first algorithm is used to set up the
network, mainly the possible neighbors and links (power
levels and beams direction) for a given network topology.
The second one is used to define the routing scheme over
the underlying links by selecting the appropriate beam

1We will use this acronym through the paper, not to be confused with DAS
which means Distributed Antennas Systems

and transmission power to optimize the throughput and
energy consumption.

• we implement this routing approach on the NS-3 sim-
ulator. We conduct an extensive simulation to evaluate
the routing benefits regarding OAs, considering different
network topologies and traffic loads while varying the
gateway position in the WMN.

In this paper, and regarding the previous description and the
framework assumptions, we answer the following questions
which are common to those of most papers on optimal routing
through a network:
• What is the optimal tradeoff between the energy and the

throughput considering all previously cited parameters?
• What is the gain in terms of throughput and energy

consumption when using DAs in WMNs compared to
OAs?

• What is the adequate routing strategy in order to forward
traffic over less hops with high energy or over more hops
with less energy?

• What are the AQ-EEoB algorithm convergence speed,
accuracy, and effectiveness?

The rest of the paper is organized as follows. In section II,
some related work are presented and classified into two types:
(i) these focusing on energy-throughput optimization for OAs
WMNs and (ii) these targeting throughput optimization for
DAs networks. In section III, the system model is described,
and the weighted objective function of the energy-throughput
tradeoff is derived, as well as the related constraints. The
discussion of the AQ-EEoB heuristic is detailed in section
IV. Finally, simulation results are highlighted in section V.
Conclusions and perspectives of this work are given in section
VI.

II. RELATED WORK

Several studies have been conducted on WMNs equipped
with either OAs or DAs. Most of these work considered
optimization tools to derive and improve WMNs performance
either by using software solvers such as ILOG Cplex opti-
mizer [13] or by proposing heuristics to solve the considered
optimization problem, which is NP-Hard.

This section focuses on some recent optimization-based
studies for both OAs and DAs WMNs by presenting the
proposed heuristics and approaches. The network performance
commonly studied in literature are throughput, energy con-
sumption or efficiency, and end-to-end delay. In order to
summarize previous work, we use the following optimization
model for which the throughput, the energy consumption, and
the deployment costs (Capex and Opex) of a WMN are jointly
considered as follows:

Minimize α.E + β.IR+ γ.C
s.t. Link capacity constraints,

Flow conservation constraints,
QoS constraints

(1)

Here, E , IR and C represent the consumed energy, the
inverse of throughput and the deployment related cost re-
spectively. α, β and γ are real values ∈ [0,1] representing
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weighting coefficients such that α+β+γ ≤ 1. The constraints
of the outlined optimization problem are: (i) the link capacity
constraints to ensure that the traffic transiting through a link
does not exceed the link capacity, (ii) the flow conservation
constraints to ensure that all input flows at a node coming
either from its attached users or from its neighbors nodes are
forwarded, and (iii) the QoS constraints related to fulfill flows
requirements.

A. Optimization over OAs-based Networks

Deployment costs and the energy consumption of a WMN
are jointly minimized in [14], [15] such as β = 0 in the
general optimization problem (1). Three network sizes (small,
medium, and large) and two traffic types (standard and busy)
are investigated. Simulation results showed that the optimal
solution obtained using ILOG Cplex could save up to 30% of
energy and the standard traffic scenario consumes less energy.

Two Master optimization Linear Problems (MLP) are pro-
posed in [16], one to Maximize the Capacity (MPMC), and
the other to Minimize the Energy consumption (MPME). The
energy consumption model comprises a fixed energy cost
for the idle state and a linear variable cost related to the
node activity: transmitting or receiving. A column generation
algorithm is used to solve the optimization problem. The
authors showed that a solution could be obtained reasonably
for a network size of 30 nodes.

Furthermore, for a fixed Modulation and Coding Scheme
(MCS), the simulation results showed that: (i) higher capacity
can be reached with the same energy consumption while in-
creasing the maximum transmission power (Pmax), (ii) power
control reduces the consumed energy. It improves the network
capacity compared to fixed transmission power, and (iii) the
uplink-only, downlink-only, or mixed traffics have no impact
either on energy consumption or capacity.

A joint optimization of the energy consumption and the
end-to-end delay modeled as a MILP is developed in [11] and
solved using GLPK 2. The cost function is a weighted sum of
delay and energy consumption, corresponding to γ = 0, in the
general optimization problem (1). The minimization problem’s
output is the set of active APs, and their transmission power,
which depends on the number and locations of attached
users. Considering only OAs, simulation results showed an
enhancement of 16%, compared to a fixed transmission power
strategy.

Within another MILP, the authors in [9] models an opti-
mal routing and a scheduling framework to optimize energy
consumption and throughput jointly. A heuristic based on the
Ant-Colony (AC) algorithm is used to solve the optimization
problem. Simulations are performed for different CBR traffic
loads. A multi-channel network is considered where each node
can choose one among many channels to communicate. The
authors showed that the proposed algorithm improves the
average throughput, energy consumption, and average path
length. However, the node activity is limited to transmission
and reception with the same power level. Nevertheless, it is

2GNU Linear Programming Kit

not a strong assumption since the transmission power is much
higher than the power needed for reception [17].

The authors of [10] outlined an optimization framework
and provided guidelines for network design based on the
obtained results. A continuous power control, and a multi-rate
transmission are considered to optimize the energy-capacity
tradeoff (γ = 0 in (1)).

An energy-saving approach for WMNs in a time-variable
context is addressed in [18]. The problem is formulated as a
MILP, with an objective function minimizing the APs number
while satisfying the traffic demand (corresponding to β=0 and
γ = 0 in (1)). The limitation of this approach is that it does
not take into account the interference between APs.

The authors of [19] proposed a throughput and energy-
aware routing scheme aiming at switching off as many APs
as possible while satisfying the throughput guarantees of the
admitted flows (γ = 0 in (1)).

SpeeD-IoT [20] is a spectrum-aware energy-efficient routing
approach for D2D communications in IoT mesh networks.
The highlighted multi-hop routing scheme allows IoT device
energy preservation and-end-to end rate optimization. To re-
duce the overhead, a power control-based selective flooding
technique is considered. Additionally, a dynamic learning
algorithm is proposed to optimally assign routes to interfering
source-destination pairs (γ = 0 in (1)).

The Dynamic Energy Efficient Routing (DEER) protocol
for wireless sensor networks was proposed in [21] to improve
average network lifetime. In DEER, routes are selected based
on the energy levels of neighboring nodes to maximize the
session time between source and destination, and to maximize
the network lifetime of source-destination pairs. The paper
[21] focuses on the energy consumed and lifetime, and hence
corresponding to β=0 and γ = 0 in (1). However, this paper
was limited to OA and did not consider the throughput
optimization into account in routing.

The HELPER framework [22] is an end-to-end solution
able to connect self-sufficient ad-hoc networks that can be
set up rapidly in case of natural or made-man disasters.
The framework requires SEEK, diStributed Energy Efficiency
bacKpressure algorithm. SEEK is a cross-layer optimized
routing algorithm enabling each node to find the next hop
based on location available information such as the geographic
information of nodes, the queue backlog, and the residential
battery energy. This algorithm allows improving the network
lifetime by 53% compared to a greedy geographical routing
approach. This problem is equivalent to γ = 0 in (1).

