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Abstract. In distributed computing, multiple processes interact to solve a problem
together. The main model of interaction is the message-passing model, where processes
communicate by exchanging messages. Nevertheless, there are several models varying along
important dimensions: degree of synchrony, kinds of faults, number of faults. . . This variety
is compounded by the lack of a general formalism in which to abstract these models, for
translating results from one to the other. One way to bring order to these models is to
constrain them further, to communicate in rounds. This is the setting of the Heard-Of
model, which captures many models through predicates on the messages sent in a round
and received on time (at this round or before, where the round is the one of the receiver).
Yet, it is not easy to define the predicate that best captures a given operational model.
The question is even harder for the asynchronous case, as unbounded message delay means
the implementation of rounds must depend on details of the model.

This paper shows that characterising asynchronous models by heard-of predicates is
indeed meaningful. This characterization relies on the introduction of delivered predicates,
an intermediate abstraction between the informal operational model and the heard-of
predicates. Our approach splits the problem into two steps: first extract the delivered
model capturing the informal model, and then characterize the heard-of predicates that can
be generated by this delivered model. For the first part, we provide examples of delivered
predicates, and an approach to derive more. It uses the intuition that complex models
are a composition of simpler models. We thus define operations like union, succession or
repetition that make it easier to derive complex delivered predicates from simple ones while
retaining expressivity. For the second part, we formalize and study strategies for when to
change rounds. Intuitively, the characterizing predicate of a model is the one generated by
a strategy that waits for as much messages as possible, without blocking forever.

1. Introduction

1.1. Motivation. Distributed computing studies how multiple processes can accomplish
computational tasks by interacting with each other. Various means of communication are
traditionally studied; we focus here on message-passing, where processes exchange messages.
Yet, message-passing models still abound: they might have various degrees of synchrony (how
much processes can drift of from each other in term of processing speed or communication),
different kinds of faults (processes crashing, processes crashing and restarting, message loss,
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message corruption. . . ), different network topologies. . . Although some of these differences
are quantitative, such as the number of faults, others are qualitative, like the kinds of faults.
This in turn means that abstracting most message-passing models into one formal framework
proves difficult. Indeed, most works in the literature limit themselves to either a narrow
subset of such models that can easily be abstracted together, or consider a handful of models
one by one. Hence it is difficult to compare, organize and extend results from the literature
to other message-passing models. Formal verification is also made significantly harder by the
need to derive a formal version of each model.

One step towards unifying a broad range of message-passing models is to abstract them
through the messages which will be received. A crashed process would thus be considered as a
silent process, for example. Yet this information — which messages can be received — is hard
to capture in a simple mathematical object. This is one reason why these proposals further
constrain communication to explicitly use rounds: each process repeatedly broadcasts a
message with its current round number, waits for some messages bearing this round number,
and changes round by computing its next state and its next message. The distributed
algorithm tells each process how to change its state at the end of each round, and which
message to broadcast in the next round. Then the model can be abstracted through which
message will be received by which process at each round, and each such possibility is
represented either through a function or a sequence of graphs. At first glance, forcing rounds
onto these models might seem like a strong constraint, severely limiting the generality of this
unification. But rounds are actually ubiquitous in distributed computing: they are present
in the complexity analyses of synchronous message-passing models, in the fault-tolerant
algorithms for asynchronous models, in the algorithms using failure-detectors. . . Since the use
of rounds for this abstraction doesn’t force them to be either synchronous or asynchronous,
it captures both.

Combining abstraction through received messages and rounds yields the Heard-Of model
of Charron-Bost and Schiper [7]. It abstracts message-passing models through heard-of
predicates, predicates over heard-of collections. A heard-of collection is a function/sequence of
graphs capturing which messages are received across rounds in one execution. The Heard-Of
model thus boils down the problem of comparing and ordering message-passing models to
the one of comparing the corresponding heard-of predicate. But which heard-of predicate
captures a given message-passing model? Heard-of predicates are properties of the rounds
that can be implemented on top of the original model. Hence this question requires a
system-level approach: looking for rules for when to change rounds that ensure that no
process is blocked forever at a round.

In the synchronous case, where there is a bound on communication delay, every imple-
mentation of rounds used in the literature implements rounds by waiting for the bound. This
ensures both the progress of rounds and the reception of every message from the round at
that round. Since this gives the maximal information to each process at each round, this is
the implementation of rounds on which the most problems can be solved. It thus makes sense
to define the heard-of predicate characterizing a synchronous model as the one capturing
this implementation: it simply specifies which messages can be lost or never sent, and have
all the others received on the round they were sent.

On the other hand, by definition, asynchronous models lack any upper bound on
communication delays. This results in a lot of variations on how rounds are implemented,
depending on the model and the problem one is trying to solve. Waiting so little that the rule
doesn’t block processes on any asynchronous model results in trivial heard-of predicates that
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Figure 1: From Classical Model to Heard-Of Predicate

capture nothing specific about the model — for example the rule that always allows to change
rounds. Conversely, rules that are tailored to a specific model, like waiting for n messages,
might block processes in other models (where there might be less than n messages received
at a round). Finding a corresponding heard-of predicate for an asynchronous model thus
requires a model-specific analysis, as well as some way to choose among the possible rules.
This paper proposes a formalisation of this question, as well as an approach for answering it
for concrete message-passing models.

1.2. Overview. As mentioned above, abstracting message-passing models under one formal-
ism would significantly help with comparing results across models and formally verifying
them. The Heard-Of model provides such an abstraction, but only if we can define and
compute a corresponding heard-of predicate for asynchronous message-passing models, which
is the hardest case due to lack of an upper bound on communication delay. We compute
this heard-of predicate in two steps, as shown in Figure 1. We start with the operational
model, derive a “delivered predicate”, and then find the heard-of predicates that can be
implemented by some rule for changing rounds (called a strategy) for this specific delivered
predicate. Among such predicates, we propose a criterion to choose the one characterizing
the asynchronous message-passing model.

The first step goes from the original asynchronous message-passing model to a delivered
predicate, an abstraction that we introduce. A delivered predicate captures the messages
that are eventually delivered from each round r, without considering the round of delivery.
This is to contrast with heard-of collections, that only capture messages tagged by r if
delivered at the receiver when its local round counter is ≤ r. A delivered predicate makes
the original model formal in the form of a delivered predicate, but it avoids dealing with the
main issue for getting a heard-of predicate: asynchrony. Because the round of delivery is not
considered in a delivered predicate, computing the corresponding one for our original model
does not require a strategy for when to change rounds. Intuitively, the delivered predicate
of a model is the heard-of predicate of the same model if it was synchronous, which are
relatively straightforward to define and compute.

The second step goes from the delivered predicate to the heard-of predicate corresponding
to the original model. To do so, we define strategies: rules that tell when processes can
change rounds. The main constraint on such strategies is to never block a process at a
round forever. As mentioned above, the difficulty here comes from the fact that there are in
general many different strategies for implementing rounds that don’t block forever. Which of
these should be the corresponding heard-of predicate? Our answer relies on the following
intuition: the predicate precisely capturing the asynchronous model is the predicate satisfied
by the fewer heard-of collections, among the set of predicates that can be implemented on
top of the original model. Formally, this translates to being included in every other heard-of
predicate that can be implemented (considering predicates as sets in the standard way). Such
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a predicate, if it exists, intuitively constrains communication the most, by allowing fewer
possibilities for which messages are heard by who at which round. This choice stems from
the relevance of uncertainty for distributed computability. A distributed algorithm has to
give the correct answer independently of the specific scheduling, the specific failures, and
every other source of uncertainty and non-determinism specified by the model. This means
that if everything that could happen according to model M1 could also happen according
to model M2, then every correct algorithm for M2 is also correct for M1. In the Heard-Of
model, this means that for two heard-of predicates HO1 and HO2 such that HO1 ⊆ HO2,
then every correct algorithm for HO2 is also correct on HO1.

With this formalization in hand, what is left is a way to compute the resulting predicate
and prove that it is indeed the strongest. This problem becomes tractable by introducing
operations on predicates (delivered and heard-of) and strategies. Operations capture the
intuition that it’s often easier to build complex models by composing simple ones together.
Hence if the original model can be framed as such a composition, its delivered predicate can
similarly be constructed from the delivered predicates of the building blocks, thanks to the
operations we define. For some families of strategies (strategies that only depend on some
limited part of the local state of a process, here the messages of the current round or the
messages of past and current rounds respectively), the strategy that implements the heard-of
predicate corresponding to the full model can be built from the strategies of the building
blocks using analogous operations on strategies that we define. Then the heard-of predicate
of this built strategy is linked with the composition of the heard-of predicates implemented
by the building block strategies.

1.3. Contributions. The contributions of this article are the following:

• The definition of delivered predicates and strategies, in Section 3.
• Operations on delivered predicates and strategies, to build complex predicates, in Section 4.
• The formalization of the derivation of heard-of predicates from a delivered predicate
and a strategy, in Section 5. This comes with a complete example: the asynchronous
message-passing model with reliable communication and at most F permanent crashes.
• The study of oblivious strategies, the strategies only looking at messages for the current
round, in Section 6. We provide a technique to extract a strategy dominating the oblivious
strategies of the complex predicate from the strategies of its building blocks; exact com-
putations of the generated heard-of predicates; and a sufficient condition on the building
blocks for the result of the operations to be dominated by an oblivious strategy.
• The study of conservative strategies, the strategies looking at all messages from previous
and current round, as well as the round number, in Section 7. We provide a technique to
extract a strategy dominating the conservative strategies of the complex predicate from
the strategies of its building blocks; upper bounds on the generated heard-of predicates;
and a sufficient condition on the building blocks for the result of the operations to be
dominated by a conservative strategy.
• A preliminary exploration of strategies using messages from future rounds, and an extended
example where these strategies build stronger heard-of predicates than oblivious and
conservative strategies, in Section 8.
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1.4. Related Work. Rounds in message-passing algorithms date at least back to their use
by Arjomandi et al. [1] as a synchronous abstraction of time complexity. Since then, they are
omnipresent in the literature. First, the number of rounds taken by a distributed computation
is a measure of its complexity. Such round complexity was even developed into a full-fledged
analogous of classical complexity theory by Fraigniaud et al. [12]. Rounds also serve as stable
intervals in the dynamic network model championed by Kuhn and Osham [16]: each round
corresponds to a fixed communication graph, the dynamicity following from possible changes
in the graph from round to round. Finally, many fault-tolerant algorithms are structured in
rounds, both synchronous [11] and asynchronous ones [4].

Although we only consider message-passing models in this article, rounds are also widely
used in shared-memory models. A classic example is the structure of executions underlying the
algebraic topology approach pioneered by Herlihy and Shavit [14], Saks and Zaharoglou [19],
and Borowsky and Gafni [3].

Gafni [13] proposed a unification of all versions of rounds with the Round-by-Round Fault
Detector abstraction, a distributed module analogous to a failure detector which outputs a set
of suspected processes. In a system using RRFD, the end condition of rounds is the reception
of a message from every process not suspected by the local RRFD module; communication
properties are then defined as predicates on the output of RRFDs. Unfortunately, this
approach fails to guarantee one property that will prove necessary in the rest of this paper:
the termination of rounds.

Charron-Bost and Schiper [7] took a dual approach to Gafni’s work with the Heard-Of
Model, by combining the concept of a fault model where the only information is which
message arrives, from Santoro and Widmayer [20]. Instead of specifying communication by
predicates on a set of suspected processes, they used heard-of predicates: predicates on a
collection of heard-of sets, one for each round r and each process j, containing every process
from which j received the message sent in round r before the end of this same round. This
conceptual shift brings two advantages: a purely abstract characterization of message-passing
models and the assumption of infinitely many rounds, thus of round termination.

This model was put to use in many ways. Computability and complexity results were
proven: new algorithms for consensus in the original paper by Charron-Bost and Schiper [7];
characterizations for consensus solvability by Coulouma et al. [8] and Nowak et al. [18]; a
characterization for approximate consensus solvability by Charron-Bost et al. [6]; a study
of k set-agreement by Biely et al. [2]; and more. The clean mathematical abstraction of
the Heard-Of model also works well with formal verification. The rounds provide structure,
and the reasoning can be less operational than in many distributed computing abstractions.
For instance, there exist a verification with the proof assistant Isabelle/HOL of consensus
algorithms in Charron-Bost et al. [5], cutoff bounds for the model checking of consensus
algorithms by Marić et al. [17], a DSL to write code following the structure of the Heard-Of
model and verify it with inductive invariants by Drăgoi et al. [9].

Yet, determining which model implements a given heard-of predicate is an open question.
As mentioned in Marić [17], the only known works addressing it, one by Hutle and Schiper [15]
and the other by Drăgoi et al. [9], both limit themselves to specific predicates and partially
synchronous system models.
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2. The Heard-Of Model

In the Heard-Of model of Charron-Bost and Schiper [7], algorithms are defined by rounds, and
an execution is an infinite sequence of rounds. At each round, a process broadcasts, receives,
and does a local computation. The Heard-Of model ensures communication-closedness [10]:
in an algorithm, processes at a given round only interact with processes at the same round
— they only consider messages from this round. In the Heard-Of model, executions are
necessarily infinite, and processes change rounds infinitely. Nevertheless, this does not
prevent an algorithm from terminating, and, for instance to achieve consensus or election:
the system reaches a configuration where the local state of each process does not change
anymore.

The Heard-Of model constrains communication through heard-of predicates, which are
themselves predicates on heard-of collections. These predicates play the role of assumptions
about synchrony, faults, network topology, and more. Usually, heard-of collections are
represented as functions from a round r and a process p to a set of processes — the processes
from which p heard the message sent at round r before or during its own round r.

Definition 2.1 (Heard-Of Collection and Predicate). Let Π a set of processes. A heard-of
collection is an element h of (N∗×Π) 7→ P(Π). The heard-of sets of a heard-of collection
are the outputs of this collection. A heard-of predicate HO for Π is a set of heard-of
collections, that is an element of P((N∗ ×Π) 7→ P(Π)).

From another perspective, heard-of collections are infinite sequences of communication
graphs — directed graphs which capture who hears from whom on time, in that q ∈
h(r, p) ⇐⇒ (q, p) is an edge of the r-th communication graph.

Definition 2.2 (Collection as a Sequence of Directed Graphs). Let GraphsΠ be the set of
directed graphs whose nodes are the elements of Π. Then gr ∈ (GraphsΠ)ω is a heard-of
collection. A function h and a sequence gr represent the same collection when ∀r > 0, ∀p ∈
Π : h(r, p) = Ingr[r](p), where In(p) is the set of incoming neighbors of p.

In general, which perspective to use in a theorem or a proof naturally follows from the
context. For example, h[r] makes sense for a sequence of directed graphs, while h(r, p) makes
sense for a function.

3. Delivered Predicates: Rounds Without Timing

Our concern is asynchronous message-passing models. What makes the synchronous case
easier than the asynchronous case boils down to the equivalence between the messages that
are received at all, and those that are received on time. This cannot be replicated in the
asynchronous case, as each asynchronous model requires a different rule for which messages
to wait for before changing round. For example, in an asynchronous model with at most
F crashes, a process can wait for n − F messages before changing round without risking
waiting forever, as at least n−F processes will never crash. In the asynchronous model with
at most F + 1 crashes, doing so will get processes blocked in some cases. Nevertheless, it
might be impossible to wait for all the messages that will be delivered and not block forever.
As explained before, in an asynchronous model with at most F crashes, process wait for
n− F messages before changing round. If less than F processes crash, not all the messages
will be waited for: a process may change round as soon as it has received n− F messages,
and some messages will be received too late and therefore be ignored.
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3.1. Delivered Predicates. Delivered sets are introduced to distinguish between the set of
all delivered messages (on time or late) and the messages delivered before changing round (a
heard-of set). A delivered collection is a sequence of delivered sets, and a delivered predicate
is a predicate on delivered collections that defines which messages are received, ignoring
changes of rounds. Observe that a delivered predicate has the same formal definition as
Definition 2.1 of heard-of predicates — only the interpretation changes –, and the graph-based
notation similarly applies.

Definition 3.1 (Delivered Collection and Predicate). Let Π a set of processes. A delivered
collection is an element c of (N∗×Π) 7→ P(Π). The delivered sets of a delivered collection
are the outputs of this collection. A delivered predicate DEL for Π is a set of delivered
collections, that is an element of P((N∗ ×Π) 7→ P(Π)).

