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Abstract

Automatically identifying implicit discourse relations re-
quires an in-depth semantic understanding of the text frag-
ments involved in such relations. While early work inves-
tigated the usefulness of different classes of input features,
current state-of-the-art models mostly rely on standard pre-
trained word embeddings to model the arguments of a dis-
course relation. In this paper, we introduce a method to com-
pute contextualized representations of words, leveraging in-
formation from the sentence dependency parse, to improve
argument representation. The resulting token embeddings en-
code the structure of the sentence from a dependency point of
view in their representations. Experimental results show that
the proposed representations achieve state-of-the-art results
when input to standard neural network architectures, surpass-
ing complex models that use additional data and consider the
interaction between arguments.

Introduction
Automatically identifying discourse relations is helpful for
downstream NLP tasks such as question answering, machine
translation or automatic summarization. Much research fo-
cused on the task along with the release of the Penn Dis-
course Treebank (PDTB) (Prasad et al. 2008), the largest an-
notated corpus of discourse relations. In PDTB, documents
are annotated following the predicate-argument structure: a
discourse connective (e.g. but, because) is a predicate that
takes two text spans around it as its arguments, further de-
noted as Arg-1 and Arg-2.

To approach the task of implicit discourse relation classi-
fication (IDRC), the focus of most work has been on mod-
elling the interaction between arguments and less on their
representations. Although earlier work uses different feature
sets as input: word pairs, part-of-speech tags, context infor-
mation etc. (Pitler, Louis, and Nenkova 2009), little attention
has been offered to varying the input features of recent deep
neural network-based approaches to IDRC and to how these
can influence the output quality of such models. That is,
most current approaches rely on standard pre-trained word
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type embeddings, which have been successful across a vari-
ety of tasks and have been proven to perform best so far on
IDRC as well (Braud and Denis 2015).

To account for the difficulty to fully recover the semantics
of arguments using only surface level features (Ji and Eisen-
stein 2015), additional linguistic and structural information
regarding the arguments can be leveraged (Dai and Huang
2018; Qin, Zhang, and Zhao 2016a). However, information
from syntactic dependencies, previously proven beneficial
for the task (Lin, Kan, and Ng 2009), is not integrated in any
of these models. The current work aims precisely at investi-
gating the use of syntactic information in such a context.

On the other hand, there has been a strong recent interest
to replace the generic word type embeddings by token em-
beddings which have proven to be successful within various
applications (McCann et al. 2017; Peters et al. 2018). The
idea of token embeddings is to represent a word in its con-
text, with the same word bearing different representations in
different contexts. This contrasts to a generic word embed-
ding representation, which is the same in every context.

Since the task of detecting implicit discourse relations re-
quires semantic understanding which consequently relies on
encoding the word meaning in its context (Qin, Zhang, and
Zhao 2016a), it is natural to investigate the use of token rep-
resentations for this task. For this we propose a set of to-
ken representations that offer improvements over traditional
word representations and have the benefit of encoding the
information about the structure of the sentence from a de-
pendency point of view in the representations themselves.
To the best of our knowledge we are the first to investigate
the use of token embeddings for the task of IDRC and to ana-
lyze the impact of using syntactic dependencies information
as input to deep learning models for this task.

We evaluate the proposed token embeddings as input to
two most common basic neural network architectures and
an additional gated mechanism to model the interaction be-
tween the arguments. Our main contributions are:

• We propose a method to explicitly integrate syntactic in-
formation into token embeddings to model the arguments
for IDRC;

• We analyze and compare the contribution of token embed-
dings to the task as opposed to word type representations;
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• We reach state-of-the-art performance with simple archi-
tectures, surpassing complex models that focus on the in-
teraction between arguments or use additional data as well
as models that use other token embeddings.
The remaining of this paper is organised as follows: We

first present the related work, then we introduce our token
embeddings proposal, the architectures used to model the
arguments in a discourse relation and the methods for dis-
course relation identification. We then provide details about
the data used and the implementation. Finally we present the
results along with an analysis of the proposed contribution.

Related work
Implicit discourse relation classification
The task of IDRC is typically approached as a classification
problem, with the two arguments as input and their implicit
discourse relation as the label to predict. Much work lever-
ages both labeled and unlabeled data (implicit and explicit)
from different corpora in order to classify discourse relations
in multi-task learning frameworks (Liu et al. 2016). Another
tendency is to focus on the interaction between the two argu-
ments either through attention mechanisms (Lan et al. 2017),
by using features derived from word pairs (Chen et al. 2016)
or by modelling the argument pair jointly (Liu et al. 2016).