The Energy Efficiency based on Adaptive Threshold
(ATEER) scheme [23] is a clustering cross-layer routing
protocol for wireless sensor networks. When sensor nodes are
grouped into clusters, it reduces energy consumption since the
number of long-distance transmitted nodes is minimized. The
cluster head is responsible for aggregating data and sending it
to the base station.

The Energy-efficient and Robust Multipath Routing
(ERMR) protocol for ad-hoc networks [24] provides an al-
ternative and more robust pathfinding approach. It consists of
route discovery, route reply, data transmission, and route main-
tenance phases. ERMR builds efficient primary and backup



4

paths to counteract route failures for a source-destination pair.
This makes the proposed algorithm robust and leads towards
performance enhancement.

The work in [25] presents a demonstration setup based on
a switch On/Off mechanism for small-cell networks in a 5G
scenario equipped with omnidirectional antennas. The main
idea is to turn off small cells during low-traffic periods. The
proposed strategy reduces the energy consumption of small
cells.

B. Optimization over DAs-based Networks

More recently, DAs have been used in WMNs to improve
their performance. DAs increase the radio range and reduce the
interference by concentrating the transmitted signal. However,
only a few works addressed the optimization issues on DAs
WMNs scenarios. For example, in [17] which is an extension
of [12], an Iterative Local Search (ILS) is used to solve the
proposed MILP for the congestion minimization problem. The
optimization problem is equivalent to the general problem in
(1) with α=0 and γ=0. Compared to the OAs model in [12],
the proposed DAs scheme reduces the end-to-end delay and
improves the packet delivery ratio. However, the impact of
DAs on energy consumption is not studied.

The authors of [26] considered two MILP problems to
model the reliability over WMNs. The first one is the Max-
Min optimization problem to maximize the minimum flow.
The minimum flow is defined as the difference between the
link capacity and the traffic amount transiting over that link at a
given time. As DAs generate a further cost, the second problem
is minimizing antenna directions or beams. The optimal value
of the first problem is used in the second problem. Optimal
solutions obtained by using ILOG Cplex for different random
topology sizes are presented. The beams are given for each
scenario and for different values of α ∈ [0, 1] in the general
problem (1) to indicate the expected service quality after a
failure.

The topology control and the routing assignment problems
are jointly solved in [27]. This study showed that the for-
mulated problem could be reduced to the NP-hard partition
problem, and it proposes TORA (Topology and Routing As-
signment) based on the Ant Colony algorithm. Two types of
traffic are considered for simulations: (i) normal distributed
UDP traffic to analyze the end-to-end delay and the loss ratio,
and (ii) CBR TCP traffic to analyze the throughput. Compared
to the shortest path algorithm, TORA achieves both a lower
packet loss ratio and higher TCP throughput.

A joint channel assignment, link scheduling, routing, and
rate control problem for the WMNs with multiple orthogonal
channels and directional antennas equipped APs is tackled in
[28]. The problem is formulated as a mixed-integer nonlinear
problem, and the authors develop an algorithm to solve the
problem using the generalized Benders decomposition ap-
proach. This scheme corresponds to α=0 and γ=0 in (1). The
work in [29] introduces a novel Multi-Pipe High-Throughput
Routing Protocol with Hole Avoidance for Multi-Beam Direc-
tional Mesh Networks. The proposed protocol comprises two
main phases, a primary path search phase using a hierarchical

score system to find optimal main paths and a Volcano
establishment phase, where multi-beam traffic is scheduled.

In [30], a new version of AODV is highlighted with direc-
tional antennas and multiple network interfaces. Simulations
are conducted using NS-2 for random and grid topologies.
Results showed that the proposed approach improves the
throughput, reduces the end-to-end delay, and that directional
antennas’ network performances are not affected by increasing
the communication distances, and connection numbers. How-
ever, in this paper, the impact of beams on performance metrics
is not studied, and no interference model is considered.

For real-time data processing requirements in industrial ap-
plications, [31] presents a new directional routing and schedul-
ing algorithm. The proposed directional routing approach is
formulated as a Maximum Weight Independent Set (MWIS)
problem and solved to maximize the number of independent
sets and assign time slots to the links with maximum traffic
loads. It calculates sub-optimal link scheduling results and
reduces the end-to-end delay by ensuring transmission fairness
and throughput among the directional links.

In [32], the authors discuss a multipath enhanced OLSR
Optimized link state routing (OLSR) exploiting the benefit
of multi-beam directional antennas, and allowing simultane-
ous antennas delivery. The paper proposes a social network-
inspired algorithm for Multi-Point relays (MPR) selection
which chooses the nodes with higher connectivity level with
other routing nodes as MPR to reach all nodes using a limited
broadcast. Additionally, a short-cut algorithm is proposed to
reduce the redundancy of the hops in the auxiliary path.
However, the number of beams and the impact of the proposed
algorithm on energy consumption are not studied.

Table I summarizes the related work and classifies them
depending on the considered antenna type and the optimized
metrics. From this summary and to the best of our knowledge,
no previous study has addressed the joint problem of energy
consumption and throughput optimization in DAs-based net-
works using an optimization and learning approach. Our objec-
tive is to tackle this joint optimization problem considering a
transmission power control scheme and different beams in this
work. Furthermore, we examine various network topologies,
traffic loads, and gateway positions in the WMN. Indeed,
all the works cited above consider several gateways in their
optimization problem, allowing a tremendous spatial diversity.
On the other hand, we claim that when the number of gateways
is reduced, the impact on the network performance needs to
be evaluated. It is more worthwhile and even challenging
to investigate the energy/throughput trade-off in this case.
Moreover, the gateway positions cannot be neglected since
they can lead to bottlenecks or variable congestion levels in
massive traffic, and hence the more energy consumption due
to retransmissions.

III. SYSTEM MODEL

In this section, we present the interference, the power con-
trol, and the energy models followed by the joint optimization
problem.
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Paper Paper objective and Resolution approach Antennas Optimized metrics
OA DA Energy Throughput Capex

[14], [15] ILOG Cplex to solve the joint optimization of the
deployment cost and the energy consumption

X X X

[16] Column generation algorithm to solve the capacity max-
imization and Energy minimization problems

X X X

[11] GLPK to solve a joint optimization of the energy con-
sumption and the end-to-end delay modeled as a MILP

X X

[9] A heuristic based on the Ant-Colony (AC) algorithm
to solve the joint routing and scheduling optimization
problem

X X X

[10] An optimization framework is proposed for network
design

X X X

[17] Iterative Local Search (ILS) to maximize the packet
delivery ratio and reduce the end to end delay

X X

[26] ILOG Cplex to maximize the minimum flow and to
minimize the number of antenna directions or beams

X X

[27] Inspired by Ant Colony system, a topology control and
routing assignment joint optimization problem (TORA)
is proposed

X X

[29] Volcano: Multi-Pipe High-Throughput Routing Protocol
with Hole Avoidance for Multi-Beam Directional Mesh
Networks

X X

[28] Using the generalized Benders decomposition approach,
a Channel Assignment, Link DAs algorithm proposed to
solve a mixed integer nonlinear problem (MINLP)

X X

[33] The exact method branch-and-priceFair is used for flow
rate optimization by effective placement of directional
antennas in wireless mesh networks

X X

[19] Throughput and energy-aware routing for 802.11 based
mesh networks by switching off as many APs as possible

X X X

[18] Energy Savings in Wireless Mesh Networks in a Time-
Variable Context problem is formulated and solved as a
MILP

X X

[20] SpeeD-IoT, a multi-hop routing scheme allowing IoT
device energy preservation and end to end rate optimiza-
tion.