For examining the difference between heard-of and delivered collections, recall that we’re
considering the Heard-Of model at a system level: we’re implementing it. Let’s take an
execution of some implementation (which needs to satisfy some constraints, defined later in
Section 5.1): a linear order of emissions, receptions and changes of rounds (a step where the
local round counter is incremented) for each process. Then if each process changes round
infinitely often, there’s a delivered collection d and a heard-of collection h corresponding to
this execution — just look at which messages sent to j tagged with round r where received at
all by j (for d), and which were received when the round counter at j was ≤ r (for h). That
is, for a round r > 0 and processes k, j ∈ Π, k ∈ d(r, j) means that j received at some point
the message of k annotated by r. On the other hand, k ∈ h(r, j) means that j received the
message of k annotated by r while its round counter was ≤ r. Hence the heard-of collection
extracted from this execution captures which messages were waited for (and thus could be
used at the algorithm level — that’s not treated here), whereas the delivered collection
extracted from this execution captures which messages were received at all. For example,
the following scenario:

k1

k2

k3

j

r

r

r

r

leads to: {k1, k2, k3} ⊆ d(r, j) and {k1, k2} ⊆ h(r, j).
To find the delivered predicate corresponding to an asynchronous model, the intuition

is to take the synchronous version of the model, and then take the heard-of predicate that
would be implemented by the rule for changing rounds in synchronous models. This is
the delivered predicate for the model. This captures the strongest heard-of predicate that
could be implemented on top of this asynchronous model, if processes could wait for all
messages that will be delivered. In general, they can’t, since it requires knowing exactly
what’s happening over the whole distributed system. Nonetheless, the delivered predicate
exists, and it plays the role of an ideal to strive for. The characterizing heard-of predicate of
a model will be the closest overapproximation of the delivered predicate that can actually be
implemented.



26:8 Adam Shimi, Aurélie Hurault, and Philippe Queinnec Vol. 17:3

3.2. A Delivered Predicate for at Most F Crashes. As a first example, we consider
the asynchronous model with reliable communication, and at most F crash failures (where
crashes can happen at any point).

Definition 3.2 (DELcrashF ). The delivered predicate DELcrashF for the asynchronous model
with reliable communication and at most F permanent crashes ,{

c, a delivered collection
∣∣∣∣ ∀r > 0, ∀p ∈ Π :

card(c(r, p)) ≥ n− F
∧ c(r + 1, p) ⊆ Kc(r)

}
,

where Kc(r) is the kernel of c at r: Kc(r) ,
⋂
p∈Π

c(r, p), and card is the cardinality function.

Charron-Bost and Schiper [7, Table 1] define it as the heard-of predicate of the synchro-
nous version of this model. We now give an argument for why, if you take the asynchronous
model with reliable communication and at most F permanent crashes, and implement
communication-closed rounds in any way that ensures an infinite number of rounds for every
process, the messages received will form a delivered collection of DELcrashF . In the other
direction, every collection of DELcrashF captures the messages received in an execution of the
implementation of rounds on top of the aforementioned asynchronous model.
• Let t be an execution of an implementation of communication-closed rounds on top of the
asynchronous model above, with the condition of ensuring an infinite number of rounds.
We consider that a crashed process is modelled as a silent process: a crashed process will
still receive all messages after it crashes, but will never do anything else after it crashed.
This is observationally indistinguishable for the other processes. Since every process that
has not crashed broadcasts, this entails that every process will eventually hear the message
from every non-crashed process at this round. Since there’s at most F crashes, that’s
at least n− F messages per round. Hence card(c(r, j)) ≥ n− F for every process j and
round r.

Also, if p hears from k at round r + 1, then k sent the message before crashing. This
means k did not crash at its own round r, and thus that the message it broadcast at that
round r was sent, and eventually received by all processes. Hence c(r + 1, j) ⊆ Kc(r).
• Let c be a collection such that ∀r > 0, ∀p ∈ Π : card(c(r, p)) ≥ n−F ∧ c(r + 1, p) ⊆ Kc(r).
This collection corresponds to the execution where the crashed processes are the ones that
stop broadcasting. Because communication is reliable, k /∈ c(r, p) means that k never sent
its message to p tagged with r. From the model this means that it crashed during its
broadcast at round r or earlier. Each crash thus happens at the first round where the
crashed process is not heard by everyone, after sending the messages that are actually
received at this round.

Later in this article, the heard-of predicate characterizing this delivered predicate (the most
constrained one) is derived. We mention it here, as a comparison [7]:

HOF , {h, a heard-of collection | ∀r > 0, ∀p ∈ Π : card(ho(r, p)) ≥ n− F}

The difference lies in the kernel condition: DELcrashF ensures that if any message sent by p at
round r is not eventually delivered, then no message will be delivered from p at rounds > r.
Intuitively, p not broadcasting means that it crashed during round r or earlier, and that it
will never send messages for the next rounds. However, this is not maintained by HOF , as
the n− F messages that are waited for are not necessarily the same for each process. So k
might wait for a message from p at round r, but j might receive at least n− F messages at
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Figure 2: From Classical Model to Delivered Predicate

round r without the one from p. j cannot conclude that p has crashed, because the message
from p might just be late.

3.3. A Delivered Predicate for at Most L Losses. As a second example, we consider
the asynchronous model without crashes, but with at most L messages lost in the whole
execution (of the system level implementation of rounds).

Definition 3.3 (DELlossL ). The delivered predicate DELlossL for the asynchronous model without
crashes, and with at most L message losses ,{
c, a delivered collection

∣∣∣∣∣ ∑
r>0,p∈Π

(n− card(c(r, p))) ≤ L

}
.

This one is not from Charron-Bost and Schiper [7], but we can apply the same reasoning
as for the previous delivered predicate. Here the sum counts the number of messages that are
never delivered. Since all the processes are correct, this corresponds to the number of lost
messages. For L = 1, the best known strategy (to our knowledge) implements the heard-of
predicate

{h, a heard-of collection | ∀r > 0,
∑
p∈Π

card(Π \ ho(r, p)) ≤ 1}.

What is lost in implementing a heard-of predicate on top of the delivered predicate DELloss1 is
that instead of losing only one message over the whole execution, there might be one loss per
round. This is explained in Section 8.

4. Composing Delivered Predicates

Finding the delivered predicate for a complex model is difficult. However, simple models
are relatively easy to characterize by a delivered predicate. This motivates the following
proposal to solve the plain part of Figure 2: composing simple delivered predicates to derive
complex delivered predicates. That way, there will be no need to define by hand the delivered
predicates of complex models.

4.1. Introductory Example. Consider a system where one process might crash and may
or may not recover later on1. In some sense, this behavior is defined by having the delivered
collections for one possible crash that never recovers, and the delivered collections for one
possible crash that must recover. This amounts to a union (or a disjunction); we write
it DELcanrecover1 , DELcrash1 ∪ DELrecover1 . The first predicate of this union is DELcrash1 , the

1If it does, we can assume that its memory is intact and no messages received in the meantime are lost,
but that’s not important for the system level implementation.
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delivered predicate for at most one crash that never recovers. Let’s consider the second one,
DELrecover1 . Intuitively, a process that can crash but must recover afterward is described by
the behavior of DELcrash1 which is shifted to the behavior of DELtotal (the predicate where all
the messages are delivered) after some time. We call this the succession of these predicates,
and write it DELrecover1 , DELcrash1  DELtotal. Finally, imagine adding to this system another
permanent crash. The full behavior is such that there might be one crashed process as
constrained by DELcrash1 , and another crashed process as constrained by DELcanrecover1 . We call
it the combination (or conjunction) of these predicates, and write it DELcrash1

⊗
DELcanrecover1 .

The complete system is thus described by DELcrash1

⊗
((DELcrash1  DELtotal) ∪ DELcrash1 ).

In the following, we also introduce an operator ω to express repetition. For example, a
system where, repeatedly, a process can crash and recover is (DELcrash1  DELtotal)

ω.

4.2. Operations on predicates. Let’s now formally define these operations.

Definition 4.1 (Operations on predicates). Let P1, P2 be two delivered or heard-of predicates.

• The union of P1 and P2 is P1 ∪ P2.
• The combination P1

⊗
P2 , {c1

⊗
c2 | c1 ∈ P1, c2 ∈ P2 }, where if c1 and c2 are two

collections, ∀r > 0,∀p ∈ Π : (c1
⊗

c2)(r, p) = c1(r, p) ∩ c2(r, p).
• The succession P1  P2 ,

⋃
c1∈P1,c2∈P2

c1  c2,

with c1  c2 , {c | ∃r ≥ 0 : c = c1[1, r].c2} (c1[1, 0] is the empty sequence).
• The repetition of P1, (P1)ω , {c | ∃(ci)i∈N∗ , ∃(ri)i∈N∗ : r1 = 0 ∧ ∀i ∈ N∗ : (ci ∈ P1 ∧ ri <
ri+1 ∧ c[ri + 1, ri+1] = ci[1, ri+1 − ri])}.

The intuition behind these operations is the following:

• The union of two delivered predicates is equivalent to an OR on the two communication
behaviors. For example, the union of the delivered predicate for one crash at round r and
of the one for one crash at round r + 1 gives a predicate where there is either a crash at
round r or a crash at round r + 1.
• The combination of two behaviors takes every pair of collections, one from each predicate,
and computes the intersection of the graphs at each round. Meaning, it adds the loss of
messages from both, to get both behaviors at once. For example, the combination of the
delivered predicate for one crash at round r and of the one for one crash at round r + 1
gives a predicate where there is a crash at round r and a crash at round r + 1. Observe
that combining DELcrash1 with itself gives DELcrash2 , the predicate with at most two crashes.
• For succession, the system starts with one behavior, then switches to another. The
definition is such that if r = 0, then no prefix of c1 is used (the first behavior never
happens), but the second one must always happen. For example, the succession of DELcrash1

(one possible crash) with DELtotal (no crash) is a possible crash that recovers.
• Repetition is the next logical step after succession: instead of following one behavior with
another, the same behavior is repeated again and again. For example, taking the repetition
of at most one crash results in a potential infinite number of crash-and-restart, with the
constraint of having at most one crashed process at any time.
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Figure 3: From Delivered Predicate to Heard-Of Predicate

4.3. Basic blocks. The usefulness of these operations comes from allowing the construction
of interesting predicates from few basic ones. Let’s take a simple family of basic blocks:
DELcrash1,r , the delivered predicate of the model with at most one crash, at round r.

Definition 4.2 (At most 1 crash at round r). DELcrash1,r ,c, a delivered collection

∣∣∣∣∣∣∣∣∃ Σ ⊆ Π :

card(Σ) ≥ n− 1

∧ ∀p ∈ Π

 ∀r′ ∈ [1, r[: c(r′, p) = Π
∧ c(r, p) ⊇ Σ
∧ ∀r′ > r : c(r′, p) = Σ


 .

In these predicates, before round r, every process receives every message. At round r a
crash might happen, which means that processes only receive messages from a subset Σ of Π
of size card(Π)− 1 from round r + 1 onwards. The subtlety at round r is that the crashed
process (the only one in Π \ Σ) might crash while sending messages, and thus might send
messages to some processes and not others.

Another fundamental predicate is the total one: the predicate containing a single
collection ctotal, the one where every process receives every message at every round.

Definition 4.3 (Total delivered predicate). DELtotal , {ctotal}, where ctotal is the collection
defined by ∀r > 0, ∀p ∈ Π : c(r, p) = Π.

Using these building blocks, many interesting and important delivered predicates can be
built, as shown in Table 1. For example, let’s take DELcrash1 , the predicate with at most one
crash. If a crash happens, it happens at one specific round r. DELcrash1 is a disjunction for all
values of r of the predicate with at most one crash at round r; that is, the union of DELcrash1,r

for all r.

5. From Delivered Predicates to Heard-Of Predicates

After defining delivered predicates and discussing how to find and/or build them, the next step
is to study the heard-of predicates that can be implemented over a given delivered predicate.
This is the plain part of Figure 3, which works between two mathematical abstractions, and
is formal. To do so, we start by defining executions on the delivered predicate: traces of the
system’s behavior that can be analysed. Next, we define strategies, which capture the rules
for changing rounds, and thus constrain possible executions to those where changes of rounds
happen only when allowed by the strategy. If such a strategy never generates an execution
where some process is blocked forever at a round, it is called valid, and implements a heard-of
predicate (one collection per execution). Finding the heard-of predicate corresponding to a
given delivered predicate then boils down to defining a partial order of valid strategies by
way of their heard-of predicate, and taking the greatest element.
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Description Expression

At most 1 crash DELcrash1 =
∞⋃
i=1

DELcrash1,i

At most F crashes DELcrashF =
F⊗

j=1
DELcrash1

At most 1 crash, which will restart DELrecover1 = DELcrash1  DELtotal

At most F crashes, which will restart DELrecoverF =
F⊗

j=1
DELrecover1

At most 1 crash, which can restart DELcanrecover1 = DELrecover1 ∪ DELcrash1

At most F crashes, which can restart DELcanrecoverF =
F⊗

j=1
DELcanrecover1

No bound on crashes and restart,
with only 1 crash at a time DEL

recovery
1 = (DELcrash1 )

ω

No bound on crashes and restart,
with max F crashes at a time DEL

recovery
F =

F⊗
j=1

DEL
recovery
1

At most 1 crash, after round r DELcrash1,≥r =
∞⋃
i=r

DELcrash1,i

At most F crashes, after round r DELcrashF,≥r =
∞⋃
i=r

DELcrashF,i

At most F crashes with no more than
one per round DEL

crash 6=
F =

⋃
i1 6=i2 6=... 6=iF

F⊗
j=1

DELcrash1,ij

Table 1: Delivered Predicates Built Using our Operations

5.1. Executions. The theory of distributed computing relies on the concept of executions:
traces of a system’s behavior, with enough detail to be formally analysed. Here, as we study
the system-level implementation of the Heard-Of model, the executions we consider are not
executions of an algorithm solving a distributed computing problem, but the executions
of the implementation of a specific heard-of predicate. Hence, these executions only track
emissions, receptions and changes of rounds. Because the content of each message is not
important for the implementation of rounds, and we care about which messages will be
received on time, the emissions are implicit: as long as a process changed round r − 1 times,
it sent its messages for round r (which messages will depend on the delivered collection
used, as explained in a few paragraphs). As for the local state of each process during this
implementation, it contains a local round counter and the set of received messages.

The last thing that is missing here is the implementation algorithm: the rule that
specifies when to change rounds. This is called a strategy, and is defined below. First, we
define executions as sequences of events that satisfy some basic constraints on the ordering
of events. We then constrain them by requiring the delivery of exactly the messages from
some delivered collection. The introduction of strategies constrains them some more, so that
the executions allowed are the executions of an implementation of rounds using this strategy.
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Executions are infinite sequences of events, either delivery of messages (deliver(r, k, j),
which represents the delivery at j of the message from k tagged with r), change to the next
round for some process j (nextj), which also includes the broadcast for the next round, or a
deadlock (stop). An execution must satisfy three rules: no message is delivered before it is
sent, no message is delivered twice, and once there is a stop, the rest of the sequence can
only be stop.

Definition 5.1 (Execution). Let Π be a set of n processes. Let the set of transitions
T = {nextj | j ∈ Π} ∪ {deliver(r, k, j) | r ∈ N∗ ∧ k, j ∈ Π} ∪ {stop}. Then, t ∈ Tω is an
execution ,
• (Delivery after sending)
∀i ∈ N : t[i] = deliver(r, k, j) =⇒ card({l ∈ [0, i[| t[l] = nextk}) ≥ r − 1
• (Unique delivery)
∀〈r, k, j〉 ∈ (N∗ ×Π×Π) : card({i ∈ N | t[i] = deliver(r, k, j)}) ≤ 1
• (Once stopped, forever stopped)
∀i ∈ N : t[i] = stop =⇒ ∀l ≥ i : t[l] = stop

Executions can be constrained by a delivered collection c: if k changes round at least r − 1
times in the execution, then it sends all the messages tagged with r to processes j satisfying
k ∈ c(r, j), and these messages are delivered in the execution. Moreover, every delivery must
be of such a message. The executions of a delivered predicate are the executions of the
collections of the predicate.

Definition 5.2 (Execution of a delivered collection (and of a predicate)). Let c be a delivered
collection. Then, execs(c), the executions of c ,t, an execution

∣∣∣∣∣∣∣∣
∀〈r, k, j〉 ∈ N∗ ×Π×Π :

(k ∈ c(r, j) ∧ card({i ∈ N | t[i] = nextk}) ≥ r − 1)
⇐⇒
(∃i ∈ N : t[i] = deliver(r, k, j))

 .

For a delivered predicate DEL, we write execs(DEL) =
⋃

c∈DEL
execs(c).

Definition 5.1 above casts behavior in term of changes to the system — the deliveries
and changes of rounds. A dual perspective interprets behavior as the sequence of successive
states of the system. In a distributed system, such states are the product of local states.
The local state of a process is the pair of its current round and all the received messages
up to this point2. Notably, such a local state doesn’t contain the identity of the process.
This is both because we never need this identity, and because not dealing with it allows an
easier comparison of local states, since two distinct processes can have the same local state.
A message is represented by a pair 〈round, sender〉 (instead of triplet like in deliver events,
because the receiver is implicit — it’s the process whose local state we’re looking at). For a
state q, q(r) is the set of peers from which the process (with state q) has received a message
tagged with round r.