Regardless of the chosen approach, accurately represent-
ing the arguments is key to building a reliable model. For
this, most work relies on standard word embeddings while
some employs complementary features to integrate addi-
tional knowledge: (Ji and Eisenstein 2015) represent each
argument using bottom-up compositional operations over its
constituency parse tree, while other work complements word
embeddings with extra linguistic features like part-of-speech
tag embeddings (Dai and Huang 2018) or character-level in-
formation (Qin, Zhang, and Zhao 2016a). (Braud and De-
nis 2016) learn distributional word representations tailored
specifically for IDRC. We propose to improve the represen-
tation of words by using token embeddings computed using
dependency information. Dependency information has been
shown to be beneficial for detecting implicit discourse rela-
tions in traditional models (Lin, Kan, and Ng 2009). How-
ever, this information is not used in more recent neural ar-
chitectures. We separate the token embeddings computation
from the task at hand which enables assessing the benefits of
using them in comparison to standard word embeddings.

Token embeddings methods
There has been a growing interest recently in representing
text using token embeddings. (Dasigi et al. 2017) propose
token embeddings by estimating a distribution over seman-
tic concepts (synsets) extracted from WordNet. (Tu, Gim-
pel, and Livescu 2017) use a feed forward neural network
to produce token embeddings which are further evaluated as
features for part-of-speech taggers and dependency parsers.

(McCann et al. 2017) provide context-aware vectors
(CoVe) by transferring a pre-trained deep LSTM encoder
from a model trained for machine translation to a variety of
other NLP tasks. Recent work leverages information from
language models in semi-supervised settings: (Peters et al.

2017) use the parameters from a pre-trained language model
to induce contextual information to token representations.
(Peters et al. 2018) extend the idea by learning a task specific
linear combination of the intermediate layers of a deeper
bidirectional language model (ELMo). However, their repre-
sentation is somewhat task dependent in that the linear com-
bination is learned with respect to the task at hand. More-
over, training these models requires large amounts of data.

A parallel could be drawn between the current proposal
and the work of (Salant and Berant 2018) who show that
adding contextualized representations to a basic model for
question-answering achieves state-of-the-art results, despite
using only minimal question-document interaction. This
validates further the importance of having contextually-
informed features as input to deep learning models, even
when these models are not the most complex.

Main approach
We propose to approach the task of IDRC through a two-step
process: unsupervised computation of syntactically-aware
contextualized representations of words and a supervised
model for the prediction of discourse relations. The pro-
posed token embeddings will constitute an informed and
complete encoding as they are trained to predict the relations
holding between them in the sentence graph.

Computing the token embeddings
We compute unsupervised token embeddings for all the
words in the corpora. For this we leverage dependency re-
lations obtained from a dependency parser (Honnibal and
Johnson 2015), using the CLEAR labels as implemented in
the spaCy toolkit. We additionally use information regarding
immediate local context in the form of adjacency relations.

Formally, given the graph of a sentence Gs as provided
by its dependency parse tree, we model the interactions be-
tween the tokens in the sentence as shown in Figure 1. We
use a rank-3 tensor Ts to specify the binary relations be-
tween tokens that are given by the parse tree of the sentence
along with an additional adjacency relation.

We optimise a ranking loss within the tensor (T s
loss) that

aims at scoring positive triples tsijk = (i, k, j) higher than
negative ones. An additional regularisation term (Rs

loss) is
used to minimise the gap between the token embeddings rep-
resentation and a pre-trained word type representation of the
words they denote 1. This is conceptually similar to the vec-
tor space preservation term in (Mrkšic et al. 2016) in that
it controls for how much the token embeddings can deviate
from their corresponding word representations.

Our overall goal is to create embeddings that are close,
through Rs

loss, to the original word embeddings (known to
capture semantics) and at the same time are syntactically-
informed, through T s

loss, so as to capture fine-grained se-
mantic differences according to the role a given word plays
in a sentence. It is thus important to stress that optimising
only T s

loss would be insufficient as it would lack the notion
of semantics provided through Rs

loss.