X X X

[21] DEER, a protocol for wireless sensor networks improv-
ing average network lifetime

X X

[22] SEEK, a distributed cross layer optimized routing algo-
rithm based on location available information

X X X

[23] ATEER, a clustering cross layer routing protocol for
wireless sensor networks proposing to group sensor
nodes into clusters

X X

[24] Efficient primary and backup paths are built to counter-
act route failures for a source-destination pair

X X X

[30] A new version of AODV is highlighted with Directional
antennas with multiple network interface

X X

[31] A directional routing and scheduling algorithm to cal-
culate sub-optimal link scheduling results and to reduce
the end-to-end delay

X X

[32] A social network inspired algorithm for MPR selection X X
[25] A demo based on a switch On/Off mechanism for small

cell networks
X X

TABLE I: Related Work Summary
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A. Interference Model

Various interference models have been used in OAs WMNs,
considering either the node’s location or the received power
as metrics to characterize the interference. However, these
models are not valid in DAs scenarios since (i) some directions
are interference-free because DAs radiate only towards the
destination, and (ii) DAs can reach farther nodes since the
directional range is extended.

In this work, we consider a new interference model by
combining the ones used in [34] to compute the overlap count
representing the number of overlaps between beams, and those
in [35], [36] to ensure that a minimum distance between
the nodes is maintained. The obtained model considers the
distance between nodes depending on their positions, and the
angles formed by the beams overlap. Let I, the set of mesh
nodes, and (i, j) and (p, q) two pairs of transmitting-receiving
nodes. Fig. 1 illustrates the position of nodes and the used
variables. Communication between pairs (i, j) and (p, q) can
occur simultaneously without generating interference, if and
only if

{
|| p− j ||2≥ (1 + σ) || i− j ||2

̂(i− j, i− p) ≥ θT and ̂(p− q, p− i) ≥ θT ,

}
(2)

where || . ||2 is the L2 norm, θT is a threshold angle and
σ represents a guard zone. In fact, a transmission link (i,j)
is successful if (i) the distance, dp,j , between the receiver j
and the source of another simultaneous transmission (p,q) is
greater than its distance from the intended source i, di,j , by
a factor of σ, and (ii) the angles θij,ip and θpq,pi are greater
than the threshold angle θT to avoid collisions. Hence, the set
of interferers to the communication between nodes i and j is
defined as follows:

I(p,q)(i,j) = {(p, q) ∈ I2 s.t. eq. (2) is not verified } (3)

Please note that we only consider main lobe interference

Fig. 1: Illustration of the interference model

in this work and do not consider side lobe interference for
simplicity.

B. Energy Model

We consider that each node can have four states; either (i)
transmitting, (ii) receiving, (iii) idle, or (iv) Off. A node in an

ON state can be either in an active state (i.e., transmitting or
receiving) if it has some packets to send, forward, receive, or
idle. Otherwise, it is Off.

C. Power Control Scheme

In this work, we consider a discrete power control scheme,
where each node has many transmission levels L = {1, ..., |
L |} available to be used depending on the next-hop location.
For example, a node with three power levels either transmits
at full power (Pmax), at Pmax

2 or does not transmit at all (0).
If the next hop is too close and can be reached using Pmax

2

of transmission power, then the remaining Pmax

2 of power is
saved.

D. Optimization Problem Formulation

In this subsection, we define the joint optimization problem
of energy consumption and throughput. Firstly, we present
the set of variables and parameters we used to describe the
issue. Then we introduce the objective function followed by
the optimization constraints. Note that we use the terms mesh
node or node interchangeably.

1) Sets, Variables and Parameters:
- Sets: we consider the following sets:
• I = {1, ..., | I |}: the set of mesh nodes including the

gateways.
• G = {g1, ..., gn}: the set of mesh gateways in the WMN.
• U = {1, ..., | U |}: the set of users generating the traffic,

per node. Note that for simplicity reasons the number of
users is the same for all mesh nodes in the network.

• L = {1, ..., | L |}: set of possible power levels that can
be used by a node.

• Bi = {1, ..., | Bi |}: set of beams that can be used by a
mesh node i.

• T = {1, ..., T}: set of time intervals with | T | = T.
- Parameters & Input:
• cij : the link capacity between mesh nodes i and j.
• du,t: the amount of traffic to send by user u at time t.
Additionally, we suppose that each user is connected to the

nearest mesh node.
- Binary variables:
• xl,vu,ij,t is used to express the link between two nodes and

the beams used for communication at time t:

xl,vu,ij,t =

1 if
nodes i and j are connected with beam l

using a transmission power level v at time t
to forward traffic of user u

0 otherwise
(4)

• al,vi,t describes node i transmission activity at time t using
beam l at power level v:
∀i ∈ I, t ∈ [1, T ], l ∈ Bi, v ∈ L

al,vi,t =


0 if

|I|∑
j=1

|U|∑
u=1

xl,vu,ij,t = 0

1 otherwise

(5)

• bi,t indicates if node i is receiving at time t:
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∀i ∈ I, t ∈ [1, T ]

bi,t =


0 if

|U|∑
u=1

|I|∑
k=1

|Bi|∑
l=1

|L|∑
v=1

xl,vu,ki,t = 0

1 otherwise
(6)

• ci,t indicates that node i is on the idle state at time t:

ci,t =

{
1 if node i is at idle state at time t
0 otherwise

(7)

This variable is introduced to differentiate the idle and
Off states. The aim is to take into account the non-zero
power consumed during the idle state regarding the Off
one.

• wui,t indicates the user association:

wui,t =

{
1 if user u is attached to node i at time slot t
0 otherwise

(8)

Note that we consider that reception is omnidirectional to
reduce the complexity of the neighbor discovery process and
the optimization problem.

2) Objective Function: We consider a weighted objective
function capturing the consumed energy and the throughput.
The general problem we define serves to optimize both the
throughput and energy consumption by selecting the beams
and transmission powers.

The total energy consumed by a mesh node i during the time
interval [1, T ] depends on its state: transmission, reception, or
idle. Thus, it can be written as :

Ei,t =
|Bi|∑
l=1

|L|∑
v=1

al,vi,tETX,v︸ ︷︷ ︸
Energy consumed when node i
is transmitting at power level v

+ bi,tERX︸ ︷︷ ︸
Energy consumed

if node i is receiving

+

1−
|Bi|∑
l=1

|L|∑
v=1

al,vi,t

 .(1− bi,t).ci,tEidle

︸ ︷︷ ︸
Energy consumed

if node i is idle

(9)

where ETX,v is the energy consumed by a mesh node when
it is transmitting with one beam at level v. ERX is the
energy consumed by a mesh node when it is receiving in the
omnidirectional mode and Eidle when it is idle.