Definition 5.3 (Local State). Let Q = N∗ × P(N∗ ×Π). Then q ∈ Q is a local state.
For q = 〈r,mes〉, we write q.round for r, q.mes for mes and ∀r′ > 0 : q(r′) , {k ∈ Π |

〈r′, k〉 ∈ q.mes}.
2Recall that this is the local state of the system-level implementation of rounds, not of the algorithm

running on top of the Heard-Of model. Hence, this doesn’t constrain the internal structure of the algorithms.
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Let t be an execution, p ∈ Π and i ∈ N. Then the local state of p in t after the prefix of
t of size i is qtp[i] , 〈card({l < i | t[l] = nextp}) + 1, {〈r, k〉 | ∃l < i : t[l] = deliver(r, k, p)}〉.

Notice that such executions do not allow a process to “jump” from say round 5 to round 9
without passing by the rounds in-between. Indeed, the Heard-Of model doesn’t let processes
decide when to change rounds: processes specify only which messages to send depending
on the state, and what is the next state depending on the current state and the received
messages. So it makes sense for a system-level implementation of heard-of predicates to do
the same. Nevertheless, the algorithm running on top of the Heard-Of model can “jump”
rounds, by not doing anything for a certain number of rounds.

5.2. Strategies and Composition of Strategies. An execution of a delivered collection
where all processes change round infinitely often defines a heard-of collection. This is done
by looking, for each round r and process p, at the set of processes such that p received their
message tagged by r when the round counter at p was ≤ r. However, not all of the executions,
as defined in 5.2, ensure an infinite number of rounds for each process. For example, for a
delivered collection c, the execution where all messages from round 1 are delivered according
to c (whatever the order) and then stop transitions happen forever is an execution of c. Yet
it blocks all processes at round 1 forever. Strategies are introduced to solve this problem:
they constrain executions. A strategy is a set of states from which a process is allowed to
change round. It can also be seen as a predicate on local states. It captures rules such as
“wait for at least F messages from the current round”, or “wait for these specific messages”.
Again, not all strategies lead to executions with an infinite number of rounds. We then
consider valid strategies, which are strategies that ensure the resulting executions always
contain an infinite number of rounds for each process.

Definition 5.4 (Strategy). f ⊆ Q is a strategy.

Strategies as defined above are predicates on states3. This makes them incredibly
expressive, but this expressivity creates difficulty in reasoning about them. To address this
problem, we define families of strategies. Intuitively, strategies in a same family depend on a
specific part of the state — for example the messages of the current round. Equality of these
parts of the state defines an equivalence relation; the strategies of a family are strategies
such that if a state q is in the strategy, then all states in the equivalence class of q are in the
strategy.

Definition 5.5 (Families of strategies). Let ≈ be an equivalence relation on Q. The family
of strategies defined by ≈, family(≈) , {f, a strategy | ∀q1, q2 ∈ Q : q1 ≈ q2 =⇒ (q1 ∈
f ⇐⇒ q2 ∈ f)}.

Let’s define the executions of a strategy. The intuition is simple: every change of rounds
(an event nextk for k a process) happens only if the local state of the process is in the
strategy. There is a fairness assumption that ensures that if the local state of some process k
is eventually continuously in the strategy, then it will eventually change round (have a nextk
event)4. A subtlety hidden in this obvious intuition is that the check for changing round

3One limiting case is for the strategy to be empty — the predicate being just False. This strategy is
useless, and will be weeded out by the constraint of validity from Definition 5.7.

4This is a weak fairness assumption, which requires a constant availability of the transition after some
point to ensure it will happen. This is to be contrasted with a strong fairness assumption, which requires the
availability infinitely often after some point to ensure that the transition will happen.
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(whether the local state is in the strategy) doesn’t necessarily happen at each reception; it
can happen at any point. This captures an asynchronous assumption where processes do not
decide when they are executed.

Definition 5.6 (Executions of a Strategy). Let f be a strategy and t an execution. Then t
is an execution of f if t satisfies:
• (All nexts allowed) ∀i ∈ N,∀p ∈ Π : (t[i] = nextp =⇒ qtp[i] ∈ f),
• (Fairness) ∀p ∈ Π : card({i ∈ N | t[i] = nextp}) <∞ =⇒ card({i ∈ N | qtp[i] /∈ f}) =∞.

For a delivered predicate DEL, execsf (DEL) , {t | t an execution of f ∧ t ∈ execs(DEL)}.

The first property states that processes only change round (the next transition) when
their local state is in the strategy. Fairness ensures that the only way for a process p to be
blocked at a round r is for p’s local state to not be in f an infinite number of times. If the
local state of p is outside of f only a finite number of times, the local state of p is eventually
always in f , and the execution must contain another nextp.

Going back to strategies, not all of them are equally valuable. In general, strategies with
executions where processes are blocked forever at some round are less useful (to implement
infinite sequences of rounds) than strategies without such executions. The validity of a
strategy captures the absence of such an infinite wait.

Definition 5.7 (Validity). An execution t is valid if ∀p ∈ Π, ∀N > 0, ∃i ≥ N : t[i] = nextp.
Let DEL a delivered predicate and f a strategy. Then f is a valid strategy for DEL iff

∀t ∈ execsf (DEL), t is a valid execution.

Finally, analogous to how we can combine complex predicates through operations, we
can also compose complex strategies through similar operations:

Definition 5.8 (Operations on strategies). Let f1, f2 be two strategies. The following
operations are defined:
• Their union f1 ∪ f2.
• Their combination f1

⊗
f2 , {q1

⊗
q2 | q1 ∈ f1∧ q2 ∈ f2∧ q1.round = q2.round}, where

for q1 and q2 at the same round r, q1
⊗

q2 , 〈r, {〈r′, k〉 | r′ > 0 ∧ k ∈ q1(r′) ∩ q2(r′)}〉.
• Their succession f1  f2 , f1 ∪ f2 ∪ {q1  q2 | q1 ∈ f1 ∧ q2 ∈ f2} where q1  q2 ,〈

q1.round + q2.round,

{
〈r, k〉 | r > 0 ∧

(
k ∈ q1(r) if r ≤ q1.round
k ∈ q2(r − q1.round) if r > q1.round

)}〉
.

• The repetition of f1, fω
1 , {q1  q2  · · · qk | k ≥ 1 ∧ q1, q2, . . . , qk ∈ f1}.

The intuition behind these operations is analogous to the ones for predicates:
• The union of two strategies is equivalent to an OR of the two conditions. For example, the
union of waiting for at least n − F messages and waiting for all messages but the ones
from p1 gives a strategy that accepts change of round when more than n− F messages are
received or when all messages except the one from p1 are received.
• The combination of two strategies takes all intersections of local states in the first strategy
and local states in the second. For example, combining the strategy that waits at least
n− 1 messages for the current round with itself will wait for at least n− 2 messages.
• For succession, the states accepted are those where messages up to some round correspond
to an accepted state of the first strategy, and messages from this round up correspond to
an accepted state of the second strategy.
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• Repetition is the next logical step after succession: instead of following one strategy with
another, the same strategy is repeated again and again.

5.3. Extracting Heard-Of Collections of Executions. If an execution is valid, then all
processes go through an infinite number of rounds. That is, it captures the execution of a
system-level implementation of rounds where no process blocks forever at some round. It
thus makes sense to speak of the heard-of collection implemented by this execution: at the
end of round r for process p, the messages from round r that were received by p define the
heard-of set for r and p.

Definition 5.9 (Heard-Of Collections Generated by Executions and Heard-Of Predicate
Generated by Strategies). Let t be a valid execution. Then the heard-of collection
generated by t, ht ,

∀r ∈ N∗,∀p ∈ Π : ht(r, p) =

k ∈ Π

∣∣∣∣∣∣ ∃i ∈ N :

 qtp[i].round = r
∧ t[i] = nextp
∧ 〈r, k〉 ∈ qtp[i].mes

 .

Let DEL be a delivered predicate, and f be a valid strategy for DEL. Then the heard-of
predicate generated by f on DEL , HOf (DEL) , {ht | t ∈ execsf (DEL)}.

As the strategy is valid, this definition is well-founded and the strategy generates a
heard-of predicate from the delivered predicate.

5.4. Dominating Predicate. The way to go from a delivered predicate to a heard-of one
is to design a valid strategy for the former that generates the latter. With different strategies,
different heard-of predicates can be generated. Which one should be considered as the
characterization of the delivered predicate (and of the corresponding operational model)?
A heard-of predicate generated from a delivered predicate is an over-approximation of the
latter. To be able to solve as many problems as possible, as many messages as possible should
be received on time. The characterizing heard-of predicate is thus the smallest such over-
approximation of the delivered predicate, if it exists. This intuition is formalized by defining
a partial order on valid strategies for a delivered predicate, capturing the implication of the
generated heard-of predicates (the inclusion when considered as sets). One strategy dominates
another if the heard-of collections it generates are also generated by the other. Dominating
strategies are then the greatest elements for this order. By definition of domination, all
dominating strategies generate the same dominating heard-of predicate, which characterizes
the delivered predicate.

Definition 5.10 (Domination Order, Dominating Strategy and Dominating Predicate).
Let DEL be a delivered predicate and let f and f ′ be two valid strategies for DEL. Then,
f dominates f ′ for DEL, written f ′ ≺DEL f , if HOf ′(DEL) ⊇ HOf (DEL). A greatest element
for ≺DEL, if it exists, is called a dominating strategy for DEL. Given such a strategy f , the
dominating predicate for DEL is then HOf (DEL).
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5.5. Standard and Canonical Executions. In the following sections, we prove properties
about dominating strategies, their invariance by the operations, and the heard-of predicates
that they generate. These proofs rely on reasoning by contradiction: assume the theorem or
lemma is false, and derive a contradiction. These contradictions take the form of proving that
a valid strategy has an invalid execution; constructing specific executions is therefore the main
technique in these proofs. This section introduces two patterns for constructing executions:
one from a delivered collection and a strategy, the other from a heard-of collection.

To do so, let’s fix ord as some function taking a set and returning an ordered sequence
of its elements — the specific ordering doesn’t matter. This will be used to ensure the
uniqueness of the executions, but the order has no impact on the results.

5.5.1. Standard Execution. The standard execution extracts an execution from a delivered
collection. It follows a loop around a simple pattern: deliver all the messages that were
sent according to the delivered collection, then change round for all the processes which are
allowed to do so by f . The intuition is that it’s the simplest way to specify an execution
where strategies that look only at messages from current and previous rounds (as studied
latter) always have all the information available to them. This means that if at one point
a first process fails to change round while using such a strategy, it will be blocked at this
round for the rest of the standard execution.

Given elements x1, x2, x3, . . . , the notation
∏

i∈N∗
xi is the infinite concatenation x1x2x3 . . .

Definition 5.11 (Standard Execution of a Strategy on a Collection). Let c be a deliv-
ered collection, and f be a strategy. The standard execution of f on c is st(f, c) ,∏
r∈N∗

delsr.changesr, where

• dels1 , ord({deliver(1, k, j) | k ∈ c(1, j)}), the ordered sequence of deliveries for messages
from round 1 that will be delivered eventually according to c.
• changes1 , ord({nextj | 〈1, {(1, k) | k ∈ c(1, j)}〉 ∈ f}), the ordered sequence of next
transitions for processes for which the state resulting from the deliveries in dels1 is in f .
• ∀r > 1 : delsr , ord({deliver(roundkr , k, j) | nextk ∈ changesr−1 ∧ k ∈ c(roundkr , j)}),
with roundkr , 1 +

∑
r′∈[1,r[

card({nextk} ∩ changesr′).

This is the ordered sequence of deliveries of messages from processes that changed round
during changesr−1.
• ∀r > 1 : changesr ,{

ord({nextj | 〈roundjr, {(r′, k) | deliver(r′, k, j) ∈
⋃

r′′∈[1,r]

delsr′′}〉 ∈ f}) if it is not empty

ord({stop}) otherwise
,

with roundjr , 1 +
∑

r′∈[1,r[

card({nextj} ∩ changesr′).

This is the ordered sequence of changes of round for processes such that their state after
the deliveries of delsr is in f .

The main property of a standard execution of f on c is that it is both an execution of f and
an execution of c.

Lemma 5.12 (Correctness of Standard Execution). Let c be a delivered collection and f be
a strategy. Then st(f, c) ∈ execsf (c).
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Proof idea. First, the proof shows that st(f, c) is indeed an execution by verifying the three
properties of Definition 5.1. Then, it shows that st(f, c) is an execution of the delivered
collection c (Definition 5.2: the delivered messages in st(f, c) are exactly those from c). Lastly
the verification of the two conditions of Definition 5.6 ensures that st(f, c) is an execution of
strategy f . This proof is trivial but verbose, and is presented in Appendix A.1.

5.5.2. Canonical Execution. Whereas the standard execution captures a straightforward way
to create an execution from a strategy and a delivered collection, this new construction starts
with a heard-of collection, and creates a valid execution generating it from the total delivered
collection (the one with all the receptions). The link between the two is that when we want
to prove that a valid strategy f implements a heard-of collection ho (useful for showing
dominance of strategies), we show by contradiction that the canonical execution of ho is an
execution of f . Since the proof by contradiction assumes that one of the nextj transitions in
the canonical execution is not allowed by f , we can usually find a delivered collection where
the messages delivered at this point are the only ones that will ever be delivered to j, and so
show that the standard execution of this delivered collection is not valid, which contradicts
the validity of f .

This canonical execution follows a simple pattern: at each round, deliver all the messages
from the heard-of sets of this round, and also all the messages undelivered from the previous
round (the ones that were not in the heard-of sets of the previous round).

Definition 5.13 (Canonical Execution of a Heard-Of Collection). Let ho be a heard-of
collection. The canonical execution of ho is can(ho) ,

∏
r∈N∗

delsr.changesr, where

• dels1 , ord({deliver(1, k, j) | k ∈ ho(1, j)}), the ordered sequence of deliveries that
happen at round 1 in h.
• ∀r > 1 : delsr , ord({deliver(r, k, j) | k ∈ ho(r, j)} ∪ {deliver(r− 1, k, j) | k ∈ Π \ ho(r−

1, j)}), the ordered sequence of deliveries that happen at round r in h.
• ∀r > 0 : changesr , ord({nextk | k ∈ Π}), the ordered sequence of next transitions, one
for each process.

This canonical execution is an execution of any delivered predicate containing ctotal, the
collection where every message is delivered. Having this collection in a delivered predicate
ensures that although faults might happen, they are not forced to do so.

Lemma 5.14 (Canonical Execution is an Execution of Total Collection). Let ho be a heard-of
collection. The canonical execution can(ho) of ho is an execution of ctotal.

Proof. First, can(ho) is an execution by Definition 5.1 since it satisfies the three conditions:
• Delivered only once: Every sent message is delivered either during the round it was sent or
during the next one, and thus delivered only once.
• Delivered after sending: Every message from round r is delivered after either r − 1 or r
nextp transitions for the sender p, which means at round r or r + 1. Hence the message is
delivered after being sent.
• Once stopped, forever stopped: No process stops, so the last condition for executions is
trivially satisfied.

Furthermore, for each process p and round r, all the messages from p at round r are delivered
in can(ho), either at round r or at round r + 1. Since the total collection is the collection
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where every message is delivered by Definition 4.3, this entails that can(ho) is an execution
of the total delivered collection by Definition 5.2, and thus an execution of DEL.

Lastly, the whole point of the canonical execution of ho is that it generates ho.

Lemma 5.15 (Canonical Execution Generates its Heard-Of Collection). Let ho be a heard-of
collection. Then hcan(ho) = ho.

Proof. Let r > 0 and j ∈ Π. Let’s prove that hcan(ho)(r, j) = ho(r, j).
• (⊆) Let p ∈ hcan(ho)(r, j), let’s prove that p ∈ ho(r, j). Since p ∈ hcan(ho)(r, j), Defini-
tion 5.9 gives: ∃i ∈ N : q

can(ho)
j [i].round = r ∧ can(ho)[i] = nextj ∧ 〈r, p〉 ∈ q

can(ho)
j [i].mes.

– Since q
can(ho)
j [i].round = r, Definition 5.3 gives card({l < i : can(ho)[l] = nextj}) =

r − 1.
– Definition 5.13 implies that nextj appears only in the changess sequences, and only

once in each changess. So, since can(ho)[i] = nextj and card({l < i : can(ho)[l] =
nextj}) = r − 1, then can(ho)[i] is in changesr and so is between delsr and delsr+1.

