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Abbreviations 
 
AI: Artificial Intelligence 
CD: crohn’s disease 
CE: capsule endoscopy 
DL: deep learning 
GI: gastrointestinal 
GIA: gastrointestinal angiectasia (or angiodysplasia) 
ms: millisecond 
NPV: Negative Predictive Value  
OGIB: obscure gastrointestinal bleeding 
PPV: Positive Predictive Value  
ROI: Region of Interest  
SB: small bowel 
SBCE: small bowel capsule endoscopy 
Se: sensitivity 
Sp: specificity  
TP: True Positive 

 

Abstract  
 

Background and aims. Current artificial intelligence (AI)-based solutions for capsule 

endoscopy (CE) interpretation are proprietary. We aimed to evaluate an AI solution trained on 

a specific CE system (Pillcam®, Medtronic) for the detection of angiectasias on images 

captured by a different proprietary system (MiroCam®, Intromedic). 

Material and Methods. An advanced AI solution (Convolutional neural network), previously 

trained on on Pillcam
®
 small bowell images, was evaluated on independent datasets with 

more than 1200 Pillcam® and MiroCam® still frames (equally distributed, with or without 

angiectasias). Images were reviewed by experts before and after AI interpretation. 

Results. Sensitivity for the diagnosis of angiectasia was 97.4% with Pillcam® images and 

96.1% with Mirocam® images, with specificity of 98.8% and 97.8%, respectively. 

Performances regarding the delineation of regions of interest and the characterization of 

angiectasias were similar in both groups (all above 95%). Processing time was significantly 

shorter with Mirocam® (20.7 ms) than with Pillcam® images (24.6 ms, p<0.0001), possibly 

related to technical differences between systems. 

Conclusion. This proof-of-concept study on still images paves the way for the development 

of resource-sparing, “universal” CE databases and AI solutions for CE interpretation.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 
 

Capsule endoscopy (CE) is recommended for investigating the small bowel (SB) in patients 

with gastrointestinal (GI) bleeding, iron deficiency anemia, or suspected Crohn’s disease, 

after normal upper GI endoscopy and colonoscopy. (1) Gastroenterologists spend about 30 to 

120 min to review and interpret full-length small-bowel capsule endoscopy (SBCE) 

recordings that encompass a mean number of 50,000 frames. The interpretation of one CE 

leads to an accuracy decrease of the practician, preventing the reading of several capsules. 

(2,3)  

 

In attempt to relieve physicians from the tedious, time-consuming task of SBCE reading, our 

team has designed in 2019 a proof-of-concept study where a deep learning (DL)-based 

artificial intelligence (AI) solution was shown highly sensitive and highly specific to detect 

gastrointestinal angiectasias (GIA, also known as angiodysplasias), a most common SB 

vascular lesion. (4) This development was based on datasets of still images captured from one 

specific third-generation SBCE system. Since then, DL-based solutions have flourished from 

many academic and industrial research teams. (5,6) These solutions allow a reading time of a 

full-length SBCE recording in about 2 to 5 minutes. Some solutions are now commercially 

available (7), but most are proprietary, dedicated to the automated SBCE reading of one 

specific brand/company. Nevertheless, we believe that, visually speaking, SB findings (and 

specifically GIA) are very similar, whatever the proprietary CE system used for capture. 

 

The aim of this study was to evaluate a DL-based solution trained on images captured by a 

specific CE system (namely, Pillcam® SB3, Medtronic, Minneapolis, MN, USA), for the 

detection of GIA on still images captured not only by the same system, but also by a different 

one (namely MiroCam®, Intromedic, Seoul, South Korea). 

  

Materials and Methods 

Institutional Review Board approval was obtained (Sorbonne University, n°20210209162452, 

February 9th 2021) for this retrospective, non-interventional study on de-identified images.  

Initial training and testing, on image datasets built from one specific CE proprietary system 
 

The initial database and the DL-based prototype AI solution have been described previously. 

