

Influence of the Water Vapor Presence on the High Temperature Oxidation Behavior of two Chromium-Rich Cobalt-Based Alloys

Patrice Berthod, Lionel Aranda, Thierry Schweitzer

▶ To cite this version:

Patrice Berthod, Lionel Aranda, Thierry Schweitzer. Influence of the Water Vapor Presence on the High Temperature Oxidation Behavior of two Chromium-Rich Cobalt-Based Alloys. 9th International Symposium on High-Temperature Corrosion and Protection of Materials (HTCPM 2016), May 2016, Les Embiez, France. hal-03352260

HAL Id: hal-03352260 https://hal.science/hal-03352260

Submitted on 23 Sep 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Influence of the Water Vapor Presence on the High Temperature Oxidation Behavior of two Chromium-Rich Cobalt-Based Allovs

Patrice BERTHOD, Lionel ARANDA, Thierry SCHWEITZER

Institut Jean Lamour (UMR 7198), Département CP2S Faculté des Sciences et Technologies, Université de Lorraine, Boulevard des Aiguillettes, BP 70239, 54506 VANDOEUVRE-LES-NANCY (France) patrice.berthod@univ-lorraine.fr

Besides nitrogen and oxygen, water vapor is often present in the hot air in which refractory alloys are working, and its presence influences the behavior of superalloys in high temperature oxidation [1]. Notably, it is widely recognized that water vapor plays an important role, but not necessarily detrimental for the metallic component. The presence of water vapor in air tends enhancing the volatilization of Cr.O.3 covering the chromia-forming alloys, but it is also true that a slow-down in oxidation speed is sometimes induced by water vapor as well as an improvement of the scale adherence when temperature varies.

For many studies dealing with the effect of water vapor on the high temperature oxidation, this is the nickel-based allovs family which is considered, notably aluminum-rich Ni allovs solidified in order to be single-crystalline finally. However one of the latest works concerning Ni-based alloys but polycrystalline and equi-axed, concerned an alloy which contained no aluminum but only chromium for its oxidation and corrosion resistance at high temperature [3]. In contrast, although they also represent an important family of high temperature alloys [2], the cobalt-based alloys were less studied in this field. Since such alloys are also used in the hottest parts of aeroengines and in the hottest pieces involved of various industrial processes (such glass working), with in both cases the possible presence of water vapor, it appears interesting to better know the effect of water vapor on the behavior in oxidation at high temperature for this second important family of alloys. Recently a few studies were devoted to the effect of water vapor on the high temperature oxidation resistance of chromium-rich cobaltbased superalloys, models or commercial [4, 5].

In this work, two model Co-10Ni-30Cr and Co-10Ni-30Cr-0.5C-7.5Ta alloys were considered (all contents in wt.%). They were elaborated by melting pure elements with a high frequency induction furnace under pure argon The thermogravimetry tests were carried out at 1000, 1100 and 1200°C in a synthetic air humidified with a specific device.

1 00F-0

Co-10Ni-30Cr (T alloy)	1200°C - dry	1200°C - wet
Temp. of oxidation start	825 °C	851°C
Total mass gain at heating	151 μg cm ⁻²	113 µg ст ⁻²
Temp. of spallation start	890 °C	954 °C
Mass loss by spallation	-13 μg cm ⁻²	-11 μg cm ⁻²
Co-10Ni-30Cr (T allov)	1100°C - drv	1100°C - wet
Temp. of oxidation start	851 °C	1091 °C
Total mass gain at heating	45 µg cm ⁻²	9 µg cm ⁻²
Temp. of spallation start	721 °C	719 °C
Mass loss by spallation	-6 µg ст ⁻²	-5 μg cm ⁻²
Co-10Ni-30Cr (T alloy)	1000°C - dry	1000°C - wet
Temp. of oxidation start	844°C	851°C
Total mass gain at heating	9 μg cm ⁻²	13 µg cm ⁻²
Temp. of spallation start	636°C	629°C
Mass loss by spallation	-2 μg cm ⁻²	-3 μg cm ⁻²

"T alloy "

8,00E-05 5,00E-0 لَّے 0,00E+00 6.00E-05 500 gair 4.00E-05 nass nassi -5,00E-0 rature of 2,00E-05 -1.00E-0 -1 50E-03 900 ire (°C)

1.00E-0

Example of plot of the mass gain versus temperature (here: T alloy oxidized at 1000°C in dry air)

"Q alloy "

281 μg cm[°] 371 °C

1 µg cm

1100°C - we

78 µg cm

spallation

1000°C - we

57 µg cm⁻¹

snallatio

292 μg cm 885 °C

-9 µg ст

1100°C - dry

80 µg cm³ 791 ℃

-5 µg cm

1000°C - dry

28 μg cm⁻ 584°C

1 ue cr

In this work the different results obtained concerning isothermal oxidation but also oxidation during the heating phase and the oxide spallation phenomena showed that water vapor imposed modification to the general behavior of these two cobalt-based alloys. This allows announcing that consequences of steam presence in the oxidizing air may can be expected for cobalt alloys as more extensively studied for other refractory alloys based on nickel or iron. But this influence also depends on the chemical composition and/or the microstructure of the cobalt alloys, as evidenced with the presence or not of tantalum carbides in a same base. Further work remains now to be done in order to explain the effect of water vapor on the ternary alloy (base of many cobalt based superalloys) and to understand the role of the TaC carbides. The oxidized will be characterized using different means: X-ray diffraction and topological observation in Scanning Electron Microscopy before cutting. SEM observation in cross-section, concentration profiles by Castaing microprobe

References

[1] D.Young, High Temperature Oxidation and Corrosion of Metals, Amsterdam: Elsevier Corrosion Series, 2008 M.J.Donachie, S.J.Donachie, Superalloys: A Technical Guide, Materials Park: ASM International, 2002.
L. Aranda, T. Schweitzer, L. Mouton, S. Mathieu, O. Rouer, P. Villeger, P. Berthod and E. Conrath, Materials at Materials and Control of Control of

High Temperature, 32, 530 (2015). [4] P. Berthod, L. Aranda, T. Schweitzer, A. Navet and A. Leroy, in Proceeding of ISHOC 2014, (Hakodate, Japan

2014)

[5] H. Buscail, R. Rolland, C. Issartel, S. Perrier, F. Riffard, Oxidation of Metals. 82, 415 (2014)

[6] P. Berthod, Oxidation of Metals. 64, 235 (2005) [7] P. Berthod, The Open Corrosion Journal. 2, 61 (2009).

Temp. of oxidatio

T + Tei

Ma

1100

Total mass gain at heating Temp. of spallation start

Total mass gain at heating Temp. of spallation start Mass loss by spallation

Total mass gain at heating Temp. of spallation start

ss loss by spallation

T + 0.5C-7.5Ta (Q alloy

np. of oxidati

Mass loss by spallation

ID 227