– Since 〈r, p〉 ∈ q
can(ho)
j [i].mes and can(ho)[i] is between delsr and delsr+1, Definition 5.13

implies that p ∈ ho(r, j).
• (⊇) Let p ∈ ho(r, j), let’s prove that p ∈ hcan(ho)(r, j), i.e., (Definition 5.9) ∃i ∈ N :

q
can(ho)
j [i].round = r ∧ can(ho)[i] = nextj ∧ 〈r, p〉 ∈ q

can(ho)
j [i].mes. Let i the index of

changesr, such that can(ho)[i] = nextj . Definition 5.13 ensures such an i exists since in
each changess, there is a nextk for each k ∈ Π.
– Definition 5.13 ensures that there are r − 1 nextj transitions in can(ho) before index i,

so q
can(ho)
j [i].round = r.

– By definition of i, can(ho)[i] = nextj .
– Definition 5.13 ensures that delsr is before changesr in can(ho). Since p ∈ ho(r, j), so

deliver(r, p, j) appears in can(ho) before index i and so 〈r, p〉 ∈ q
can(ho)
j [i].mes.

5.6. A Complete Example: At Most F Crashes. Let’s look at a concrete example to
get a better grasp at how all these concepts work together, and the kind of results they
allow us to prove. We consider DELcrashF from Definition 3.2, the message-passing model with
asynchronous and reliable communication, and at most F permanent crashes. We now give
a dominating strategy for this predicate, as well as compute its heard-of predicate. The
folklore strategy for this model is to wait for at least n − F messages before allowing the
change of round.

Definition 5.16 (waiting for n− F messages). The strategy to wait for n− F messages is
fn−F , {q ∈ Q | card({k ∈ Π | 〈q.round, k〉 ∈ q.mes}) ≥ n− F}.

To see why this strategy is used in the literature, remark that at least n− F messages
must be delivered to each process at each round. Thus, waiting for that many messages
ensures that no process is ever blocked. However, waiting for more will result in processes
blocking forever if F crashes occur. Rephrased with the concepts introduced above, fn−F is
a valid and dominating strategy for DELcrashF .

Lemma 5.17 (Validity of fn−F ). fn−F is valid for DELcrashF .
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Proof. We proceed by contradiction. Assume fn−F is invalid for DELcrashF . By Defini-
tion 5.17, there exists an invalid t ∈ execsfn−F

(DELcrashF ). By Definition 5.17 of validity,
∃p ∈ Π,∃N, ∀i ≥ N : t[i] 6= nextp: there is a smallest round r such that some process j stays
blocked at r forever in t. Because t is an execution of f , Definition 5.6 entails that infinitely
many local states of j must be not in fn−F ; if it was not the case, the fairness condition would
force the execution to contain another nextj . Let also ct be a delivered collection of DELcrashF

such that t ∈ execs(c). We know by Definition 3.2 of DELcrashF that card(ct(r, j)) ≥ n− F .
The minimality of r and the fact that t ∈ execs(c) ensure by Definition 5.2 that all the
messages in this delivered set are delivered at some point in t. By Definition 5.16 of fn−F , the
local state of j is then in fn−F from this point on. By the fairness constraint of Definition 5.6,
this contradicts the fact that there is never another nextj in the suffix of t. We conclude
that fn−F is valid for DELcrashF .

The next step is to prove that this strategy is dominating the predicate. We first need
to compute the heard-of predicate generated by fn−F . This heard-of predicate was given by
Charron-Bost and Schiper [7] as a characterization of the asynchronous model with reliable
communication and at most F crashes, without a formal proof. The intuition behind it is
that even in the absence of crashes, we can make all the processes change round by delivering
any set of at least n− F messages to them.

Theorem 5.18 (Heard-Of Characterization of fn−F ).
Let HOF be the heard-of predicate defined as {h, a heard-of collection | ∀r > 0,∀p ∈ Π :
card(ho(r, p)) ≥ n− F}. Then HOfn−F

(DELcrashF ) = HOF .

Proof.

• (⊆). Let ho ∈ HOfn−F
(DELcrashF ) and t ∈ execsfn−F

(DELcrashF ) an execution of fn−F
generating ho. By Definition 5.6 of the executions of fn−F , processes change round (a
nextk event) only when their local state is in fn−F . By Definition 5.16, This means that
this local state q satisfies card({k ∈ Π | 〈q.round, k〉 ∈ q.mes}) ≥ n − F}: the process
received at least n − F messages tagged with the current value of its round counter.
This in turns implies by Definition 5.9 of the heard-of collection of an execution that
∀r ∈ N∗,∀j ∈ Π : card(ho(r, j)) ≥ n− F .
• (⊇). Let ho a heard-of collection over Π such that ∀r ∈ N,∀j ∈ Π : card(ho(r, j)) ≥ n−F .
Let t be the canonical execution of ho; since DELcrashF contains the total collection, t is
an execution of DELcrashF by Lemma 5.14. To prove that t is also an execution of fn−F ,
we proceed by contradiction. Assume it is not an execution of fn−F . By Definition 5.6,
the problem stems either from breaking fairness or from some nextp for some p at a point
where the local state of p is not in fn−F . Since by Definition 5.13 of a canonical execution,
∀p ∈ Π : nextp appears an infinite number of times, the only possibility left is the second
one: there is some p ∈ Π and some nextp transition in t that happens while the local state
of p is not in fn−F . Let r be the smallest round where this happens, and j the process to
which it happens. By Definition 5.13 of a canonical execution, j received all the messages
from ho(r, j) in t before the problematic nextj . By hypothesis, card(ho(r, j)) ≥ n−F . By
Definition 5.16 of fn−F , the local state of j is in fn−F from this point on. By the fairness
constraint of Definition 5.6, this contradicts the fact that j cannot change round at this
point in t. Hence t is an execution of fn−F .

We conclude that ho ∈ HOfn−F
(DELcrashF ).
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Finally, we want to vindicate the folklore intuition about this strategy: that it is optimal
in some sense. Intuitively, waiting for more than n− F messages per round means risking
waiting forever, and waiting for less is wasteful. Our domination order captures this concept
of optimality: we show that fn−F is indeed a dominating strategy for DELcrashF . Therefore,
HOfn−F

(DELcrashF ) is the dominating predicate for DELcrashF .

Theorem 5.19 (fn−F Dominates DELcrashF ). fn−F dominates DELcrashF .

Proof. Let f be a valid strategy for DELcrashF ; the theorem follows by Definition 5.10 from
proving that f ≺DELcrashF

fn−F — that is HOfn−F
(DELcrashF ) ⊆ HOf (DELcrashF ).

Let ho ∈ HOfn−F
(DELcrashF ), and let t be the canonical execution of ho. Since DELcrashF

contains the total collection, t is an execution of DELcrashF by Lemma 5.14. We need to prove
that it is also an execution of f to conclude by Lemma 5.15 that f generates ho, and thus
that the inequality above and the theorem hold. We do so by contradiction. Assume t is
not an execution of f . By Definition 5.6, it is either because the fairness condition is broken
or because some nextp for some process p happens when the local state of p is not in f . Since
Definition 5.13 of canonical executions implies that t contains an infinite number of nextp
for every process p ∈ Π, the problem must come from some nextj done by a process j when
j’s local state is not in f . Let r be the first round where this happens. At the point of the
forbidden nextj , by Definition 5.13 of a canonical execution, j has received all the messages
from previous rounds, and all the messages from ho(r, j). Then ho ∈ HOfn−F

(DELcrashF )
implies that ho ∈ HOF by Theorem 5.18. It then follows from the definition of HOF that
ho(r, j) contains at least n− F processes.

We define cblock such that:

∀r′ > 0,∀k ∈ Π : cblock(r
′, k) ,

{
Π if r′ < r
ho(r, j) otherwise

This corresponds to the collection where all the processes from which j did not receive a
message at the problematic nextj in t are correct up to round r and then stop sending
messages. cblock is a delivered collection of DELcrashF by Definition 3.2: processes that stop
sending messages never do again, and at most F processes do so because ho(r, j) contains at
least n− F processes by the reasoning above.

Let t′ = st(f, cblock) be the standard execution of f on cblock. Lemma 5.12 entails than t′

is an execution of f on cblock. Since r is the smallest round in t with a wrong nextj , for all
rounds < r the local state of j is enough for f to allow the change of round. By Definition 5.11
of standard executions, all changesk for k < r contain a next transition for all processes in t′.
By the same definition, all delsk for k ≤ r of t′ contain the same deliveries for each process
as the deliveries for j in the delsk of t. Hence, in t′, all the processes reach round r, all get
the same state as j in t at round r, and thus they all block at this round, which means the
suffix of t′ is made of stop only. t′ is invalid, and so is f . This contradicts the hypothesis
that f is valid; we conclude that ho ∈ HOf (DELcrashF ). Therefore, fn−F dominates f by
Definition 5.10, where f is any valid strategy for DELcrashF , which means that fn−F dominates
DELcrashF by Definition 5.10.

Waiting for n − f messages thus gives us the best heard-of predicate that can be
implemented on DELcrashF . This means that there is no point in remembering messages from
past rounds, and messages from future rounds are not used either. Intuitively, messages from
past rounds are of no use in detecting crashes in the current round. As for messages from
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future rounds, they actually serve to detect that a process has not crashed when sending
its messages from the current round. For this to actually change the heard-of predicate, it
would require that some heard-of collection be impossible to generate when using this future
information. This is not the case, as there is always an execution where no message from
future rounds are delivered early (the canonical execution).

6. Oblivious Strategies: Looking Only at the Current Round

Because of the generality of strategies, considering them all brings many issues in proving
domination. Yet there exist interesting classes of strategies on which results can be derived.
Our first such class is the class of oblivious strategies: they depend only on the received
messages from the current round. For example, fn−F is an oblivious strategy, as it counts
messages from the current round. Despite their apparent simplicity, some oblivious strategies
dominate non-trivial delivered predicates, as in the case of fn−F and DELcrashF .

In this section, we define oblivious strategies and give a necessary and sufficient condition
for an oblivious strategy to be valid (Section 6.1). This yields useful results on the composition
of oblivious strategies (Section 6.2), and enables to compute the heard-of predicate of an
oblivious strategy applied to a delivered predicate (Section 6.3). Finally, we give a sufficient
condition for oblivious domination, and show that this condition is preserved by composition
(Section 6.4).

6.1. Definition and Expressiveness. Oblivious strategies are a family of strategies in the
sense of Definition 5.5 — where the equivalence relation between the local states compare
only the messages received for the current round.

Definition 6.1 (Oblivious Strategies and Nextsf ). Let obliv be the function such that
∀q ∈ Q : obliv(q) , {k ∈ Π | 〈q.round, k〉 ∈ q.mes}. Let ≈obliv the equivalence relation
defined by q1 ≈obliv q2 iff obliv(q1) = obliv(q2). The family of oblivious strategies is
family(≈obliv).

For f an oblivious strategy, let Nextsf , {obliv(q) | q ∈ f}. It uniquely defines f .

An oblivious strategy reduces to a collection of sets, the sets of processes from which
receiving a message in the current round is enough to change round. The strategy allows the
change of round if, and only if, the processes heard at the current round form a set in this
collection. This provides a simple necessary condition on such a strategy f to be valid: its
Nextsf set must contain all the delivered sets from the corresponding delivered predicate. If
it does not, an execution would exist where the messages received at some round r by some
process p are exactly this delivered set, which would block forever the process p and make
the strategy invalid. This necessary condition also proves sufficient.

Lemma 6.2 (Necessary and Sufficient Condition for Validity of an Oblivious Strategy). Let
DEL be a delivered predicate and f be an oblivious strategy. Then f is valid for DEL ⇐⇒
f ⊇ {q | ∃c ∈ DEL,∃p ∈ Π,∃r > 0 : obliv(q) = c(r, p)}.

Proof.
• (⇒) Let f be valid for DEL. We show by contradiction that f contains all local states q such
that ∃c ∈ DEL, ∃p ∈ Π,∃r > 0 : obliv(q) = c(r, p). Assume there is some qblock for which it
is not the case: then ∃c ∈ DEL, r > 0 and j ∈ Π such that obliv(qblock) = c(r, j) and qblock /∈
f . By Definition 6.1, this means that for every q such that obliv(q) = obliv(qblock) = c(r, j),
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we have q /∈ f . Let t = st(f, c) be the standard execution of f on c. This is an execution
of f on c by Lemma 5.12. The sought contradiction is reached by proving that t is invalid.
To do so, we split according to two cases: the first case is where there is a blocking process
before round r, and the second case is where there is no blocking process before round r.
This last case then uses the hypothesis on c(r, j) to show that all the processes block at r.
– During one of the first r − 1 iterations of t, there is some process which cannot change

round. Let r′ be the smallest iteration where it happens, and k be a process unable
to change round at the r′-th iteration. By minimality of r′, all the processes arrive at
round r′ in t; by Definition 5.11 of the standard execution, all messages for k from round
r′ are delivered before the changer′ part of the iteration. Let q be the local state of k at
the start of changer′ in the r′-th iteration, and let q′ be any local state of k afterward.
The above tells us that as long as q′.round = q.round, we have obliv(q) = obliv(q′) and
thus q′ /∈ f . Therefore, k can never change round while at round r′. We conclude that t
is invalid by Definition 5.17.

– For the first r − 1 iterations, all the processes change round. Thus everyone arrives
at round r in the r − 1-th iteration. By Definition 5.11 of the standard execution, all
messages from the round are delivered before the changer part of the r-th iteration.
Thus j is in a local state q at the changer part of the r-th iteration such that obliv(q) =
c(r, j) = obliv(qblock). By hypothesis, this means q /∈ f and thus that j cannot change
round. Let q′ be any local state of j afterward. The above tells us that as long as
q′.round = r, we have obliv(q) = obliv(q′) = c(r, j) and thus q′ /∈ f . Therefore, j can
never change round while at round r. Here too, t is invalid by Definition 5.17.

Either way, we reach a contradiction with the validity of f . Therefore f ⊇ {q | ∃c ∈
DEL, ∃p ∈ Π, ∃r > 0 : obliv(q) = c(r, p)}.
• (⇐) Let DEL and f be such that f ⊇ {q | ∃c ∈ DEL,∃p ∈ Π,∃r > 0 : obliv(q) = c(r, p)}. We
show by contradiction that f is valid. Assume the contrary: there is some t ∈ execsf (DEL)
which is invalid. By Definition 5.17 of validity, there are some processes blocked at a round
forever in t. Let r be the smallest such round, and j be a process blocked at round r in t.
By minimality of r, all the processes arrive at round r. By Definition 5.2 of an execution of
DEL, there is a c ∈ DEL such that t is an execution of c. This means by Definition 5.2 of an
execution of a collection that all the messages from c(r, j) are eventually delivered. From
this point on, every local state q of j satisfies obliv(q) = c(r, j); thus we have q ∈ f by
hypothesis on f . Then the fairness condition of executions of f from Definition 5.6 imposes
that j does change round at some point. We conclude that j is not blocked at round r in
t, which contradicts the hypothesis that it is blocked forever at round r in t.

When taking the oblivious strategy satisfying exactly this condition for validity, it results in a
strategy dominating the other oblivious ones. It follows from the fact that this strategy waits
for the minimum sets required to be valid, hence the name of minimal oblivious strategy.

Definition 6.3 (Minimal Oblivious Strategy). Let DEL be a delivered predicate. The
minimal oblivious strategy for DEL is fmin , {q | ∃c ∈ DEL,∃p ∈ Π,∃r > 0 : obliv(q) =
c(r, p)}.

Lemma 6.4 (Domination of Minimal Oblivious Strategy). Let DEL be a delivered predicate
and fmin be its minimal oblivious strategy. Then fmin is a dominating oblivious strategy for
DEL.
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Proof. First, fmin is valid for DEL by application of Lemma 6.2. Next, we take another
oblivious strategy f , which is valid for DEL. Lemma 6.2 now gives us that fmin ⊆ f .
When fmin allows a change of round, so does f . This entails by Definition 5.6 that all
executions of fmin on DEL are also executions of f on DEL, and thus by Definition 5.9 that
HOfmin

(DEL) ⊆ HOf (DEL). We conclude from Definition 5.10 that fmin dominates any valid
oblivious strategy for DEL.

These theorems guarantee that every delivered predicate has a strategy dominating the
oblivious ones, by giving a means to build it. Of course, a formal definition is not the same
as a constructive definition, which motivates the study of minimal strategies through the
operations, and their relations to the operations on the corresponding predicates.

6.2. Composition of Oblivious Strategies. One fundamental property of minimal obliv-
ious strategies is their nice behaviour under the proposed operations (union, combination,
succession and repetition). That is, they give minimal oblivious strategies of resulting
delivered predicates. Although this holds for all operations, succession and repetition are
not useful here, as the succession of two minimal oblivious strategies is equal to their union,
and the repetition of a minimal oblivious strategy is equal to the strategy itself. The first
operation to study is therefore union. The minimal oblivious strategy of DEL1 ∪ DEL2 and
DEL1  DEL2 is the same, as shown in the next theorem, and thus it’s the union of the
minimal oblivious strategies of DEL1 and DEL2.