The total energy consumed in the network is:

E =

T∑
t=1

|I|∑
i=1

Ei,t. (10)

An inverse throughput quantity can be defined as:

IR =

T∑
t=1

|I|∑
i=1

|L|∑
v=1

|Bi|∑
l=1

al,vi,t , (11)

Where IR stands for Inverse Rate. For a given amount of
traffic to transmit, minimizing the time when mesh nodes
are transmitting and receiving (i.e., minimizing the number

of active links and minimizing the transmission time to send
the traffic) is equivalent to maximizing the bit rate.

Eq. (12) represents the objective function to be minimized,
and it consists of minimizing the energy consumed by the
network during the considered period T while maximizing the
network throughput. We recall that our objective is to design a
new routing protocol to find routes over a WMN while taking
into account the energy consumption and throughput tradeoff
such as:

min
αE + (1− α)IR

T
(12)

where α ∈ {0, 1} is a weighting coefficient used to balance
the energy consumed and the rate. If α = 0, we mainly
maximize the achievable rate, and if α = 1, we minimize
the energy. For the comparison purpose, we consider the
normalized throughput and consumed energy.

In the following, we outline the constraints of the joint
energy consumption and throughput optimization problem.

3) Optimization Constraints: The following equations (13)-
(23) represent the optimization problem constraints.

• Link capacity constraint (13) controls the traffic on links
between nodes i and j not to exceed the total link
capacity.
∀(i, j) ∈ I × I, ∀u ∈ U , v ∈ L, t ∈ [1, T ],m ∈ Bi

|U|∑
u=1

xm,vu,ij,t × du,t ≤ ci,j . (13)

• Flow conservation: at node i, all the entering flows are
forwarded. The left side of Eq. (14) corresponds to the
number of flows going from node i, while the right side
of the equation is the number of both flows coming from
neighbors of node i and flows generated by the attached
users:
|U|∑
u=1

T∑
t=1

|L|∑
v=1

|I|∑
j=1

|Bi|∑
h=1

xh,vu,ij,t =

|U|∑
u=1

T∑
t=1

|L|∑
v=1

|I|∑
j=1

|Bj |∑
m=1

xm,vu,ji,t

(14)

+

|U|∑
s=1

T∑
t=1

wui, t

|L|∑
v=1

|I|∑
j=1

|Bi|∑
m=1

xm,vs,ij,t ∀i ∈ I\{G}.

• Flow conservation at the gateway: (15) ensures that all
the flows must arrive to the gateway (| I | +1)

T∑
t=1

|L|∑
v=1

|I|∑
i=1

|Bi|∑
m=1

xm,vu,ij,t = 1, ∀u ∈ U and j =| I | +1.

(15)
• Interference constraint: at a given time-slot t, two pair

nodes (i,j) and (p,q) are not allowed to transmit simulta-
neously if they interfere with each other.

∀(i, j), (p, q) ∈ I2, (v, v′) ∈ L2, t ∈ [1, T ]; (u, u′) ∈ U2,

(m, l) ∈ Bi × Bp, xm,vu,ij,t + xl,v
′

u′,pq,tI
(p,q)
(i,j) ≤ 1, (16)

where I(p,q)(i,j) is the set of interferers defined in Eq. (3).
• One direction and one power level constraints: (17) and
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(18) are stated to ensure that a mesh node can transmit
only at one power level and in one direction in a given
time:
|Bi|∑
l=1

xl,vu,ij,t ≤ 1 ∀(i, j) ∈ I2,∀u ∈ U , v ∈ L, t ∈ [1, T ],

(17)
|L|∑
v=1

xl,vu,ij,t ≤ 1 ∀(i, j) ∈ I2,∀u ∈ U , l ∈ Bi, t ∈ [1, T ].

(18)
• Simultaneous transmissions and receptions constraints:

they prevent that a node from transmits and receives at
the same time slot:

|U|∑
u=1

|L|∑
v=1

|I|∑
j=1

|Bi|∑
m=1

xm,vu,ij,t +

|U|∑
u=1

|L|∑
v=1

|I|∑
j=1

|Bi|∑
m=1

xm,vu,ji,t ≤ 1

(19)
∀i ∈ I and t ∈ [1, T ].

• Loops avoidance constraints: (20) and (21) force the
traffic of a given user to go through a given node only
once to prevent loops:

T∑
t=1

|L|∑
v=1

|I|∑
j=1

|Bi|∑
m=1

xm,vu,ij,t ≤ 1, and (20)

T∑
t=1

|L|∑
v=1

|I|∑
j=1

|Bj |∑
m=1

|Bi|∑
n=1

xm,vu,ji,t ≤ 1, (21)

∀i ∈ I, ∀u ∈ U .
• Uplink transmission constraint: it ensures that the traffic

is not forwarded back to nodes after reaching the gateway:

xm,vu,ij,t = 0 (22)

∀j ∈ I and t ∈ [1, T ], i =| I | +1, ∀v ∈ L, ∀m ∈
BN+1.

• Binary variables constraints:

xm,vu,ij,t, am,vi,t , bi,t, ci,t, uli,t ∈ {0, 1}, (23)

∀(i, j) ∈ I2, m ∈ Bi, v ∈ L, u ∈ U .
Solving the previously defined optimization problem in-

volves selecting the beams and transmission power levels to
establish the network links and defining a routing scheme.
The remaining beams can be disabled to save energy. In the
following, we describe the developed solution framework and
highlight the optimization gain of DAs on both throughput
and energy consumption. In practice, this framework can
be integrated into the control plan of a WMN for network
management.

IV. JOINT ENERGY CONSUMPTION AND THROUGHPUT
OPTIMIZATION SOLUTION FRAMEWORK

The contribution of this section is twofold. Firstly, we pro-
pose a Directive Neighbors Discovery algorithm (DNDa) for
network establishment. Each mesh node senses the network’s
overall beams and using all possible transmission powers.
As a result, it determines the set of its neighbors and the

corresponding transmit power needed to reach them. This
step is important since it sets up the physical network and
defines the connectivity matrix. The physical network is used
in the second step to finding routes from any mesh node
to gateways while optimizing the objective function defined
earlier. Additionally, as the optimization problem in Eq. (12) is
known to be NP-Hard [37] [38], we propose a Ant-Q heuristic,
based on Q-learning and Ant Colony systems, to reduce the
solution complexity.

A. Directive Neighbors Discovery Algorithm (DNDa)

Based on beam directions, each mesh node uses DNDa to
discover the network and defines the physical links with the
associated beam and the power levels to reach its neighbors.

DNDa (Algorithm 1) is presented as follows: After the
initialization phase, where all neighbor sets (NSs) are ini-
tialized to be empty, the nodes probe the network on all
beams directions using all power levels. For each node, this
discovery phase is done sequentially so that a node i sends a
HELLO message in a given direction with a given power level
l, waits for a REPLY message during a period of twait sec.,
and repeats this procedure for all power levels for the current
beam (m), then switches to the next beam (m+1). The output
of this step is the set of neighbours NSi of node (i), such that
NSi = {(m, v, j), m ∈ Bi, v ∈ L and j ∈ I}.