1In the current work we use GloVe (Pennington, Socher, and
Manning 2014) pre-trained word type embeddings.
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Figure 1: Sentence graph decomposition

The optimisation problem is formulated as

min
∑
s∈S

α(T s
loss) + (1− α)(Rs

loss) (1)

where:

T s
loss =

∑
tsijk∈Gs,

ts
i′j′k′∈¬(tsijk)

max(0, γ+〈esi′ , Rk′ , esj′〉−〈esi , Rk, e
s
j〉)

and
Rs

loss =
∑

esi∈Gs

− log σ(esi · ws
i )

with Gs the graph of sentence s holding all tokens and all
relations present in the sentence, esi the token embedding
of token i in sentence s, Rk the matrix embedding for the
relation k, ws

i the pre-trained word type embedding corre-
sponding to the token esi , γ the margin hyperparameter, σ
the softmax function, and ¬(tsijk) the set of negative triples
associated with tijk. Es is the matrix holding all token em-
beddings for sentence s, with one token embedding per row,
and R is the tensor of all relations. Given all tokens in one
sentence s, that results in approximating the relations tensor
for sentence s, Ts by E(|s|×d)

s ·R(d×r×d) · ET (d×|s|)
s .

The regularisation term Rs
loss can be seen as a particular

case of cross entropy −y · log ŷ − (1− y) · log(1− ŷ) with
y = 1 and ŷ = σ(esi · ws

i ).
A negatively sampled example in the tensor is obtained

by altering one element of the triple while fixing the re-
maining two: this element can be either one of the entities
or the relation holding between them. As mentioned above,
given a triple tsijk = (i, k, j), we denote by ¬(tsijk) the
set of negative examples associated to it. We consider here
that ¬(tsijk) is formed of the following elements: ¬(tsijk) =
{(i′, k, j), (i, k′, j), (i, k, j′)} ∀i′ 6= i, j′ 6= j, k′ 6= k.

We optimise Eq.(1) using mini-batch stochastic gradient
descent to optimize all Rk and esi . In the current proposal
we aim to learn a representation for each word token in each
sentence as well as for each relation holding between these
tokens from scratch. Alternatively, one could leverage pre-
trained relations embeddings - a setup whose exploration we
leave for future work. We additionally note that the method
described can be applied to any other dataset of sentences
provided access to parsing information and pre-trained word

type embeddings. The obtained representations can be used
to predict discourse relations as described further.

Modelling the discourse arguments
Let us consider the two arguments Arg-1 and Arg-2 with
lengths n and m respectively. We associate each word w
with a vector representation xw ∈ Rd. Let x1

i and x2
i be the

d-dimensional i-th word vector in Arg-1 and Arg-2 respec-
tively. Then the word representations of the two arguments
are: Arg-1 = [x1

1,x
1
2, . . . ,x

1
n] and Arg-2 = [x2

1,x
2
2, . . . ,x

2
m].

Recurrent architecture. One of the most widely used
models to encode sequences, that enables learning long-
term dependencies taking into account contextual informa-
tion, is the long-short term memory LSTM (Hochreiter and
Schmidhuber 1997), a variant of the recurrent neural net-
work. We adopt two LSTM neural networks to model the
two arguments separately. Given a word sequence represen-
tation [x1,x2, . . . ,xk] as input, an LSTM computes the hid-
den state sequence representation [h1,h2, . . . ,hk]. At each
time step i, the model reads wi as input and updates the hi
hidden state. The final representations for the two arguments
are then given by the last hidden state representation for each
of them: Arg-1 = hn and Arg-2 = hm.

Convolutional architecture. In order to represent each
argument using convolutional neural networks (CNNs), we
follow the approach of (Kim 2014). Given a word sequence
representation [x1,x2, . . . ,xk], let W ∈ Rh×d be a fil-
ter applied to a window of h words to produce a fea-
ture ci, b a bias term and f a non-linear function. Then
ci = f(W · xi:i+h−1 + b). A feature map c ∈ Rn−h+1

is created by applying the filter to each possible window of
words in the argument {x1:h,x2:h+1, . . . ,xk−h+1:k}. Thus
c = [c1, c2, ..., ck−h+1], followed by a max-pooling opera-
tion ĉ = max(c) to obtain the most important feature, the
one of highest value, corresponding to the particular filter.
For m filters with different window sizes we obtain m fea-
tures: z = [ĉ1, ..., ĉm]. The representation of each argument
is them-dimensional vector z: Arg-1 = z1 and Arg-2 = z2.

Predicting the discourse relation
The discourse relation holding between two arguments can
be predicted with or without modelling the interaction be-
tween the two arguments, as presented in the following.