Theorem 6.5 (Minimal Oblivious Strategy for Union and Succession). Let DEL1, DEL2 be
two delivered predicates, f1 and f2 the minimal oblivious strategies for, respectively, DEL1 and
DEL2. Then f1 ∪ f2 is the minimal oblivious strategy for DEL1 ∪ DEL2 and DEL1  DEL2.

Proof idea. Structurally, every proof in this subsection amounts to showing equality between
the strategies resulting from the operations and the minimal oblivious strategy for the
delivered predicate. For a union, the messages that can be received at each round are the
messages that can be received at each round in the first predicate or in the second. This is
also true for succession. Given that f1 and f2 are the minimal oblivious strategies of DEL1

and DEL2, they accept exactly the states where the messages received from the current round
are in a delivered set of DEL1 or a delivered set of DEL2. Thus f1 ∪ f2 is the minimal oblivious
strategy for DEL1 ∪ DEL2 and DEL1  DEL2.

Proof. We first show that the minimal oblivious strategies of DEL1 ∪ DEL2 and DEL1  DEL2

are equal. By Definition 5.8, we need to prove that {q | ∃c ∈ DEL1 ∪ DEL2, ∃p ∈ Π,∃r > 0 :
obliv(q) = c(r, p)} = {q | ∃c ∈ DEL1  DEL2, ∃p ∈ Π, ∃r > 0 : obliv(q) = c(r, p)}.
• (⊆) Let q be such that ∃c ∈ DEL1 ∪ DEL2,∃p ∈ Π, ∃r > 0 : obliv(q) = c(r, p).
– If c ∈ DEL1, then we take c2 ∈ DEL2, and take c′ = c[1, r].c2. Since by Definition 4.1

c′ ∈ c  c2, we have c′ ∈ DEL1  DEL2. By definition of c′, c′(r, p) = c(r, p). We thus
have c′, p and r showing that obliv(q) = c′(r, p), and thus q is in the set on the right.

– If c ∈ DEL2, then c ∈ DEL1  DEL2 by Definition 4.1. We thus have c, p and r showing
that obliv(q) = c(r, p), and thus q is in the set on the right.

• (⊇) Let q be such that ∃c ∈ DEL1  DEL2, ∃p ∈ Π,∃r > 0 : obliv(q) = c(r, p).
– If c ∈ DEL2, then c ∈ DEL1 ∪ DEL2 by Definition 4.1. We thus have c, p and r showing

that obliv(q) = c(r, p), and thus q is in the set on the left.
– If c /∈ DEL2, there exist c1 ∈ DEL1, c2 ∈ DEL2 and r′ > 0 such that c = c1[1, r′].c2 by

Definition 4.1.
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∗ If r ≤ r′, then by definition of c, we have c(r, p) = c1(r, p). We thus have c1, p and r
showing that obliv(q) = c1(r, p), and thus q is in the set on the left.
∗ If r > r′, then c(r, p) = c2(r − r′, p). We thus have c2, p and (r − r′) showing that
obliv(q) = c2(r − r′, p), and thus q is in the set on the left.

We now show that f1 ∪ f2 = {q | ∃c ∈ DEL1 ∪ DEL2,∃p ∈ Π,∃r > 0 : obliv(q) = c(r, p)}, which
allows us to conclude by Definition 6.3 that f1 ∪ f2 is the minimal oblivious strategy for
DEL1 ∪ DEL2.
• Let q ∈ f1∪f2. We fix q ∈ f1 (the case q ∈ f2 is symmetric). Then because f1 is the minimal
oblivious strategy of DEL1, by application of Lemma 6.2, ∃c1 ∈ DEL1,∃p ∈ Π,∃r > 0 such
that c1(r, p) = obliv(q). Also, c1 ∈ DEL1 ⊆ DEL1 ∪ DEL2 by Definition 4.1. We thus have
c1, p and r showing that q is in the minimal oblivious strategy for DEL1 ∪ DEL2.
• Let q be such that ∃c ∈ DEL1 ∪ DEL2, ∃p ∈ Π,∃r > 0 : c(r, p) = obliv(q). By Definition 4.1
of operations on strategies, and specifically union, c must be in DEL1 or c must be in DEL2;
we fix c ∈ DEL1 (the case DEL2 is symmetric). Then Definition 6.3 gives us that q is in the
minimal oblivious strategy of DEL1, that is f1. We conclude that q ∈ f1 ∪ f2.

For the same reason that succession is indistinguishable from union, repetition is indistin-
guishable from the original predicate: the delivered sets are the same, because every collection
of the repetition is built from prefixes of collections of the original predicate. Thus, the
minimal oblivious strategy for a repetition is the same strategy as the minimal oblivious
strategy of the original predicate.

Theorem 6.6 (Minimal Oblivious Strategy for Repetition). Let DEL be a delivered predicate,
and f be its minimal oblivious strategy. Then f is the minimal oblivious strategy for DELω.

Proof. We show that f = {q | ∃c ∈ DELω, ∃p ∈ Π,∃r > 0 : obliv(q) = c(r, p)}, which allows
us to conclude by Definition 6.3 that f is the minimal oblivious strategy for DELω.
• (⊆) Let q ∈ f . By minimality of f for DEL, ∃c ∈ DEL,∃p ∈ Π, ∃r > 0 : obliv(q) = c(r, p).
We take c′ ∈ DELω such that c1 = c and r2 = r; the other ci and ri don’t matter for the
proof. By Definition 4.1 of operations on predicates, and specifically repetition, we get
c′(r, p) = c(r, p) = obliv(q). We have c′, p and r showing that q is in the minimal oblivious
strategy of DELω.
• (⊇) Let q be such that ∃c ∈ DELω,∃p ∈ Π, ∃r > 0 : obliv(q) = c(r, p). By Definition 4.1 of
operations on predicates, and specifically repetition, there are ci ∈ DEL and 0 < ri < ri+1

such that r ∈ [ri + 1, ri+1] and c(r, p) = ci(r − ri, p). We have found ci, p and (r − ri)
showing that q is in the minimal oblivious strategy for DEL. Since f is the minimal oblivious
strategy for DEL, we get q ∈ f .

Combination is different from the other operations, as combining collections is done round
by round. Since oblivious strategies do not depend on the round, the combination of two
oblivious strategies will accept the combination of any two states accepted, that is, it will
accept any intersection of the delivered set of received messages from the current round in
the first state and the delivered set of received messages from the current round in the second
state. Yet when taking the combination of two predicates, maybe the collections are such
that these two delivered sets used in the intersection above never happen at the same round,
and thus never appear in the combination of collections.

To ensure that every intersection of pairs of delivered sets, one from a collection from each
predicate, happens in the combination of predicates, we add an assumption: the symmetry of
the predicate over processes and over rounds. This means that for any delivered set D of the
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predicate, for any round and any process, there is a collection of the predicate where D is the
delivered set for some round and some process. DELcrashF is an example of round symmetric
delivered predicate: all processes are equivalent, and crashes can happen at any round.

Definition 6.7 (Round Symmetric DEL). Let DEL be a delivered predicate. DEL is round
symmetric iff ∀c ∈ DEL, ∀r > 0,∀k ∈ Π,∀r′ > 0,∀k ∈ Π, ∃c′ ∈ DEL : c(r, k) = c′(r′, j).

Theorem 6.8 (Minimal Oblivious Strategy for Combination). Let DEL1, DEL2 be two round
symmetric delivered predicates, f1 and f2 the minimal oblivious strategies for, respectively,
DEL1 and DEL2. Then f1

⊗
f2 is the minimal oblivious strategy for DEL1

⊗
DEL2.

Proof idea. The oblivious states of DEL1
⊗

DEL2 are the combination of an oblivious state of
DEL1 and of one of DEL2 at the same round, for the same process. Thanks to round symmetry,
this translates into the combination of any oblivious state of DEL1 with any oblivious state
of DEL2. Since f1 and f2 are the minimal oblivious strategy, they both accept exactly the
oblivious states of DEL1 and DEL2 respectively. Thus f1

⊗
f2 accepts all the combinations of

oblivious states of DEL1 and DEL2, and is the minimal oblivious strategy of DEL1
⊗

DEL2.

Proof. We show that f1
⊗

f2 = {q | ∃c ∈ DEL1
⊗

DEL2,∃p ∈ Π,∃r > 0 : obliv(q) = c(r, p)},
which allows us to apply Lemma 6.3 to show that f1

⊗
f2 is the minimal oblivious strategy

of DEL1
⊗

DEL2.
• Let q ∈ f1

⊗
f2. Then ∃q1 ∈ f1,∃q2 ∈ f2 such that q = q1

⊗
q2. This also means

that q1.round = q2.round = q.round. By minimality of f1 and f2, ∃c1 ∈ DEL1, ∃p1 ∈
Π,∃r1 > 0 : c1(r1, p1) = obliv(q1) and ∃c2 ∈ DEL2, ∃p2 ∈ Π,∃r2 > 0 : c2(r2, p2) = obliv(q2).
Moreover, by Definition 6.7 of round symmetry, the hypothesis on DEL2 ensures that
∃c′2 ∈ DEL2 : c′2(r1, p1) = c2(r2, p2). We take c = c1

⊗
c′2. obliv(q) = obliv(q1) ∩ obliv(q2) =

c1(r1, p1) ∩ c2(r2, p2) = c1(r1, p1) ∩ c′2(r1, p1) = c(r1, p1). We have c, p1 and r1 showing
that q is in the minimal oblivious strategy for DEL1

⊗
DEL2.

• Let q be such that ∃c ∈ DEL1
⊗

DEL2,∃p ∈ Π,∃r > 0 : c(r, p) = obliv(q). By Definition 4.1
of operations on predicates, and specifically of combination, ∃c1 ∈ DEL1,∃c2 ∈ DEL2 : c =
c1
⊗

c2. We take q1 such that q1.round = r, obliv(q1) = c1(r, p) and ∀r′ 6= r : q1(r′) = q(r′);
we also take q2 such that q2.round = r, obliv(q2) = c2(r, p) and ∀r′ 6= r : q2(r′) = q(r′).
Then q = q1

⊗
q2. By Definition 6.3 of minimal oblivious strategies, f1 and f2 being

respectively the minimal oblivious strategies of DEL1 and DEL2 imply that q1 ∈ f1 and
q2 ∈ f2. We conclude that q ∈ f1

⊗
f2.

This subsection shows that as long as predicates are built from simple building blocks with
known minimal oblivious strategies, the minimal oblivious strategy of the result can be
explicitly constructed.

6.3. Computing Heard-Of Predicates of Oblivious Strategies. Once the minimal
oblivious strategy has been computed, the next step is to extract the heard-of predicate for
this strategy: the smallest predicate (all its collections are contained in the other predicates)
generated by an oblivious strategy for this delivered predicate. This ends up being simple: it
is the product of all delivered sets.

Definition 6.9 (Heard-Of Product). Let S ⊆ P(Π). The heard-of product generated
by S, HOProd(S) , {h, a heard-of collection | ∀p ∈ Π, ∀r > 0 : h(r, p) ∈ S }.
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Here is the intuition: defining a heard-of collection requires, for each round and each
process, the corresponding heard-of set. A heard-of product is then the set of all collections
that have heard-of sets from the set given as argument. So the total heard-of predicate
(containing only the total collection) is the heard-of product of the set Π. And HOF is the
heard-of product of all subsets of Π of size ≥ n− F .

The following lemma links the Nextsf of some valid oblivious strategy and the heard-of
predicate for this strategy: the predicate is the heard-of product of the Nextsf .

Lemma 6.10 (Heard-Of Predicate of an Oblivious Strategy). Let DEL be a delivered pred-
icate containing ctotal and let f be a valid oblivious strategy for DEL. Then HOf (DEL) =
HOProd(Nextsf ).

Proof.
• (⊆) To prove this first direction, we show that the heard-of sets of any collection in
HOf (DEL) are in Nextsf . This then entails that HOf (DEL) ⊆ HOProd(Nextsf ). By
Definition 5.9 of the heard-of collection of an execution, every heard-of set contains the
set of messages from the current round that was already received at the nextp transition
where the process p changed round. By Definition 5.6 of the executions of a strategy,
such a nextp transition can only happen if the local state of the process p is in f . By
Definition 6.1 of oblivious strategies, f contains exactly the states such that the messages
received from the current round form a set in Nextsf . Therefore, the heard-of set of any
collection generated by f on a collection of DEL are necessarily in Nextsf .
• (⊇) Let ho be a heard-of collection such that ∀r > 0, ∀j ∈ Π : ho(r, j) ∈ Nextsf . Let t be
the canonical execution of ho. It is an execution by Lemma 5.14. By Definition 5.13, at
each round, processes receive a set of messages in Nextsf . By Definition 6.1 of oblivious
strategies, this entails that the local states are in f when the processes change rounds.
And so, by Definition 5.6, it is an execution of f . Hence t is an execution of f on DEL,
because DEL contains the total predicate. Since t = can(ho), Lemma 5.15 implies that
ht = ho. We conclude that ho ∈ HOf (DEL).

Thanks to this characterization, the heard-of predicate generated by the minimal strategies
for the operations is computed in terms of the heard-of predicate generated by the original
minimal strategies.

Theorem 6.11 (Heard-Of Predicate of Minimal Oblivious Strategies). Let DEL, DEL1, DEL2

be delivered predicates containing ctotal. Let f, f1, f2 be their respective minimal oblivious
strategies. Then:
• HOf1∪f2(DEL1 ∪ DEL2) = HOf1∪f2(DEL1  DEL2) = HOProd(Nextsf1 ∪ Nextsf2).
• If DEL1 or DEL2 are round symmetric, then:
HOf1

⊗
f2(DEL1

⊗
DEL2) = HOProd({n1 ∩ n2 | n1 ∈ Nextsf1 ∧ n2 ∈ Nextsf2}).

• HOf (DELω) = HOf (DEL).

Proof. Obviously, we want to apply Lemma 6.10. Then we first need to show that the
delivered predicates contain ctotal.
• By hypothesis, DEL1 and DEL2 contain ctotal. Then DEL1 ∪ DEL2 trivially contains it too by
Definition 4.1 of operations on predicates.
• By hypothesis, DEL1 and DEL2 contain ctotal. Then DEL1

⊗
DEL2 contains ctotal

⊗
ctotal =

ctotal by Definition 4.1 of operations on predicates.
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• By hypothesis, DEL1 and DEL2 contain ctotal. Then DEL1  DEL2 ⊇ DEL2 contains it too by
Definition 4.1 of operations on predicates.
• By hypothesis, DEL contains ctotal. We can recreate ctotal by taking all ci = ctotal and
whichever ri. Thus DELω contains ctotal by Definition 4.1 of operations on predicates.

Next, the strategies f1 ∪ f2, f1
⊗

f2 and f are the respective minimal oblivious strategies by
Theorem 6.5, Theorem 6.8 and Theorem 6.6. They are also valid by Theorem 6.2.

Lastly, we need to show that the Nextsf for the strategies corresponds to the generating
sets in the theorem.
• We show Nextsf1∪f2 = Nextsf1 ∪ Nextsf2 , and thus that

HOProd(Nextsf1∪f2) = HOProd(Nextsf1 ∪ Nextsf2).

– (⊆) Let n ∈ Nextsf1∪f2 . Then ∃q ∈ f1∪f2 : obliv(q) = n. By Definition 4.1 of operations
on predicates, and specifically union, q ∈ f1 or q ∈ f2. We fix q ∈ f1 (the case q ∈ f2 is
symmetric). Then n ∈ Nextsf1 by Definition 6.1 of oblivious strategies. We conclude
that n ∈ Nextsf1 ∪ Nextsf2 .

– (⊇) Let n ∈ Nextsf1 ∪ Nextsf2 . We fix n ∈ Nextsf1 (as always, the other case is
symmetric). Then ∃q ∈ f1 : obliv(q) = n. As q ∈ f1 implies q ∈ f1 ∪ f2, we conclude
that n ∈ Nextsf1∪f2 by Definition 6.1 of oblivious strategies.

• We show Nextsf1
⊗

f2 = {n1 ∩ n2 | n1 ∈ Nextsf1 ∧ n2 ∈ Nextsf2}, and thus that
HOProd(Nextsf1

⊗
f2) = HOProd({n1 ∩ n2 | n1 ∈ Nextsf1 ∧ n2 ∈ Nextsf2}).

– (⊆) Let n ∈ Nextsf1
⊗

f2 . Then ∃q ∈ f1
⊗

f2 : obliv(q) = n. By Definition 4.1 of
operations on predicates, and specifically of combination, ∃q1 ∈ f1, ∃q2 ∈ f2 : q1.round =
q2.round = q.round ∧ q = q1

⊗
q2. This means n = obliv(q) = obliv(q1) ∩ obliv(q2). We

conclude that n ∈ {n1 ∩ n2 | n1 ∈ Nextsf1 ∧ n2 ∈ Nextsf2} by Definition 6.1 of oblivious
strategies.