Algorithm 1: Directional Neighbors Discovery Algo-
rithm (DNDa)

1 Initialization: NSi = ∅ ;
2 for each node i do
3 for each beam m ∈ Bi do
4 for each power level v ∈ L do
5 Send a HELLO message into this direction

using power level v ;
6 Wait for twait seconds ;
7 if node i receives a REPLY from a node j

then
8 NSi ← NSi ∪ (m, v, j) ;
9 /* update the node’s i neighbours set */

;
10 end
11 v ← v + 1 /* Switch to next power level */

;
12 end
13 m ← m+ 1 /* Switch to next beam */ ;
14 end
15 end

Result: NSi (∀i ∈ I)

Once all links are defined, each node should set up the
optimal routes to transmit traffic flows toward destinations or
gateways. This task is performed using another algorithm, Ant-
Q for Energy Efficiency Routing over Beams (AQ-EERoB),
presented in the next paragraph and based on the Ant-Q
heuristic. AQ-EERoB Algorithm 2 aims at finding routes on
a WMN while optimizing the energy consumption and the
throughput trade-off. More precisely, the proposed heuristic
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aims to select the beam direction and the transmission power
level to satisfy the trade-off between throughput and energy
consumption.

B. AQ-EERoB: Ant-Q for Energy Efficiency Routing over
Beams

Ant-Q heuristic [39] is a combination of Ant colony al-
gorithm [40], [41], known to be efficient in solving path-
finding problems, with a reinforcement learning approach, Q-
learning, widely used in solving optimization problems. Ant-
Q is a distributed algorithm where the agents (ants) cooperate
by exchanging information in Ant-Q values, denoted as AQ-
values. The learning feature is the crucial difference between
the Ant-Q algorithm and the Ant Colony algorithm adopted
in [9] for a WMN equipped with OAs.

In Ant-Q, agents cooperate to learn AQ-values. For our
routing problem, the learning environment can be modeled
as:
• States are the set of nodes in the network. Being at a

given state i means being at node i.
• Actions: are the set of possible actions/moves that an

agent can perform. Moving from node i to node j is
an action in this set.

• Reward is scalar feedback measuring the success or
failure of an agent acting in a given state. The reward
function is a function of the path length (L).

The proposed AQ-EERoB algorithm consists of four major
steps: (i) an initialization phase, (ii) a tour building and local
pheromone updating, (iii) a global pheromone updating, and
finally (iv) a condition check.

Let Tu be the tour set of ant u, which is also called an
agent. The ant u visits all nodes and returns to the starting
node to define its tour.

1) AQ-Values and Heuristic Information (HE): We recall
that our objective is to reduce the consumed energy while
improving network throughput. Therefore, we need to define
HE w.r.t the optimization problem presented earlier. Naturally,
the heuristic function (HE) should closely depend on the
considered performance metrics.

a) Heuristic information: HEi,j indicates how useful for
an agent to move to node j from node i, and it is defined as:

HEi,j =
1

αEi + (1− α) 1
Rj

, (24)

where Rj is the energy consumed by node i, Rj is the rate at
node j and α is a weighting factor. Rj and Rj can be shown
as;

Rj =
Number of received packets

∆t
(25)

and
Ei =

∑
p∈Pi

Ep,i, (26)

where Ep,i the energy consumed when node i sends a packet
p ∈ Pi and Pi is the set of packets sent by node i.

b) Pheromone Laid: AQi,j is a positive real value asso-
ciated with the link (i, j) to represent how the link connecting

nodes i and j is evaluated in the previous iterations by all
ants. The AQ-value is updated locally and globally at each
cycle (steps (ii) and (iii)).

Algorithm 2: AQ-EERoB Algorithm

1 initialization;
2 For each link(i,j), let AQ0, the initial quantity of

pheromone;
3 Each ant initializes the set of not yet visited nodes

(Ju);
4 for Each cycle do
5 for Each ant u do
6 repeat
7 Each ant applies the state transition rule

(27) to choose the next hop (node j);
8 j is applied on the best solution of the set

Tu;
9 Tu ← Tu + j ;

10 Locally update the AQ value:
AQi,j = (1−ν)AQi,j +ν(λ. max

k∈NSi

AQi,k)

11 until fixed number of tours;
12 Compute Lbest.
13 end
14 end
15 for each link(i,j) belonging to best solutions do
16 Compute the delayed reinforcement ∆AQi,j ;
17 Globally update AQ values according to:

AQi,j = (1− ν)AQi,j + ν.∆AQi,j
18 end
19 if end− condition==true then
20 Print solbest and the appropriate

heuristic_sequence_best ;
21 else
22 go to ligne 4 (step (ii));
23 end

2) AQ-EERoB Algorithm:

Step (1) - The Initialization Phase

In the initialization phase, lines 1-3 of Algorithm 2 can be
explained as: (i) the quantity of pheromone (AQ-value) of all
links (i, j) found by using DNDa is initialized to the same
value (AQi,j = AQ0) [line 2], and (ii) the set of not yet
visited nodes is initialized to Ju = {1, ..., | I |} − ru, where
ru is the starting node of agent u [line 3].

Step (2): Tour Building and Local Pheromone Updating

After the initialization phase, a loop allows each agent u to
build a tour Tu (lines 4-14). A tour is composed of a total of
m transitions. At each transition t where (t ≤ m), agent u:
(1) chooses the next node to visit according to Eq. (27) and

Eq. (28) [line 7]. The next node j is selected as follows:

j =

argmaxk∈NSi

{
[AQi,k]δ[HEi,k]β

}
if q < q0

S otherwise,
(27)
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where δ and β weight the relative importance of AQi,j
and HEi,j , respectively. q is a random value chosen
uniformly in [0,1], and q0 is a parameter such that the
higher q0 is, the smaller the probability is to make a
random choice. S is a random node selected according to
a given probability distribution as in Eq. (28) and gives
the probability for an ant u in node i to move to node j:

pu(i, j) =
[AQi,j ]

δ[HEi,j ]
β∑

k∈NSi
[AQi,k]δ[HEi,j ]β

(28)

(2) updates Ju and Tu [line 9],
(3) updates the pheromone of the corresponding link (AQi,j)

according to Eq. (29):

AQi,j = (1− ν)AQi,j + ν(λ. max
k∈NSi

AQi,k) (29)

The locally update term is respectively composed of
the discounted old value (AQi,j), which refers to the
pheromone evaporation, and the discounted evaluation of
the following state, which takes into account the impor-
tance of the future rewards. ν and λ are the pheromone
evaporation and the discount factor parameters [line 10].

(4) updates the actual node.

Step (3): Global Pheromone Updating

In the third phase, which covers lines (15-18) in Algorithm
2, when all agents complete their tours, each agent u computes
the length of its tour (Tu) [line 15]. The AQ-values of links
belonging to the best tour (Tbest) [line 17] are then updated
according to Eq. (30):

AQi,j = (1− ν)AQi,j + ν∆AQi,j . (30)

In this global update phase, the update terms are respec-
tively composed of the discounted old value (AQi,j), and the
reinforcement term (∆AQi,j), namely delayed reinforcement
reward, which adjusts the new information learned towards the
old one.

The tour length of the best ant, i.e., the ant with the shortest
tour length Lbest, is used to compute the global Ant-Q value
according to Eq. (31):

∆AQi,k =


W

Lbest
if (i,k) belong to the best ant tour Tbest

0 otherwise,
(31)

where W is a parameter used to adjust Lbest values as showed
in [39].

Step (4) - End Condition Check

Finally, the last step checks the termination condition [line
19]. If not verified, the algorithm returns to step (2) and starts
a new cycle (from line 4) [line 22].

In the next section, we explain how simulations are con-
ducted through different network scenarios, parameters, and
software tools to show both the effectiveness and accuracy of
the proposed algorithms.