No interaction between arguments Once we obtain the
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vector representations of each argument (through LSTM,
CNN), we concatenate these vectors into a vector of the pair
v = [hn,hm] for an LSTM encoding and v = [z1, z2] for a
CNN encoding, which is further passed to a fully connected
layer, followed by a softmax layer to obtain the probability
distribution over labels. This approach, however, does not
focus on modelling the interaction between the two argu-
ments in the discourse relation, an important aspect when
predicting discourse relations, as pointed out by previous
work (Chen et al. 2016; Lan et al. 2017).

Collaborative gated neural network An alternative ap-
proach that enables modelling argument interaction is the
collaborative gated neural network (CGNN) (Qin, Zhang,
and Zhao 2016b). In CGNN the arguments are modelled us-
ing CNNs that share parameters and an additional gated unit
is used for feature transformation. The input to the CGNN
unit is the vector of the pair v = [z1, z2] and the set of trans-
formations are: ĉ = tanh(W c ·v+bc), gi = σ(W i ·v+bi),
go = σ(W o·v+bo), c = ĉ�gi, h = tanh(c)�go, where�
denotes the element-wise multiplication, σ denotes the sig-
moid function, ĉ and c are inner cells, gi and go are the two
gated operations and W i, W o and W c are parameters of
the model. The output of the CGNN unit is the transformed
vector h which is further passed to a softmax layer.

We define the training objective as the cross-entropy loss
between the output of the softmax layer and the class labels.

Experimental setup
Data
Throughout all experiments we use the ( PDTB 2.0 dataset
(Prasad et al. 2008) considering only argument pairs anno-
tated with implicit discourse connectives. To enable com-
parisons with previous work, we follow two popular ex-
perimental setups and perform multi-class classification on
both level-1 and level-2. We adopt the same split as in (Lin,
Kan, and Ng 2009), further denoted as PDTB-Lin and per-
form multi-class classification for level 2 classes. Similarly
to (Lin, Kan, and Ng 2009), we select the most frequent 11
classes. A second split is that of (Pitler, Louis, and Nenkova
2009) denoted PDTB-Pitl, for which we report results for
level-1 multi-class classification similarly to previous work.

Implementation details
For token embeddings computation we run multiple threads
varying the initial learning rate, the negative sampling fac-
tors and the margin γ. We fix the ratio between the two losses
to α = 0.5, optimize using Adam (Kingma and Ba 2014)
and do early stopping based on the validation loss. All token
embeddings are randomly initialised . We obtain the best re-
sults when using an initial learning rate of 10−3, a sampling
factor of 5x and γ set to 10. We consider all dependency
relations with a frequency higher than 1000 in the corpus.

In all the IDRC experiments we fix the input embeddings
to the type or token embeddings. For the optimisation we
use Adam and tune the parameters on the development set.
Parameters used for the reported results are: for PDTB-Lin
the initial learning rate and dropout values are 10−4 and 0.7
for LSTM and CGNN and 10−5 and 0.8 for CNN. The CNN

uses 600 filters and CGNN uses 128. For the PDTB-Pitl split
the initial learning rate is 10−5 for LSTM and CNN and
10−4 for CGNN. The dropout is 0.6 for CNN and CGNN
and 0.7 for LSTM. Both CNN and CGNN use 600 filters.

Results and discussion
We present a comparison of the proposed token embeddings
to standard word type embeddings followed by a parallel
between our results and state-of-the-art systems and a series
of experiments with model variations.

Comparison to word type embeddings
Table 1 presents the results of three sets of experiments on
the PDTB-Lin data, using different input features: standard
word embeddings often employed in literature (Penning-
ton, Socher, and Manning 2014; Mikolov et al. 2013), word
embeddings trained using dependency contexts (Levy and
Goldberg 2014) and our proposed syntactically-aware token
representations (SATokE).

LSTM CNN CGNN
GloVe 38.97 38.25 39.03
Word2Vec 36.92 37.33 37.07
Deps-WE 36.00 34.98 34.98
SATokE 40.51 42.55 43.08

Table 1: Results for level-2 classification on PDTB-Lin

Using the proposed token embeddings as input yields im-
portant improvements over all word embeddings we com-
pare to, across all architectures considered. We obtain im-
provements between 1.5% and 4.5% when using an LSTM
architecture, 3.7% to 7.5% with a CNN encoder and 4% to
8% with CGNN. Unsurprinsingly, feeding SATokE as input
to an LSTM encoder only improves results by up to 4.5%:
SATokE encode positional information by their construction
using adjacency information, and thus they complement less
the advantages of using an LSTM encoder.