– (⊇) Let n ∈ {n1 ∩ n2 | n1 ∈ Nextsf1 ∧ n2 ∈ Nextsf2}. Then ∃n1 ∈ Nextsf1 , ∃n2 ∈
Nextsf2 : n = n1 ∩ n2. By Definition 6.1 of oblivious strategies, and because f1 and f2

are oblivious strategies, we can find q1 ∈ f1 such that obliv(q1) = n1, q2 ∈ f2 such that
obliv(q2) = n2, and q1.round = q2.round. Then q = q1

⊗
q2 is a state of f1

⊗
f2. We

have obliv(q) = n1 ∩ n2 = n. We conclude that n ∈ Nextsf1
⊗

f2 by Definition 6.1 of
oblivious strategies.

• Trivially, Nextsf = Nextsf .

6.4. Domination by Oblivious Strategies. Finally, the value of oblivious strategies
depends on which delivered predicates have a dominating oblivious strategy. DELcrashF does,
with the strategy fn−F . We consider delivered predicates that satisfy the so-called common
round property. This condition captures the fact that given any delivered set D, one can
build, for any r > 0, a delivered collection where processes receive all the messages up to
round r, and then they share D as their delivered set in round r. As a limit case, the
predicate also contains the total collection. This common round property is preserved by the
composition operators, which allows to derive complex dominating oblivious strategies from
simple ones.

Definition 6.12 (Common Round Property). Let DEL be a delivered predicate. DEL has
the common round property ,
• (Total collection) DEL contains the total collection ctotal.
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• (Common round) ∀c ∈ DEL, ∀r > 0,∀j ∈ Π,∀r′ > 0, ∃c′ ∈ DEL,∀p ∈ Π : (∀r′′ < r′ :
c′(r′′, p) = Π ∧ c′(r′, p) = c(r, j)).

What the common round property captures is what makes DELcrashF be dominated by an
oblivious strategy: if one process j might block at round r even after receiving all messages
from round r in some collection c of DEL, and all messages from rounds < r, then there is
a collection and an execution where all processes block in the same way. The collection
ensures that the delivered collection gives each process the same delivered sets (Π) for rounds
< r, and c(r, j) at round r. The execution is the standard execution of this collection, that
puts every process at round r in the same blocking state as j, and so a deadlock occurs.
The conclusion is that any valid strategy should allow to change round when all messages
from previous rounds are received, and the messages received for the current round form a
delivered set from a collection of DEL. Applying this reasoning to the canonical executions of
heard-of collections from HOfmin

(DEL) yields that the canonical executions are executions of
any valid strategy for DEL (not only oblivious ones), and thus that for any valid strategy f for
DEL, HOfmin

(DEL) ⊆ HOf (DEL). That is to say, DEL is dominated by an oblivious strategy.

Theorem 6.13 (Sufficient Condition of Oblivious Domination). Let DEL be a delivered
predicate satisfying the common round property. Then, there is an oblivious strategy that
dominates DEL.

Proof. Let fmin be the minimal oblivious strategy for DEL. It dominates the oblivious
strategies for DEL by Lemma 6.4. We now prove that fmin dominates DEL. This amount to
showing that for f ′, a valid strategy for DEL, we have f ′ ≺DEL fmin, that is HOfmin

(DEL) ⊆
HOf ′(DEL). Let ho ∈ HOfmin

(DEL) and t be the canonical execution of ho. We show that t
is an execution of f ′, which entails by Lemma 5.15 that ho ∈ HOf ′(DEL).

By Definition 6.12 of the common round property, DEL contains ctotal. By Lemma 5.14,
t is an execution of ctotal, and thus an execution of DEL. We now prove by contradiction it
is also an execution of f ′ on DEL. Assume it is not. By Definition 5.6 of the executions of
a strategy, the problem comes either from breaking fairness or from some nextj for some
process j at a point where the local state of j is not in f ′. Since for every j ∈ Π : nextj
happens an infinite number of times in t by Definition 5.13 of a canonical execution, the only
possibility left is the second one: some nextj in t is done while the local state of j is not in
f ′. There thus exists a smallest r such that some process j is not allowed by f ′ to change
round when nextj is played at round r in t.

Lemma 6.10 yields that HOfmin
(DEL) = HOProd(Nextsfmin

). By Definition 6.3 of minimal
oblivious strategies, Nextsfmin

= {c(r′, p) | c ∈ DEL ∧ r′ > 0 ∧ p ∈ Π}. Thus ∃c ∈ DEL, ∃r′ >
0, ∃p ∈ Π : ho(r, j) = c(r′, p). Since DEL satisfies the common round property (Definition 6.12),
it allows us to build cblock ∈ DEL such that ∀r′′ < r,∀k ∈ Π : cblock(r′′, k) = Π and
∀k ∈ Π : cblock(r, k) = c(r′, j) = ho(r, j). Finally, we build tblock = st(f ′, cblock) the standard
execution of f ′ on cblock. By Lemma 5.12, we know tblock is an execution of f ′ on cblock. We
then show that it is invalid by examining the two possibilities.
• During one of the first r − 1 iterations of tblock, there is some process that cannot change
round. Let r′ be the smallest iteration where it happens, and k be a process unable
to change round at the r′-th iteration. By minimality of r′, all the processes arrive
at round r′, and by definition of cblock they all receive the same messages as k before
changesr′ . That means every process has the same local state as k. Thus, all the processes
are blocked at round r′, there are no more round changes or deliveries, and tblock is invalid
by Definition 5.17 of validity.
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• For the first r−1 iterations, every process changes round. Thus everyone arrives at round r.
By Definition 5.11 of the standard execution, all messages from round r are delivered
before the changer section. The definition of cblock also ensures that every process received
the same messages, that is all the messages from round < r and all the messages from
ho(r, j). These are the messages received by j in t at round r. By hypothesis, j is blocked
in this state in t. We thus deduce that all the processes are blocked at round r in tblock,
and that tblock is an invalid execution by Definition 5.17 of validity.

Either way, we deduce that f ′ is invalid, which is a contradiction. We conclude that t
is an execution of f ′ on DEL. Lemma 5.15 therefore implies that ho ∈ HOf ′(DEL). This
entails that HOfmin

(DEL) ⊆ HOf ′(DEL), and thus that f ′ ≺DEL fmin. We conclude that fmin

dominates DEL by Definition 5.10.

This condition is maintained by the operations. Hence any predicate built from ones
satisfying this condition will still be dominated by an oblivious strategy.

Theorem 6.14 (Domination by Oblivious for Operations). Let DEL, DEL1, DEL2 be delivered
predicates satisfying the common round property. Then DEL1 ∪ DEL2, DEL1

⊗
DEL2, DEL1  

DEL2, DELω also satisfy the common round property.

Proof. Thanks to Theorem 6.13, we have to show that the condition is maintained by the
operations; the domination by an oblivious strategy directly follows from Theorem 6.13. The
fact that ctotal is still in the results of the operations was already shown in the proof of
Theorem 6.11. Hence we show the invariance of the common round part.
• Let c ∈ DEL1 ∪ DEL2. Thus c ∈ DEL1 or c ∈ DEL2. We fix c ∈ DEL1 (the other case is
symmetric). Then for p ∈ Π, r > 0 and r′ > 0, we get a c′ ∈ DEL1 satisfying the condition
of Definition 6.12 by the hypothesis that DEL1 satisfies the common round property. Since
DEL1 ⊆ DEL1 ∪ DEL2, we get c′ ∈ DEL1 ∪ DEL2. We conclude that the condition still holds
for DEL1 ∪ DEL2.
• Let c ∈ DEL1

⊗
DEL2. Then ∃c1 ∈ DEL1,∃c2 ∈ DEL2 : c = c1

⊗
c2. For p ∈ Π, r > 0

and r′ > 0, our hypothesis on DEL1 and DEL2 ensures that there are c′1 ∈ DEL1 sat-
isfying the condition of Definition 6.12 for c1 and c′2 ∈ DEL2 satisfying the condition
of Definition 6.12 for c2. We argue that c′ = c′1

⊗
c′2 satisfies the condition of Defi-

nition 6.12 for c. Indeed, ∀r′′ < r′,∀q ∈ Π : c(r′′, q) = c′1(r′′, q)
⊗

c′2(r′′, q) = Π and
∀q ∈ Π : c(r′, q) = c′1(r′, q)

⊗
c′2(r′, q) = c1(r, p)

⊗
c2(r, p) = c(r, p). We conclude that the

condition of Definition 6.12 still holds for DEL1
⊗

DEL2.
• Let c ∈ DEL1  DEL2. Since if c ∈ DEL2 the condition of Definition 6.12 trivially holds by
hypothesis, we study the case where succession actually happens. Hence ∃c1 ∈ DEL1,∃c2 ∈
DEL2,∃rchange > 0 : c = c1[1, rchange].c2. For p ∈ Π, r > 0 and r′ > 0, we consider two
cases.
– if r ≤ rchange, then our hypothesis on DEL1 ensures that there is c′1 ∈ DEL1 satisfying the

condition of Definition 6.12 for c1. We argue that c′ = c′1[1, r′].c2 ∈ DEL1  DEL2 satisfies
the condition of Definition 6.12 for c. Indeed, ∀r′′ < r′,∀q ∈ Π : c′(r′′, q) = c′1(r′′, q) = Π,
and ∀q ∈ Π : c′(r′, q) = c1(r, p) = c(r, p).

– if r > rchange, then our hypothesis on DEL2 ensures that there is c′2 ∈ DEL2 satisfying
the condition of Definition 6.12 for c2 at p and r − rchange. That is, c′2[1, r′ − 1] =
ctotal[1, r

′−1]∧∀q ∈ Π : c′2(r′, q) = c2(r−rchange, p) We argue that c′ = c′2 ∈ DEL1  DEL2

satisfies the condition of Definition 6.12 for c. Indeed, ∀r′′ < r′, ∀q ∈ Π : c′2(r′′, q) = Π,
and ∀q ∈ Π : c′2(r′, q) = c2(r − rchange, p) = c(r, p).
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We conclude that the condition of Definition 6.12 still holds for DEL1  DEL2.
• Let c ∈ DELω. Let (ci) and (ri) be the collections and indices defining c. We take
p ∈ Π, r > 0 and r′ > 0. Let i > 0 be the integer such that r ∈ [ri + 1, ri+1]. By hypothesis
on DEL, there is c′i ∈ DEL satisfying the condition of Definition 6.12 for ci at p and r − ri.
That is, c′i[1, r

′ − 1] = ctotal[1, r
′ − 1] ∧ ∀q ∈ Π : c′i(r

′, q) = ci(r − ri, p). We argue that
c′i ∈ DEL satisfies the condition of Definition 6.12 for c. Indeed, ∀r′′ ≤ r′, ∀q ∈ Π, we
have: c′i(r

′′, q) = Π and ∀q ∈ Π : c′i(r
′, q) = ci(r − ri, p) = c(r, p). We conclude that the

condition of Definition 6.12 still holds for DELω.

Therefore, as long as the initial building blocks satisfy the common round property, so do
the results of the operations — and the latter is dominated by its minimal oblivious strategy,
a strategy that can be computed easily from the results of this section.

7. Conservative Strategies: Looking at Present and Past Rounds

The class of considered strategies expands the class of oblivious strategies by considering
past rounds and the round number in addition to the present round. This is a generalization
of oblivious strategies that trades simplicity for expressivity, while retaining a nice structure.

The structure of this section is similar to the previous one: it defines conservative
strategies and give a necessary and sufficient condition for a conservative strategy to be valid
(Section 7.1), presents results on the composition of conservative strategies (Section 7.2)
that enables to compute upper bounds on the heard-of predicates of conservative strategies
(Section 7.3), and ends with a sufficient condition for conservative domination, condition
preserved by composition (Section 7.4).

7.1. Definition and Expressiveness.

Definition 7.1 (Conservative Strategy). Let cons be the function such that

∀q ∈ Q, cons(q) , 〈q.round, {〈r, k〉 ∈ q.mes | r ≤ q.round}〉.
Let ≈cons the equivalence relation defined by q1 ≈cons q2 if cons(q1) = cons(q2). The family
of conservative strategies is family(≈cons). We write NextsCf , {cons(q) | q ∈ f} for the
set of conservative states in f . This uniquely defines f .

In analogy with the case of oblivious strategies, there is an intuitive necessary and
sufficient condition for such a strategy to be valid for a given delivered predicate.

Lemma 7.2 (Necessary and Sufficient Condition for Validity of a Conservative Strategy).
Let DEL be a delivered predicate and f be a conservative strategy. Then f is valid for
DEL ⇐⇒ f ⊇ {q ∈ Q | ∃c ∈ DEL,∃p ∈ Π,∀r ≤ q.round : q(r) = c(r, p)}.

Proof.
• (⇒) Let f be valid for DEL. We show by contradiction that it satisfies the right-hand side of
the above equivalence. Assume there is qblock a local state such that ∃c ∈ DEL, ∃r > 0,∃j ∈
Π : cons(qblock) = 〈r, {〈r′, k〉 | r′ ≤ r ∧ k ∈ c(r′, j)}〉 and q /∈ f . By Definition 7.1, this
means that for every q such that cons(q) = cons(qblock) = 〈r, {〈r′, k〉 | r′ ≤ r∧k ∈ c(r′, j)}〉,
q /∈ f . Let t = st(f, c) be the standard execution of f on c. This is an execution of f on t
by Lemma 5.12. The sought contradiction is reached by proving that t is invalid for DEL,
and thus f is invalid for DEL too. To do so, we split according to two cases: the first is the
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case where there is a blocking process before round r, and the other uses the hypothesis
on the prefix of c for j up to round r.
– During one of the first r − 1 iterations of t, there is some process which cannot change

round. Let r′ be the smallest iteration of the canonical execution where it happens,
and k be a process unable to change round at the r′-th iteration. By minimality of r′,
all the processes arrive at round r′ in t; by Definition 5.11 of the standard execution,
all messages for k from all rounds up to r′ are delivered before the change part of the
iteration. Let q the local state of k at the start of changer′ , and let q′ be any local
state of k afterward. The above tells us that as long as q′.round = q.round, we have
cons(q) = cons(q′) and thus q′ /∈ f . Therefore, k can never change round while at round
r′. We conclude that t is invalid for DEL by Definition 5.17.

– For the first r − 1 iterations, all the processes change round. Thus everyone arrives
at round r in the r − 1-th iteration. By Definition 5.11 of the standard execution,
all messages from rounds up to r are delivered before the changer part of the r-th
iteration. Thus j is in a local state q at the changer part of the r-th iteration such that
cons(q) = 〈r, {〈r′, k〉 | r′ ≤ r ∧ k ∈ c(r′, j)}〉 = cons(qblock). By hypothesis, this means
q /∈ f thus that j cannot change round. Let q′ be any local state of j afterward. The
above tells us that as long as q′.round = q.round, we have cons(q) = cons(q′) and thus
q′ /∈ f . Therefore, j can never change round while at round r. Here too, t is invalid for
DEL by Definition 5.17.

Either way, we reach a contradiction with the validity of f for DEL.
• (⇐) Let DEL and f be such that ∀c ∈ DEL, 〈r, {〈r′, k〉 | r′ ≤ r ∧ k ∈ c(r′, j)}〉 ∈ NextsCf .
We show by contradiction that f is valid for DEL. Assume the contrary: there is some
t ∈ execsf (DEL) that is invalid for DEL. Thus there are some processes blocked at a round
forever in t. Let r be the smallest such round, and j be a process blocked at round r in t.
By minimality of r, all the processes arrive at round r. By Definition 5.2 of an execution
of DEL, there is a c ∈ DEL such that t is an execution of c. This means by Definition 5.2
of an execution of a collection that all messages from all the delivered sets of j up to
round r are eventually delivered. From this point on, every local state q of j satisfies
cons(q) = 〈r, {〈r′, k〉 | r′ ≤ r ∧ k ∈ c(r′, j)}〉; thus we have q ∈ f by hypothesis on f . Then
the fairness condition of executions of f from Definition 5.6 imposes that j does change
round at some point. We conclude that j is not blocked at round r in t, which contradicts
the hypothesis that j is blocked forever at round r in t.

The strategy satisfying exactly this condition is the minimal conservative strategy of DEL,
and it is a strategy dominating all the conservative strategies for this delivered predicate.

Definition 7.3 (Minimal Conservative Strategy). Let DEL be a delivered predicate. Then
the minimal conservative strategy for DEL is fmin , the conservative strategy such that
f = {q ∈ Q | ∃c ∈ DEL, ∃p ∈ Π,∀r ≤ q.round : q(r) = c(r, p)}.

Intuitively, when every message from a prefix is delivered, there is no message left from
past and present; a valid conservative strategy has to accept the state, or it would be blocked
forever.