V. PERFORMANCE EVALUATION

This section is structured as follows:
• We introduce the simulation methodology and parame-

ters.
• We present the optimal results of the joint optimization

problem using the ILOG Cplex solver at the first step of
the analysis.

• We tackle the convergence analysis of the AQ-EEoB al-
gorithm for various network topologies, sizes, and traffic
loads.

Afterward, we highlight the AQ-EEoB algorithm’s perfor-
mance and compare it with state-of-the-art algorithms such as
the Ant Colony and shortest path algorithms through extensive
simulation experiments using the NS-3 simulator.

Parameters Signification Default
Values

ETx Energy consumed by a mesh node in
a transmission state using one beam at
level v

1
(Joules)

ERX Energy consumed by a mesh node at the
reception state in the omnidirectional
mode

0.5
(Joules)

Eidle Energy consumed by a mesh node in
the idle state

0.1
(Joules)

| I | Mesh node number [9, 16,
..., 49]

| U | Total number of agents per node 1 agent
per node

| G | Number of mesh gateways 1

L Set of power levels 1,2, and
3

α Optimization weight [0,1]

| B | Number of beams [1,..,12]

du,t CBR traffic rate of user u at time t 300
Kbps

ci,j Link capacity 5 Mbps

σ Interference model guard zone 0.1

θT Interference model threshold angle π
3

twait Waiting time for a REPLY message 1 sec

ν Pheromone evaporation parameter 0.1

λ Discount factor 0.3

q0 Parameter for action selection 0.9

δ Weigh the relative importance of
pheromone laid (AQ)

1

β Weigh the relative importance of
Heuristic information (HE)

2

W Parameter to adjust the tour length
Lbest values

10

AQ0 Initial pheromone evaporation value 0

TABLE II: A Summary of Simulation Parameters and Default
Values

A. Evaluation Methodology & Simulation Parameters

First, we use the ILOG Cplex solver [13] to find the optimal
solution of the joint optimization problem defined in Eq. (12).
ILOG Cplex, based on the branch-and-cut algorithm [13], is
one of the most efficient optimization problems solvers in
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terms of the resolution delay, and the number of handled
variables as compared in [42]. Due to the space constraint, we
do not present here the linearization steps of the optimization
model, but they are available in [8].

Since the number of variables increases exponentially with
the network size, we consider relatively small-sized networks
with few beams. The optimization problem solutions are the
routes set defined using variables (xl,vu,i,j,t) indicating which
beam l, and power level v are active in a given time slot t to
carry the user traffic u, from node i to node j to reach the
destination (gateway). We show the impact of the optimization
weight α, and the beamwidth on the energy-throughput trade-
off, considering three possible power levels (| L |=3).

For NS-3 simulations, we consider a wireless mesh network
with a regular topology, a grid in particular, except when
indicated differently. Nodes are deployed in an area of 1km2

and spaced by 200m in the x- and y-axis. All nodes are
equipped with DAs with beamwidths varying from π

6 to 2π.
Moreover, we consider a Constant Bit Rate (CBR) traffic of
300Kbps generated by each node toward the gateway. Note
that each node can either transmit or receive at a given time.

Figure 2 illustrates two network topologies: grid topology
with a center placed gateway and random topology with a
randomly placed gateway.

Fig. 2: Illustration of a Grid with a Gateway placed at the
Center and a Random Topology

AQ-EERoB algorithm default parameters are set to δ=1,
β=2; ν=0,1; λ=0,3; q0=0,9 and W=10. These values were
optimized using a grid search in early experiments [39].
Simulation parameters are summarized in Table II.

B. Joint Optimization Problem Solution using the Cplex Solver

1) Impact of Antenna Beamwidth: In this part, we inves-
tigate the impact of antenna beamwidth on the performance
results. We consider the two extreme cases: (i) α=1, where
we focus only the energy consumption optimization, (ii) α=
0, to only maximize the throughput, and (iii) two intermediate
cases, α = 0.5 and α = 0.7.

Figure (3a) illustrates the energy consumed versus the
beamwidth for different values of α. The beamwidth is varied
from π

6 to 2π. Note that using antennas of 2π beamwidth
is equivalent to an OAs based WMN. We observe that the
energy consumption increases when the beamwidth gets larger,
and the maximum consumed energy is observed when the

α Throughput Energy Saving
0 34% 0%
0.5 12% 34%
0.7 25% 29%
1 0% 93%

TABLE III: Throughput and Energy Saving Gains vs α

beamwidth is 2π (OA). Figure (3b) shows that the throughput
decreases with beamwidth for the optimal solution. For a given
beamwidth, the closer α is to 1, the worse the throughput,
and conversely, α being close to 0 improves the throughput.
In Table III, we give some numerical values of the throughput
and the energy-saving gains, considering the four cases cited
above depending on the value of α. Please note that for the
energy consumption, the highlighted gains are concerning the
case of α=0 (no energy optimization) and are for the case
of α=1 for the throughput (no throughput optimization). For
instance, when α 6= 0, the energy saving is always better
than the throughput enhancement thanks to the antenna gain.
Moreover, retransmissions do not severely affect the energy
consumption since the nodes are in the idle state in case of
saturation, waiting to access the network. If a packet fails to
leave a node, it stays at this node. The node will not consume
transmitting power. However, the throughput is affected since
the packet is not delivered.

2) Energy consumption & Throughput Trade-off : Figure
(3c) shows the energy consumption and the throughput trade-
off for various values of L, the number of power levels.
For each value of α, we show the corresponding consumed
energy and throughput. The results here are obtained using
ILOG Cplex over a network of 25 nodes equipped with 4-
beam antennas. The two extreme points P0(Emin,Rmin) and
P1(Emax,Rmax) correspond to values of α=1 to minimize
the energy consumption and α=0 to maximize the throughput,
respectively. The curve between these two points represents
the Pareto-front. Each front point is derived for a given value
of α as shown in the figure. Power control improves the trade-
off between energy consumption and throughput. For example,
in the 2-levels power control, the throughput gain is about
15, 5%, and the energy-saving is about 17, 8%. On the other
hand, with 3-levels power control, the enhancement reaches
29, 2% and 34, 5% for the throughput and the energy saving,
respectively.

C. AQ-EERoB Convergence

Before going further in the analysis of simulation results
on energy consumption and throughput, we focus on the
convergence and optimization parameters of the AQ-EERoB
algorithm. We consider a WMN equipped with four beams
antennas. Simulation results are averaged over 500 runs.

In Figure (4a), we highlight the convergence of the AQ-
EERoB algorithm. We plot the averaged path length (L)
depending on the iteration number for three different grid
networks of 9, 16, and 25 nodes and with one gateway placed
at the grid’s top right. The average tour length converges first.
It decreases exponentially for small-sized networks and takes
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(a) Energy Consumed vs Beamwidth for Dif-
ferent Values of α and for v=1

(b) Throughput vs Beamwidth for Different
Values of α and for v=1

(c) Throughput vs Energy Consumed for Dif-
ferent Values of L

Fig. 3: Joint Optimization Problem Optimal Results

(a) Convergence for Various Network Sizes (b) Convergence for Different Number of
Ants per Node

(c) Convergence for Different Number of
Gateways in the Network

Fig. 4: AQ-EERoB convergence

more time for larger ones. Agents have more paths to explore
in larger networks and take more time to find the gateway’s
optimal path. The optimal tour lengths are 2, 3, and 5 nodes
(hops) for networks of 9, 16, and 25 nodes, respectively.