Embeddings trained on dependency contexts yield con-
sistently worse results than all the other embeddings consid-
ered. This is consistent with the analysis in (Ghannay et al.
2016) who show that such embeddings obtain lower results
on semantic tasks despite high performance on POS tagging
or chuncking. Contrary to a first interpretation, dependency
information is useful for semantic tasks: its value is higher
when this information is injected into the token representa-
tions directly, by leveraging the parse tree of the sentence,
than when used as context for creating generic word embed-
dings from a large corpus. The observed results support this
statement with improvements of 4.5% to 8% in absolute ac-
curacy between Deps-WE and SATokE.

Comparison to related work
Table 2 compares the previously presented results to the re-
lated work for the fine-grained multi-class classification of
the PDTB-Lin split. Although our results are close to state-
of-the-art systems, it is important to note they use additional
data to train their models: (Qin, Zhang, and Zhao 2016a)
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Model Accuracy (%)
(Lin, Kan, and Ng 2009) 40.2
(Qin, Zhang, and Zhao 2016a) 43.81
(Qin et al. 2017) 44.65
CGNN+SATokE 43.08

Table 2: Comparison to related work on level-2 PDTB-Lin.

enhance word embeddings with character level information
and (Qin et al. 2017) use a more complex model in an adver-
sarial framework leveraging explicit discourse connectives.

To enable further comparisons to more complex models,
we run a set of experiments on level-1 multi-class classi-
fication on the PDTB-Pitl split, which we compare to re-
lated work in Table 3. Some work uses additional data from
different corpora or with explicit connectives: (Liu et al.
2016) leverage different discourse corpora, (Ji, Haffari, and
Eisenstein 2016) model jointly the discourse relation and the
arguments and use additional data from non-implicit rela-
tions. Other work focuses on complex architectures to model
the interaction between arguments: (Lan et al. 2017) use
an attention-based LSTM leveraging explicit discourse re-
lations and unlabelled external data. (Liu and Li 2016) use a
multi-level attention mechanism to repeatedly read the argu-
ments involved in a discourse relation along with an external
short-term memory to keep track of information. (Dai and
Huang 2018) model inter-dependencies between arguments
and the sequence patterns of their discourse connectives by
positioning them in the wider context of paragraphs. Lastly,
(Wang et al. 2017) propose Tree-LSTM and Tree-GRU mod-
els to encode the structure of the constituency parse trees
and use information from the constituent tags to control for
semantic composition. and induce grammatical information.
However, none of these investigates the use of syntactic de-
pendencies or can encode arbitrary graphs.

We observe that by using a simple CNN encoder with
SATokE as input, we obtain state-of-the-art results, even sur-
passing most complex models which exploit external data,
have a higher number of parameters and/or model the inter-
action between arguments. It is important to note that out of
the models that use neither additional data nor argument in-
teraction, SATokE yields the best results, above ELMo (Pe-
ters et al. 2018) that is considered as the current state-of-
the-art token embedding method. Lastly, the use of CNN in
SATokE yields better results than the use of CGNN, sug-
gesting that even though the CGNN architecture models the
interaction between arguments, it may not constitute a pow-
erful enough architecture for this setup.

Impact of syntax - model variations
While modelling the words in their context seems benefi-
cial, we want to further investigate to what extent syntax
plays an important role. In Table 4, an additional set of ex-
periments analyze the impact of using dependency infor-
mation in the computation of the token embeddings with
a CNN architecture. We set the parameters for the token
embeddings computation to the ones that obtained the best
results in the default scenario. Then we consider two com-

parative settings: token embeddings computed without the
adjacency relation SATokE-adj, and without all syntactic re-
lations SATokE-syntax respectively. The decrease of perfor-
mance in results shows that both adjacency relation and syn-
tax play an important role in the final result. However, the
results seem to degrade more when information about syn-
tax is removed from the token computation than when adja-
cency information is not present.

Finally, we consider a set of experiments in which we
iteratively remove certain dependency relations considered
important, from the token embeddings computation. We ob-
tain tokens computed without information coming from the
SUBJ, OBJ and MOD dependency relations. We observe
that, for the most part, results degrade the more information
is removed from the computation of the tokens.

Conclusion
The task of IDRC requires an in-depth understanding of
the arguments involved in a discourse relation. To tackle
this challenging aspect, we propose to use syntactically-
informed contextualized word representations. We show that
the proposed embeddings outperform standard pre-trained
word representations as well as state-of-the-art token em-
beddings for this task. We additionally show that using sim-
ple neural network architectures, we can integrate the pro-
posed representations into a model for IDRC that achieves
state-of-the-art results without additional data and without
modelling the interaction between arguments.
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