Remark 7.4 (Prefix and conservative state of a prefix). Intuitively, a prefix of a collection c
for a process p at round r is the sequence of sets of messages received by p at rounds ≤ r
in c. Then we can define a state corresponding to this prefix by fixing its round at r and
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adding to it the messages in the prefix. This is the conservative state of the prefix. The
prefixes of a delivered predicate are then all the prefixes of all its collections.

Lemma 7.5 (Domination of Minimal Conservative Strategy). Let DEL be a delivered predicate
and fmin be its minimal conservative strategy. Then fmin dominates the conservative strategies
for DEL.

Proof. First, fmin is valid for DEL by application of Lemma 7.2. Next, we take another
conservative strategy f , valid for DEL. Lemma 7.2 gives us that fmin ⊆ f . Hence, when fmin

allow a change of round, so does f . This entails by Definition 5.6 that all the executions of fmin

for DEL are also executions of f for DEL, and by Definition 5.9 that HOfmin
(DEL) ⊆ HOf (DEL).

We conclude from Definition 5.10 that fmin dominates any valid conservative strategy for
DEL.

7.2. Composition of Conservative Strategies. Like oblivious strategies, applying oper-
ations to minimal conservative strategies gives the minimal conservative strategies of the
predicates after the analogous operations.

Theorem 7.6 (Minimal Conservative Strategy for Union). Let DEL1, DEL2 be two delivered
predicates, f1 and f2 the minimal conservative strategies for, respectively, DEL1 and DEL2.
Then f1 ∪ f2 is the minimal conservative strategy for DEL1 ∪ DEL2.

Proof. We only have to show that f1 ∪ f2 is equal to Definition 7.3.
• (⊇) Let q be a state such that ∃c ∈ DEL1 ∪ DEL2, ∃p ∈ Π such that ∀r ≤ q.round : q(r) =
c(r, p). If c ∈ DEL1, then q ∈ f1, by Definition 7.3 of the minimal conservative strategy
because f1 is the minimal conservative strategy for DEL1, and by application of Lemma 7.2.
Thus q ∈ f1 ∪ f2. If c ∈ DEL2, the same reasoning applies with f2 in place of f1. We
conclude that q ∈ f1 ∪ f2.
• (⊆) Let q ∈ f1 ∪ f2. This means that q ∈ f1 ∨ q ∈ f2. The case where it is in both can be
reduced to any of the two. If q ∈ f1, then by Definition 7.3 of the minimal conservative
strategy and by minimality of f1, ∃c1 ∈ DEL1, ∃p1 ∈ Π such that ∀r ≤ q.round : q(r) =
c1(r, p1). DEL1 ⊆ DEL1 ∪ DEL2, thus c1 ∈ DEL1 ∪ DEL2. We have found the c and p necessary
to show q is in the minimal conservative strategy for DEL1 ∪ DEL2. If q ∈ f2, the reasoning
is similar to the previous case, replacing f1 by f2 and DEL1 by DEL2.

For the other three operations, slightly more structure is needed on the predicates. More
precisely, they have to be independent of the processes. We require that any prefix of
a process k in a collection of the predicate is also the prefix of any other process j in a
possibly different collection of the same DEL. Hence the behaviors (fault, crashes, loss) are
not targeting specific processes. This restriction fits the intuition behind many common fault
models.

Definition 7.7 (Prefix Symmetric DEL). Let DEL be a delivered predicate. DEL is prefix
symmetric if ∀c ∈ DEL, ∀k ∈ Π, ∀r > 0,∀j ∈ Π,∃c′ ∈ DEL,∀r′ ≤ r : c′(r′, k) = c(r′, j).

This differs from the previous round symmetric DEL, in that here we focus on prefixes,
while the other focused on rounds. Notice that none implies the other: round symmetry says
nothing about the rest of the prefix, and prefix symmetry says nothing about the delivered
sets when rounds are different. Assuming prefix symmetry, the conservation of the minimal
conservative strategy by combination, succession and repetition follows.
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Theorem 7.8 (Minimal Conservative Strategy for Combination). Let DEL1, DEL2 be two prefix
symmetric delivered predicates, f1 and f2 the minimal conservative strategies for, respectively,
DEL1 and DEL2. Then f1

⊗
f2 is the minimal conservative strategy for DEL1

⊗
DEL2.

Proof idea. Since f1 and f2 are the minimal conservative strategies of DEL1 and DEL2, NextsCf1
is the set of the conservative states of prefixes of DEL1 and NextsCf2 is the set of the conservative
states of prefixes of DEL2. Also, the states accepted by f1

⊗
f2 are the combination of the

states accepted by f1 and the states accepted by f2. The prefixes of DEL1
⊗

DEL2 are the
prefixes of DEL1 combined with the prefixes of DEL2 for the same process. Thanks to prefix
symmetry, we can take a prefix of DEL2 and any process, and find a collection such that the
process has that prefix. Therefore, the combined prefixes for the same process are the same
as the combined prefixes of DEL1 and DEL2. Thus NextsCf1

⊗
f2

is the set of conservative states
of prefixes of DEL1

⊗
DEL2, and f1

⊗
f2 is its minimal conservative strategy.

Proof. We only need to show that f1
⊗

f2 is equal to Definition 7.3.
• (⊇) Let q be a state such that ∃c ∈ DEL1

⊗
DEL2,∃p ∈ Π such that ∀r ≤ q.round : q(r) =

c(r, p). By definition of c, ∃c1 ∈ DEL1,∃c2 ∈ DEL2 : c1
⊗

c2 = c. We take q1 such that

q1.round = q.round and ∀r > 0 :

(
q1(r) = c1(r, p) if r ≤ q.round
q1(r) = q(r) otherwise

)
.

We also take q2 such that

q2.round = q.round and ∀r > 0 :

(
q2(r) = c2(r, p) if r ≤ q.round
q2(r) = q(r) otherwise

)
.

First, f1 and f2 are valid for their respective predicates by Lemma 7.2 and Definition 7.3.
Then by validity of f1 and f2 and by application of Lemma 7.2, we get q1 ∈ f1 and q2 ∈ f2.
We also see that q = q1

⊗
q2. Indeed, for r ≤ q.round, we have q(r) = c(r, p) = c1(r, p) ∩

c2(r, p) = q1(r) ∩ q2(r); and for r > q.round, we have q(r) = q(r) ∩ q(r) = q1(r) ∩ q2(r).
Therefore q ∈ DEL1

⊗
DEL2.

• (⊆) Let q ∈ f1
⊗

f2. By Definition 5.8 of operations on strategies, and specifically
combination, ∃q1 ∈ f1,∃q2 ∈ f2 such that q1.round = q2.round = q.round and q = q1

⊗
q2.

Since f1 and f2 are minimal conservative strategies of their respective DELs, by Definition 7.3
∃c1 ∈ DEL1,∃p1 ∈ Π such that ∀r ≤ q.round : q1(r) = c1(r, p1); and ∃c2 ∈ DEL2,∃p2 ∈ Π
such that ∀r ≤ q.round : q2(r) = c2(r, p2). By Definition 7.7 of prefix symmetry, the
fact that DEL2 is prefix symmetric implies that ∃c′2 ∈ DEL2 such that ∀r ≤ q.round :
c′2(r, p1) = c2(r, p2). Hence ∀r ≤ q.round : q2(r) = c′2(r, p1). By taking c = c1

⊗
c2, we get

∀r ≤ q.round : q(r) = q1(r) ∩ q2(r) = c1(r, p1) ∩ c2(r, p1) = c(r, p1). We have found c and
p showing that q is in the minimal conservative strategy for DEL1

⊗
DEL2.

Theorem 7.9 (Minimal Conservative Strategy for Succession). Let DEL1, DEL2 be two prefix
symmetric delivered predicates, f1 and f2 the minimal conservative strategies for, respectively,
DEL1 and DEL2. Then f1  f2 is the minimal conservative strategy for DEL1  DEL2.

Proof idea. Since f1 and f2 are the minimal conservative strategies of DEL1 and DEL2, NextsCf1
is the set of the conservative states of prefixes of DEL1 and NextsCf2 is the set of the conservative
states of prefixes of DEL2. Also, the states accepted by f1  f2 are the succession of the
states accepted by f1 and the states accepted by f2. The prefixes of DEL1  DEL2 are the
successions of prefixes of DEL1 and prefixes of DEL2 for the same process. Thanks to prefix
symmetry, we can take a prefix of DEL2 and any process, and find a collection such that the
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process has that prefix. Therefore, the succession of prefixes for the same process are the same
as the succession of prefixes of DEL1 and DEL2. Thus NextsCf1 f2

is the set of conservative
states of prefixes of DEL1  DEL2, and is its minimal conservative strategy.

Proof. We only need to show that f1  f2 is equal to Definition 7.3.
• (⊇) Let q be a state such that ∃c ∈ DEL1  DEL2,∃p ∈ Π such that ∀r′ ≤ q.round : q(r′) =
c(r′, p). By Definition 4.1 of the operations on predicates, and specifically of succession,
∃c1 ∈ DEL1,∃c2 ∈ DEL2,∃r > 0 : c = c1[1, r].c2.
– If r = 0, then c[1, r] = c2[1, r], and thus ∀r′ ≤ q.round : q(r′) = c2(r′, p). First, f2 is

valid for DEL2 by Lemma 7.2 and Definition 7.3. Then the validity of f2 and Lemma 7.2
allow us to conclude that q ∈ f2 and thus that q ∈ f1  f2.

– If r > 0, we have two cases to consider.
∗ If q.round ≤ r, then ∀r′ ≤ q.round : q(r′) = c1(r′, p) f1 is also valid for DEL1 by
Lemma 7.2 and Definition 7.3. We conclude by validity of f1 and application of
Lemma 7.2 that q ∈ f1 and thus that q ∈ f1  f2.
∗ If q.round > r, then c[1, q.round] = c1[1, r].c2[1, q.round− r]. We take q1 such that

q1.round = r and ∀r′ > 0 :

(
q1(r′) = c1(r′, p) if r′ ≤ q1.round
q1(r′) = q(r′) otherwise

)
,

and q2 such that

q2.round = q.round−r and ∀r′ > 0 :

(
q2(r′) = c2(r′, p) if r′ ≤ q2.round
q2(r′) = q(r′ − r) otherwise

)
.

Then by validity of f1 and f2 for their respective predicates, and by application of
Lemma 7.2, we get q1 ∈ f1 and q2 ∈ f2.
We also have:
· q1.round + q2.round = r + q.round− r = q.round
· ∀r′ ≤ q1.round = r, q(r′) = c(r′, p) = c1(r′, p) = q1(r′)
· ∀r′ ∈ [q1.round + 1, q.round], q(r′) = c(r′, p) = c2(r′ − r, p) = q2(r′ − r) = q2(r′ −
q1.round)
· ∀r′ > q.round, q(r′) = q2(r′ − r) = q2(r′ − q1.round)
So Definition 5.8 gives q = q1  q2.
We conclude that q ∈ f1  f2.

• (⊆) Let q ∈ f1  f2. By Definition 5.8 of operations for strategies, specifically succession,
there are three possibilities for q.
– If q ∈ f1, then by Definition 7.3 of the minimal conservative strategy and minimality

of f1 for DEL1, we have ∃c1 ∈ DEL1, ∃p1 ∈ Π : ∀r ≤ q.round : q(r) = c1(r, p1). Let
c2 ∈ DEL2. We take c = c1[1, q.round].c2; we have c ∈ c1  c2 by Definition 4.1 of
operations for predicates. Then, ∀r ≤ q.round : q(r) = c1(r, p1) = c(r, p1). We have
found c and p showing that q is in the minimal conservative strategy for DEL1  DEL2

by Definition 7.3.
– If q ∈ f2, then by Definition 7.3 of the minimal conservative strategy and minimality

of f2 for DEL2, we have ∃c2 ∈ DEL2,∃p2 ∈ Π : ∀r ≤ q.round : q(r) = c2(r, p2). As
DEL2 ⊆ DEL1  DEL2 by Definition 4.1, thus c2 ∈ DEL1  DEL2. We have found c and p
showing that q is in the minimal conservative strategy for DEL1  DEL2 by Definition 7.3.

– There are q1 ∈ f1 and q2 ∈ f2 such that q = q1  q2. Because f1 and f2 are
the minimal conservative strategies of their respective DELs, then by Definition 7.3
∃c1 ∈ DEL1,∃p1 ∈ Π such that ∀r ≤ q.round : q1(r) = c1(r, p1); and ∃c2 ∈ DEL2,∃p2 ∈ Π
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such that ∀r ≤ q.round : q2(r) = c2(r, p2). By Definition 7.7 of prefix symmetry, the fact
DEL2 is prefix symmetric implies that ∃c′2 ∈ DEL2 : ∀r ≤ q.round : c′2(r, p1) = c2(r, p2).
Hence ∀r ≤ q.round : q2(r) = c′2(r, p1). By taking c = c1[1, q1.round].c′2, we have
c ∈ c1  c′2. Then ∀r ≤ q.round = q1.round + q2.round:

q(r) = q1(r)
= c1(r, p1)
= c(r, p1)

if r ≤ q1.round

q(r) = q2(r − q1.round)
= c′2(r − q1.round, p1)
= c(r, p1)

if r ∈ [q1.round + 1, q1.round + q2.round]

 .

We have found c and p showing that q is in the minimal conservative strategy for
DEL1  DEL2 by Definition 7.3.

Theorem 7.10 (Minimal Conservative Strategy for Repetition). Let DEL be a prefix symmet-
ric delivered predicate, and f be its minimal conservative strategy. Then fω is the minimal
conservative strategy for DELω.

Proof. We only have to show that fω is equal to Definition 7.3.
• (⊇) Let q be a state such that ∃c ∈ DELω,∃p ∈ Π such that ∀r ≤ q.round : q(r) = c(r, p). By
Definition 4.1 of operations for predicates, and specifically of repetition, ∃(ci)i ∈N∗ ,∃(ri)i∈N∗
such that r1 = 0 and ∀i ∈ N∗ : (ci ∈ DEL ∧ ri < ri+1 ∧ c[ri + 1, ri+1] = ci[1, ri+1 − ri]). Let
k be the biggest integer such that rk ≤ q.round. We consider two cases.
– If rk = q.round, then c[1, q.round] = c[1, rk] = c1[1, r2 − r1].c2[1, r3 − r2] . . . ck−1[1, rk −

rk−1]. We take for i ∈ [1, k − 1] : qi the state such that qi.round = ri+1 − ri and ∀r > 0:(
qi(r) = ci(r, p) if r ≤ qi.round
qi(r) = q(r +

∑
j∈[1,i−1]

qi.round) otherwise

)
.

First, f is valid for DEL by Lemma 7.2 and Definition 7.3. Then by validity of f
and by application of Lemma 7.2, for i ∈ [1, k − 1] we have qi ∈ f . We see that
∀r > 0 : q(r) = (q1  · · ·  qk−1)(r). Indeed, ∀r ∈ [ri + 1, ri+1] : q(r) = c(r, p) =
ci(r − ri, p) = qi(r − ri) = qk−1(r −

∑
j∈[1,k−2]

qi.round) = (q1  · · ·  qk−1)(r); and

for r > q.round : q(r) = q((r −
∑

j∈[1,k−2]

qi.round) +
∑

j∈[1,k−2]

qi.round) = qk−1(r −∑
j∈[1,k−2]

qi.round) = (q1  · · · qk−1)(r).

We conclude that q ∈ fω.
– If q.round > rk, we can apply the same reasoning as in the previous case, the only differ-

ence being c[1, q.round] = c1[1, r2− r1].c2[1, r3− r2] . . . ck−1[1, rk− rk−1].ck[1, q.round−
rk].

• (⊆) Let q ∈ fω. By Definition 5.8 of operations for strategies, ∃q1, q2, . . . , qk ∈ f : q = q1  
q2  · · · qk. By Definition 7.3 of the minimal conservative strategy and by minimality
of f for DEL, ∃c1, c2, . . . , ck ∈ DEL,∃p1, p2, . . . , pk ∈ Π : ∀i ∈ [1, k], qi = 〈qi.round, {〈r, j〉 |
r ≤ qi.round∧ j ∈ ci(r, pi)}. By Definition 7.7 of prefix symmetry, DEL is prefix symmetric
implies that ∀i ∈ [2, k], ∃c′i ∈ DEL, ∀r ≤ qi.round : c′i(r, p1) = ci(r, pi). For i = 1,
we have c′1 = c1. We take c = c′1[1, q1.round].c′2[1, q2.round] . . . c′k−1[1, qk−1.round].c′k,
thus c ∈ c′1  c′2  · · ·  c′k. Then ∀r ≤ q.round =

∑
i∈[1,k]

qi.round,∃i ∈ [1, k] such
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that r ∈

[ ∑
l∈[1,i−1]

ql.round + 1,
∑

l∈[1,i]

ql.round

]
, and q(r) = qi(r −

∑
l∈[1,i−1]

ql.round) =

ci(r −
∑

l∈[1,i−1]

ql.round, pi) = c′i(r −
∑

l∈[1,i−1]

ql.round, p1) = c(r, p1).