Next, we investigate the impact of the number of agents
per node. In Figure (4b), we vary the number of agents per
node in a 25 nodes grid topology network with one gateway
placed at the top right of the grid. It can be seen that the
more agents per node for fixed network size, the faster the
algorithm convergence is. Note that an iteration corresponds
to a cycle in the AQ-EEoB algorithm. Having more agents per
node increases the spatial exploration rate, where agents take
different paths and different directions around the source node
simultaneously and update the AQ values. The average path
length converges to the optimal length, five hops for the 25
nodes grid topology network.

In Figure (4c), we focus on the scenario with one agent per
node, and we study the impact of the number of gateways on
the algorithm convergence. We vary the number of gateways
while keeping the same network size (25 mesh nodes). It
can be seen that with a few gateways in the network, the
convergence of AQ-EERoB is slower than in the case where
more gateways are available. Having more gateways on the
network makes it easier for the agents to reach one of the
gateways.

Generally, the AQ-EEoB convergence shape is exponentially

decreasing and converges to the optimal number of hops. The
convergence is reached after 30 iterations on average.

Once the AQ-EERoB algorithm converges and routes to
reach the gateway are known, we tackle the performance
analysis on a particular and extreme case where only one
gateway is considered and located either at the edge or the
network center. This case is challenging since all routes must
converge to the same gateway reducing. As a result, the
spatial diversity increases the convergence of the AQ-EERoB
algorithm, as shown just before. Besides, this case is relevant
for poor/rural deployment scenarios or desert areas where
reducing the network infrastructure as the gateways mitigate
the lack of power suppliers and reduce the deployment-related
cost.

D. AQ-EEoB Algorithm Effectiveness

1) Impact of Network Topology: This section analyzes the
impact of the nodes’ spatial distribution on energy consump-
tion and throughput. We consider three different scenarios:
(i) a grid topology with a gateway placed at the top right
corner with the grid size varying from 2×2 to 7×7; (ii) a
grid topology with a gateway placed at the center, where
the considered sizes are 3×3, 5×5 and 7×7, since the other
sizes cannot have a node at the center; and (iii) a random
topology of n ∈ {6, 8, ..., 49} wireless mesh nodes, generated
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randomly inside the considered area, and the gateway is
selected randomly among these nodes. All nodes transmit at
the full power (v = 1), and α is set to 0.5. Results are obtained
using NS-3 simulations and presented in Figure 5, via the
curves denoted x-Grid-TR (top right), x-Grid-Center, and x-
Random, where x is the number of the beams.

Simulations results in Figure 5 show that in random topolo-
gies with a few numbers of nodes, the nodes fail to reach
the gateway. Moreover, most of the nodes are out of the
communication range and, the connectivity between nodes is
not ensured. Beyond 12 nodes, the network can be formed,
and flows are routed to reach the gateway. Furthermore, the
confidence intervals are significant for a topology with fewer
nodes and smaller ones while increasing the nodes’ number.
The energy consumption increases with the number of nodes in
the network. Moreover, it is interesting to observe that energy
consumption is reduced when 4-beams are used, considering
the network topology and the gateway location. On the con-
trary, the throughput is higher with a 4-beams antenna than
with 2-beams one due to the enhanced spatial diversity of
the network, which allows concurrent transmissions. The more
directional the antennas are, the better the trade-off between
power consumption and throughput.

Furthermore, considering the same number of beams, less
energy is used in a network with the gateway placed at the
center. However, the scenario with a central gateway provides
better throughput. Indeed, fewer nodes are used to relay the
traffic compared to the edge gateway topology. However, the
traffic load is higher around the gateway as the same nodes
are constantly solicited, thus reducing their throughput. On
the other hand, when the gateway is at the network edge, the
throughput is enhanced since more nodes are used to relay
data traffic, despite almost the same traffic load rate.

2) Impact of the Number of Gateways: In this section,
we study the impact of the number of gateways on network
performance. We vary the number of gateways and analyze
the impact on energy consumption and throughput for a grid
topology 6. The energy consumption is decreasing against
the number of nodes in the network. Additionally, the more
gateways in the network, the less energy consumed is. The
inverse trend can be observed for the throughput, which is
improved for many gateways in the networks. Having one or
a few gateways in the network causes congestion and collisions
that induce additional retransmissions. Moreover, for networks
with a few nodes, the gap between 1, 2, and 4 gateways is high,
but it is lowered for a larger network size. When the network
size gets more significant with a few gateways, the gateways
cannot absorb the traffic as in the small-size network.

3) The AQ-EERoB Algorithm Effectiveness: In this para-
graph, we investigate the effectiveness of the proposed AQ-
EERoB scheme. In Figure 7, we compare the average con-
sumed energy and the average throughput obtained using the
AQ-EEoB, Ant-Colony algorithms, and the optimal solution
while changing the number of nodes in the network. The
average consumed energy increases with the network size,
whereas the throughput decreases when the network gets
larger. Furthermore, we observe only a slight difference in
the consumed energy between the optimal solution and the

AQ-EERoB heuristic. Neglecting this difference, we can con-
clude that the AQ-EERoB algorithm outperforms the other
two algorithms. It provides the best performance, i.e., lower
consumed energy and higher throughput, for both 2- and 4-
beams scenarios, whatever the network size. Therefore, the
AQ-EERoB scheme finds routes with a maximum bit rate and
minimum energy.

4) Impact of Power Control: This paragraph investigates
the trade-off between energy consumption and throughput,
considering a discrete power control scheme. The impact of
power control is considered in Figure 8a where we show the
consumed energy versus the beamwidth for different values of
| L |, the number of power levels for a network of 25 nodes.
We consider the case of | L |= 3 where each node selects
its transmit power from the set {0, Pmax

2 , Pmax}. As observed
previously, energy consumption grows with the increase of
beamwidths. Moreover, the Ant-Q-based heuristic is close to
the optimal one and provides the best performance. As stated
before for α = 0.5 in Figure 7, AQ-EERoB algorithm gives
a good approximation of the optimal solution. Furthermore,
regardless of the considered algorithm, the power control
scheme with several levels considerably decreases the energy
consumption, mainly for DAs with larger beams. In narrow
beams, a small improvement is observed for the consumed
energy using only one power level (Pmax) compared to 3
levels of power control. However, this improvement is greater
when the DA’s beamwidth is larger.