We have found c and p showing that q is in the minimal conservative strategy for DELω
by Definition 7.3.

7.3. Computing Heard-Of Predicates of Conservative Strategies. The analogy with
oblivious strategies breaks here: the heard-of predicate of conservative strategies is hard to
compute, as it depends in intricate ways on the delivered predicate itself. Yet it is still possible
to compute interesting information on this HO: upper bounds. These are overapproximations
of the actual HO, but they can serve for formal verification of LTL properties. Indeed, the
executions of an algorithm for the actual HO are contained in the executions of the algorithm
for any overapproximation of the HO, and LTL properties must be true for all executions of
the algorithm. So proving the property on an overapproximation also proves it on the actual
HO.

Theorem 7.11 (Upper Bounds on HO of Minimal Conservative Strategies). Let DEL, DEL1,
and DEL2 be delivered predicates containing ctotal.
Let f cons, f cons

1 , f cons
2 be their respective minimal conservative strategies,

and fobliv, fobliv
1 , fobliv

2 be their respective minimal oblivious strategies. Then:
• HOfcons

1 ∪fcons
2

(DEL1 ∪ DEL2) ⊆ HOProd(Nextsfobliv
1
∪ Nextsfobliv

2
).

• HOfcons
1  fcons

2
(DEL1  DEL2) ⊆ HOProd(Nextsfobliv

1
∪ Nextsfobliv

2
).

• HOfcons
1

⊗
fcons
2

(DEL1
⊗

DEL2) ⊆ HOProd({n1 ∩ n2 | n1 ∈ Nextsfobliv
1
∧ n2 ∈ Nextsfobliv

2
}).

• HOω
(fcons)(DEL

ω) ⊆ HOProd(Nextsfobliv).

Proof. An oblivious strategy is a conservative strategy. Therefore, the minimal conservative
strategy always dominates the minimal oblivious strategy. Hence we get an upper bound on
the heard-of predicate of the minimal conservative strategies by applying Theorem 6.11.

7.4. Domination by Conservative Strategies. Some examples above, like DELcrash1,≥r (see
Table 1), are not dominated by oblivious strategies, but are dominated by conservative
strategies. This follows from a condition on delivered predicates and its invariance by the
operations, similar to the case of oblivious strategies. Let’s start by defining that condition
and then showing that it implies domination by a conservative strategy.

Definition 7.12 (Common Prefix Property). Let DEL be a delivered predicate. DEL satisfies
the common prefix property , ∀c ∈ DEL,∀p ∈ Π, ∀r > 0, ∃c′ ∈ DEL,∀q ∈ Π, ∀r′ ≤ r :
c′(r′, q) = c(r′, p).

The common prefix property, as its name suggests, works just like the common round
property but for a prefix. It ensures that for every prefix of a collection in the predicate,
there exists a collection where every process shares this prefix.

Theorem 7.13 (Sufficient Condition of Conservative Domination). Let DEL be a delivered
predicate satisfying the common prefix property Then, there is a conservative strategy that
dominates DEL.
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Proof. The proof is the same as for the oblivious case, except that the common prefix property
gives us a delivered collection where everyone has the same exact prefix as the blocked process
in the canonical execution.

Theorem 7.14 (Domination by Conservative for Operations). Let DEL, DEL1, DEL2 be deliv-
ered predicates with the common prefix property. Then DEL1 ∪ DEL2, DEL1

⊗
DEL2, DEL1  

DEL2, DELω satisfy the common prefix property.

Proof.
• Let c ∈ DEL1 ∪ DEL2. Thus c ∈ DEL1 or c ∈ DEL2 by Definition 4.1. We fix c ∈ DEL1 (the
other case is symmetric). Then for p ∈ Π and r > 0, we get a c′ ∈ DEL1 satisfying the
condition of Definition 7.12. Since DEL1 ⊆ DEL1 ∪ DEL2, we get c′ ∈ DEL1 ∪ DEL2. We
conclude that the common prefix property still holds for DEL1 ∪ DEL2 by Definition 7.12.
• Let c ∈ DEL1

⊗
DEL2. Then ∃c1 ∈ DEL1, ∃c2 ∈ DEL2 : c = c1

⊗
c2. For p ∈ Π and r > 0,

our hypothesis on DEL1 and DEL2 ensures that there are c′1 ∈ DEL1 satisfying the condition
of Definition 7.12 for c1 and c′2 ∈ DEL2 satisfying the condition of Definition 7.12 for
c2. We argue that c′ = c′1

⊗
c′2 satisfies the condition of Definition 7.12 for c. Indeed,

∀r′ ≤ r, ∀q ∈ Π : c(r′, q) = c′1(r′, q)
⊗

c′2(r′, q) = c1(r′, p)
⊗

c2(r′, p) = c(r′, p). We
conclude that the condition of Definition 7.12 still holds for DEL1

⊗
DEL2.

• Let c ∈ DEL1  DEL2. Since if c ∈ DEL2, the condition holds by hypothesis, we study the
case where succession actually happens. Hence ∃c1 ∈ DEL1, ∃c2 ∈ DEL2, ∃rchange > 0 : c =
c1[1, rchange].c2. For p ∈ Π and r > 0, our hypothesis on DEL1 and DEL2 ensures that there
are c′1 ∈ DEL1 satisfying the condition for c1 at r and c′2 ∈ DEL2 satisfying the condition for
c2 at r − rchange. We argue that c′ = c′1[1, rchange].c

′
2 satisfies the condition for c. Indeed,

∀r′ ≤ r, ∀q ∈ Π, we have: if r′ ≤ rchange : c′(r′, q) = c′1(r′, q) = c1(r′, p) = c(r′, p); and if
r′ > rchange : c′(r′, q) = c′2(r′ − rchange, q) = c2(r′ − rchange, p) = c(r′, p). We conclude that
the condition still holds for DEL1  DEL2.
• Let c ∈ DELω, p ∈ Π, r > 0 and let’s prove that ∃c′ ∈ DELω,∀q ∈ Π, ∀r′ ≤ r : c′(r′, q) =
c(r′, p). c ∈ DELω, so by Definition 4.1, there exist (ci) and (ri) such that: r1 = 0 ∧ ∀i ∈
N∗ : (ci ∈ DEL ∧ ri < ri+1 ∧ c[ri + 1, ri+1] = ci[1, ri+1 − ri]). ∀i ∈ N∗ : ci ∈ DEL, so by
hypothesis and Definition 7.12, ∀i ∈ N∗,∃c′i ∈ DEL, ∀q ∈ Π,∀r′ ≤ r : c′i(r

′, q) = ci(r
′, p).

Let c′ =
∏
i>0

c′i[1, ri+1 − ri]. By definition, c′ ∈ DELω. Let q ∈ Π and r′ ≤ r and

let’s prove that c′(r′, q) = c(r′, p). Let i ∈ N∗ such that ri + 1 ≤ r′ ≤ ri+1. Then,
c′(r′, q) = c′i(r

′ − ri, q) = ci(r
′ − ri, p) = c(r′, p). We conclude that the condition of

Definition 7.12 still holds for DELω.

Therefore, as long as the initial building blocks satisfy the common prefix property, so do the
results of the operations. Thus the latter is dominated by its minimal conservative strategy
— a strategy that can be computed from the results of this section.

8. Looking at Future Rounds

In the above, the dominating strategy was at most conservative: only the past and present
rounds were useful for generating heard-of collections. Nevertheless, messages from future
rounds serve in some cases. This section provides a preliminary exploration of the topic,
with an example and a conjecture.

Let’s go back to DELloss1 , the delivered predicate for at most one message loss presented
in Section 3. The minimal oblivious strategy for this predicate is fn−1. The minimal



Vol. 17:3 CHARACTERIZATION AND DERIVATION OF HEARD-OF PREDICATES 26:39

conservative strategy is a similar one, except that when it received a message from p at
round r, it waits for all messages from p at previous rounds. However, this does not change
which messages the strategy waits for in the current round: n− 1 messages, because one can
always deliver all the messages from the past, and then the loss might be a message from
the current round. However, if the strategy considers messages from the next round, it can
ensure that at each round, at most one message among all processes is not delivered on time.
The strategy presented here waits for either all messages from the current round, or for all
but one messages from the current round and all but one message from the next round.

Definition 8.1 (Strategy for One Loss). Let after : Q 7→ P(Π) such that ∀q ∈ Q : after(q) =

{k ∈ Π | 〈q.round + 1, k〉 ∈ q.mes}. Then floss ,{
q ∈ Q

∣∣∣∣ card(obliv(q)) = card(Π)
∨ (card(after(q)) = card(Π)− 1 ∧ card(obliv(q)) = card(Π)− 1)}

}
Intuitively, this strategy is valid for DELloss1 because at each round and for each process,

only two cases exist:
• Either no message for this process at this round is lost, and it receives a message from
every process;
• Or one message for this process is lost at this round, and it only receives n− 1 messages.
However, all the other processes receive n messages (because only one can be lost), thus
they change round and send their messages for the next round. Since the one loss already
happened, all these messages are delivered, and the original process eventually receives
n− 1 messages from the next round.

Lemma 8.2 (Validity of floss). floss is valid for DELloss1 .

Proof. We proceed by contradiction: Assume floss is invalid for DELloss1 . Thus there exists
t ∈ execsfloss(DEL

loss
1 ) invalid. There is a smallest round r where some process j cannot

change round from that point onwards. Let also c be a delivered collection of DELloss1 such
that t ∈ execs(c). Minimality of r entails that every process reaches round r and thus sends
its messages to j, and c ∈ DELloss1 entails that at most one of these messages can be lost.
Thus j eventually receives n− 1 messages from round r. By hypothesis, it doesn’t receive all
n messages, or it could change round. Thus j receives exactly n− 1 messages from round
r, which means that the only loss allowed by DELloss1 happens at round r. For j to block,
it must never receive n − 1 messages from round r + 1. Yet the only loss is a message to
j; thus every other process receives n messages at round r, changes round, and sends its
message to j without loss. Hence j eventually receives n − 1 messages from round r + 1.
This contradicts the fact that j cannot change round at this point in t.

This strategy also ensures that at most one process per round receives only n−1 messages
on time — the others must receive all the messages. This vindicates the value of messages
from future rounds for some delivered predicates, such as the ones with asymmetry in them.

Theorem 8.3 (Heard-Of Characterization of floss).
HOfloss(DEL

loss
1 ) = {h, a heard-of collection | ∀r > 0,

∑
p∈Π

card(Π \ ho(r, p)) ≤ 1}.

Proof.
• (⊆) Let ho ∈ HOfloss(DELloss1 ) and t ∈ execsfloss(DELloss1 ) an execution of floss generating
ho. By definition of the executions of floss, processes change round only when they received
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either n messages from the current round, or n − 1 messages from the current round
(and n− 1 messages from the next one, but that is irrelevant to the heard-of predicate).
Moreover, t is valid by definition, as it generates ho. Let’s now assume that at least one
process j receives only n− 1 messages on time for some round r in ho. By definition of
floss and validity of t, we deduce that j also received n − 1 messages from round r + 1
while it was at round r. Hence, every other process ended its own round r before j; the
only possibility is that they received n messages from round r, because the alternatives
require the reception of the message from j at round r + 1. We conclude that for each
round, at most one process receives only n− 1 messages on time, which can be rewritten
as ∀r ∈ N∗ :

∑
j∈Π

card(Π \ ho(r, j)) ≤ 1.

• (⊇) Let ho a heard-of collection over Π such that ∀r ∈ N∗ :
∑
j∈Π

card(Π \ho(r, j)) ≥ 1. The

difficulty here is that the canonical execution of ho fails to be an execution of floss: when
only n − 1 messages from the current round are delivered to some process j, then the
corresponding nextj for this round will not be allowed by floss. One way to deal with this
issue is to start from the canonical execution of ho and move these incriminating nextj
after the deliveries of n − 1 messages from the next round, and before the deliveries of
messages from j in the next round. In this way, every nextj will happen when either n
messages have been received from the current round, or n− 1 messages from the current
round and n− 1 from the next one. We conclude that ho ∈ HOfloss(DEL

loss
1 ).

Does floss dominate DELloss1 ? It would seem so, but proving it is harder than for fn−F and
DELcrashF . The reason is that the common round property of the latter allows the creation
of deadlocks where every process is blocked in the same local state, which forces any valid
strategy to accept this state. Whereas the whole reason the future serves in DELloss1 is because
the latter doesn’t have this property, and thus the local state of a process constrains the
possible local states of other processes.

Conjecture 8.4 (Domination of floss on DELloss1 ). floss is a dominating strategy for DELloss1 .

This example demonstrates two important points about strategies using the future. First,
for some delivered predicates (for example DELloss1 ), they dominate conservative strategies.
Secondly, because any additional message might influence whether the strategy allows a
change of round or not, proof techniques based on standard executions don’t work for these
strategies.

9. Conclusion

In this article, we propose a formalization of the heard-of predicate to use when studying a
given operational model through the Heard-Of model. This formalization comes with the
following methodology:
• Extract a delivered predicate from the informal model, either through direct analysis or by
building the predicate from simpler building blocks through operations.
• Compute a dominating strategy for this delivered predicate, either by direct analysis or by
combining dominating strategies for the simpler building blocks.
• Compute the heard-of predicate generated by this strategy on this delivered predicate.
This result captures the most constrained predicate which can be implemented on top of the
initial model. If a round-based algorithm is proved correct on this predicate, its correctness
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follows on the original model; and if no algorithm exists for a given problem on this predicate,
this entails that no round-based algorithm solves the problem on the original model.

The obvious follow-up to this research is to tackle strategies which look into the future,
and predicates like DELloss1 that are useful for such strategies. Doing so will require completely
new proof techniques, as the ones presented here implicitly rely on the ability to make only
the messages in the past and present rounds matter. A more straightforward extension of
this work would be the study of more delivered predicates, both for having more building
blocks to use with operations, and to derive more heard-of predicates.
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Appendix A. Omitted proofs

Lemma A.1 (Lemma 5.12 Correctness of Standard Execution). Let c be a delivered collection
and f be a strategy. Then st(f, c) ∈ execsf (c).

Proof idea. First, the proof shows that st(f, c) is indeed an execution by verifying the three
properties of Definition 5.1. Then, it shows that st(f, c) is an execution of the delivered
collection c (Definition 5.2: the delivered messages in st(f, c) are exactly those from c). Lastly
the verification of the two conditions of Definition 5.6 ensures that st(f, c) is an execution of
strategy f .

Proof. Let us first show that st(f, c) is an execution by showing each point of Definition 5.1.
• Delivered after sending: By Definition 5.11 of the standard execution there are r − 1
transitions nextp before the messages of p sent at round r are delivered.
• Delivered only once: If a message sent at round r by p is delivered, we know from the
previous point that p reaches round r before the delivery. Let r′ be such that changesr′
contains the (r − 1)th nextp of st(f, c). Then the message is delivered in delsr′+1 by
Definition 5.11 of the standard execution. For all r′′ > r′ + 1, if there are deliveries from p
in delsr′′ , this entails that nextp ∈ changesr′′−1, and thus that p is not anymore at round
r. By definition of delsr′′ , it only delivers messages sent at the current rounds of processes.
We conclude that there is only one delivery of the message.
• Once stopped, forever stopped: By Definition 5.11 of the standard execution, if changesr
contains only stop, this means that f does not allow any process to change rounds with
the currently received messages. By definition of delsr, it only delivers messages from
processes that changed round in changesr−1. If there is some smallest rstop such that
changesrstop = {stop}, then delsrstop+1 = ∅. This means the local states of processes do
not change, and thus changesrstop+1 = {stop}. By induction, if there is some stop in
st(f, c), the rest of the execution contains only stop transitions.
Hence st(f, c) is an execution. Next, let’s show that st(f, c) is an execution of c. By

Definition 5.2, this means the delivered messages are exactly those from c, for processes
that reached the round where they send the message. By Definition 5.11 of the standard
execution, all deliveries are from messages in c. By Definition 5.11 of the standard execution,
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if p reaches round r, there is a smallest r′ > 0 such that roundpr′ = r. This means that
delsr′ contains the deliveries of all the messages (r, p, q) such that p ∈ c(r, q). Hence st(f, c)
is an execution of c. Finally, we show that st(f, c) is an execution of f . We check the two
conditions of Definition 5.6:
• (All Nexts Allowed) By Definition 5.11 of the standard executions, changes of round only
occur when the local state is in f .
• (Fairness) If some process is blocked forever at some round, this means by Definition 5.11 of
the standard execution that its local state was not in f for an infinite number of changesr,
and so for an infinite number of times.

We conclude that st(f, c) ∈ execsf (c).
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license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
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2, 10777 Berlin, Germany
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