5) Impact of the Weight Factor (α): Figure 9 highlights
the variation of the consumed energy, the throughput, and
the route length versus the optimization weight factor α. As
in the previous setting, a 4-beams DAs equipped WMN of
25 nodes is considered. The shortest path algorithm provides
invariant and the worst results since it is independent of α. For
α=0, the consumed energy is not considered in the Heuristic
information (HE) (Eq. 24) used to build the routing path;
hence, it corresponds to the highest value of consumed energy.
Increasing α gives more importance to the consumed energy.
The consumed energy decreases smoothly for α below 0.7,
then decreases roughly above 0.7, as shown in Figure 9a. As
expected, in Figure 9b, the throughput is maximal for α=0
and decreases until reaching its minimal value for α=1. Fig.
9c compares the average route length obtained using AQ-
EERoB and shortest path algorithms when OAs and 4-beams
DAs are used. In omnidirectional antennas, the AQ-EERoB
algorithm selects routes composed of several hops to reduce
energy consumption when α → 1, using fewer transmission
powers at each node, while the shortest path algorithm aims at
finding the shortest path by default. On the other hand, when
maximizing the throughput (α = 0), the path length is fixed
to 4, as same as the shortest path algorithm. Fortunately, the
AQ-EERoB algorithm is beneficial for the 4-beams network
since the route length is significantly reduced. Therefore, we
can deduce from the three figures that the optimal value of α
is 0.7 since the throughput and energy consumption trade-off
are satisfied. Moreover, the number of relay nodes is lower.

Results show that the AQ-EERoB algorithm outperforms
both Ant-colony and shortest path algorithms. Using Ant-
Q heuristic traffic routing over backhaul WMN with direc-
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(a) Energy Consumed (b) Throughput

Fig. 5: Impact of Network Topology on Performance.

(a) Energy Consumed (b) Throughput

Fig. 6: Impact of the Number of Gateways on Network Performance.

(a) Energy Consumed (b) Throughput

Fig. 7: Network Size Impact: Comparison between AQ-EERoB Heuristic, Ant-C and Optimal Solution for α=0.5.

tive antennas can reduce energy consumption and improve
throughput.

E. AQ-EEoB vs Baseline Algorithms

In this subsection, we compare the performance of the
proposed AQ-EEoB algorithm with two algorithms optimizing
either the throughput: Backhaul Link Scheduling algorithm
(BLSa) [31] for directional antennas, or both energy and
throughput: Energy-efficient and Robust Multipath Routing
(ERMR) protocol [24]. For a fair comparison, we consider
the same network for all algorithms. We implement the
two approaches using NS-3. Figure 10 shows the energy

and throughput depending on the number of nodes for the
different benchmark algorithms and various values of α. For
the throughput, it can be seen in Figure 10a that the more
α of the AQ-EEoB algorithm is close to 0, the better the
throughput is, and that the case of α=0 outperforms both
considered benchmark approaches. The BLSa approach op-
timizing the throughput shows better performance than the
ERMR, optimizing the throughput and energy consumption,
and to AQ-EEoB for values α > 0.7. However, BLSa is less
efficient than the case of AQ-EEoB α = 0 (which is equivalent
to optimize only the throughput). The ERMR approach has
slightly less performant in throughput than the case of AQ-



15

(a) Impact of Beamwidth on Consumed Energy. (b) Impact of Beamwidth on Throughput.

Fig. 8: Impact of Beamwidth on Consumed Energy and Throughput for different Values of L and for α = 0.7.

(a) Energy consumed (b) Throughput (c) Length (number of hops)

Fig. 9: Routing Scheme Performance versus α: AQ-EERoB, Ant-C and Shortest Path algorithms

EEoB α = 0.7 On the other hand, Figure 10b highlights the
energy consumption depending on the network size for the
benchmark algorithms and different values of α. It can be seen
that the more α is close to 1, the lower the energy consumed
is. The BLSa approach induces a higher energy consumption
since it is designed to maximize the throughput and does
not consider the energy issue. The ERMR approach, jointly
optimizing the throughput and energy, has similar energy
consumption as α=0.7.

F. AQ-EEOB Computation Time

In this subsection, we evaluate the computation time of the
proposed AQ-EEoB algorithm. Table IV presents the average
computation time, the time needed to run the algorithm and
to find possible routes for each source flow. We reported
computation time for three different network sizes: small (25
nodes), medium (50 nodes), and large (100 nodes) network
sizes, equipped with four beam antennas and one gateway.

Simulation is performed using a standard PC with a 3,1
GHz Dual-Core Intel processor and 8 GB of RAM. Results
show that the AQ-EEoB algorithm takes a shorter time to solve
the problem compared to the optimal solution. Furthermore,
AQ-EEoB has a computing time comparable to that of Ant-
Colony. Additionally, the computation time of the proposed
algorithm is scalable with the network size. An increase in the
number of nodes in the network leads to a stable linear increase
in the computation time. Furthermore, the BLSa algorithm

has comparable computation time to the AQ-EERoB and Ant-
Colony approaches. However, the ERMR algorithm is more
time-computationally complex.

Small Network Medium Network Large Network

Optimal 349.00± 26.27 721.00± 21.91 -
AQ-EEoB 2.56± 0.11 4.96± 0.35 9.22± 0.73

Ant-Colony 2.41± 0.14 4.83± 0.12 9.18± 0.23
BLSa 4.01± 0.10 5.07± 0.29 10.56± 0.45

ERMR 34.14± 1.10 40.91± 2.31 87.22± 5.10

TABLE IV: Computation Time (in seconds).

VI. CONCLUSION & PERSPECTIVES

This paper addressed joint energy consumption minimiza-
tion and throughput maximization in WMN using DAs to
advantage of spatial diversity. As a resolution approach, we
developed a routing scheme based on beam and transmission
power selection while guaranteeing a trade-off between energy
consumption and throughput. First, we formulated the joint
energy consumption and throughput optimization problem as a
Mixed Integer Linear Program (MILP). Secondly, we proposed
an algorithm based on the AQ-EERoB heuristic to reduce the
resolution complexity. The routing scheme we proposed allows
us to jointly select optimal beams and transmission power
levels, using two algorithms: DNDa (Directional Neighbors
Discovery Algorithm) and AQ-EERoB (Ant-Q for Energy
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(a) Throughput (b) Energy Consumed

Fig. 10: AQ-EEoB Algorithm vs Benchmark Algorithms

Efficient Routing over Beams). We used both the ILOG Cplex
solver and NS-3 network simulator to evaluate and discuss the
optimization results depending on the network parameters and
the optimization weight factor.

The obtained results are very promising and demonstrate
our approach efficiency. Overall, the more antennas are direc-
tive, the greater the tradeoff between throughput and energy
consumption, regardless of the network topology, gateway
position, and weight factor α. Additionally, introducing power
control improves the obtained results. This enhancement re-
mains significant even in the case of antennas with larger
beams, mainly omnidirectional antennas. Moreover, paths are
shorter, which reduces consumption and increases throughput.
Our results show that the AQ-EERoB algorithm is effective
and provides a good approximation of the optimal solution
compared to the Ant colony and the shortest path algorithms.
Finally, setting the scenario using the 3-level power control and
an optimization weight factor α of 0, 7 provides the optimal
throughput and energy consumption tradeoff.

This work limited our analysis and evaluation of the AQ-
EEoB algorithm to WMNs where nodes communicate using a
single frequency channel. It would be interesting to extend the
optimization model to study the impact of using multi-channel
on network performance. Moreover, the AQ-EEoB algorithm
is based on the Q-learning algorithm. In future work, Deep Q
Learning, a neural network version of Q-learning, and other
reinforcement learning algorithms such as value iteration and
Sarsa [43] can be used to improve the solution’s performance.
The neural network approach can apprehend the complexity
of large-sized networks and help to adapt the routing scheme
to topology changes. Additionally, considering the channel
quality through a cross-layer approach to improve the routing
strategies and investigates the network lifetime for a limited
battery-powered network are interesting perspectives of this
work.
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