Briefly, de-identified annotated SBCE still frames were extracted from a multicenter (12 

French Endoscopy unit) database called CAD-CAP, in which 25,000 still frames were 

collected from 4166 de-identified, third-generation, SB-CE videos (PillCam
®

 SB3 system, 

Medtronic, Minneapolis, MN, USA. (8) 

GIAs were defined as “clearly demarcated, bright-red, flat lesions, consisting of tortuous and 

clustered capillary dilatations, within the mucosal layer” (2) and then reviewed and validated 

by three senior CE experts with more than 200 readings each (9).Convolutional neural 

network (CNN)–based approaches were used for DL The GPU used was a Quadro RTX® 

3000 (NVIDIA, Santa Clara, CA, USA) with a 6GB RAM. 

Dataset A1 with 300 GIA images was used for data augmentation and DL, and dataset A2 

with 300 different GIA images was used for testing. Similarly, control datasets were created 

with 300 normal images each (N1 for DL, N2 for testing). After training on datasets A1 and 

N1, the DL–based approach demonstrated a 100% sensitivity and a 96% specificity when 



tested on datasets A2 and N2, and also precisely located regions of interest (ROI) within 

images containing GIA. (10) 

Since then, this DL-based solution has been refined. It is now able to detect (discriminating 

still frames encompassing lesions from normal frames), to delineate (box around ROI), to 

characterize findings (labelling GIA and ulcerations, and displaying a percentage of 

confidence in the proposed diagnosis), and to score SB video recordings in terms of 

cleanliness.(11) 

Additional testing on image datasets built from two different CE proprietary systems 

In the current study, new frames were extracted, selected, reviewed and validated based on 

the same methodology as for the initial training/testing datasets. Four additional image 

datasets (A3, N3, A4, N4) were thus created from different SBCE video recording, 

independent from the datasets (A1, N1, A2, N2) of the initial study (8).   Datasets A3 (with 

305 still frames with GIA), and N3 (with 321 normal, control still frames) were created from 

Pillcam® SB3 recordings. Datasets A4 (with 308 still frames with GIA), and N4 (with 321 

normal, control still frames) were created from MiroCam1200® recordings.  

Diagnostic performances of the AI solution for frame detection, ROI delineation, and 

characterization. 

All AI outputs were reviewed by three CE experts (1), according to the definitions of true 

positive (TP) findings in terms of GIA frame detection, delineation of ROI and 

characterization (table 1, figure 1) 

The primary endpoint of the study was the sensitivity (Se) of the DL-based algorithm in terms 

of GIA frame detection, on both A3/N3 (Pillcam®) and A4/N4 (MiroCam®) datasets. 

Specificity (Sp), positive (PPV) and negative (NPV) predictive values were calculated as 

well. Diagnostic performances (TP rate, Se, Sp, PPV, NPV) for ROI delineation and 

characterization, level (%) of confidence in diagnostic of GIA, and time for processing 

(calculation plus display on screen), were secondary endpoints 

Statistics  

Results were expressed as percentages with 95% confidence intervals ( 95%C.I.) for categorical 

variables and as means ± standard deviations (SD) for continuous variables. Fisher’s exact 

test and Student test were used to compare categorical and continuous data between groups, 

respectively.  

 

Results 

 

TP finding rates were above 95% (table 2) for all tasks: GIA frame detection (Pillcam® 97.4% 

vs Mirocam® 96.1%, p=0.50), delineation of ROI (99.7% for both systems, p>0.99) and 

characterization of GIA (99.7% for both systems, p>0.99). The AI solutions also performed 

well when considering all three tasks combined (Pillcam® 96.7% vs Mirocam® 95.5%, p=0.53). 

 

Similarly, the AI solutions demonstrated high diagnostic performances whatever the dataset 

used for evaluation (table 3): Se of 97.4% with Pillcam® images and 96.1% with Mirocam® 

images, Sp of 98.8% and 97.8%, PPV of 98.8% and 97.7%, and NPV of 97.6% and 96.3%, 

respectively. 



 

The mean percentage of confidence in diagnosing GIA was similar in both groups (82.5 ± 

22.9% with Pillcam® images vs 81.6 ± 24.8% in Mirocam® images, p 0.51).  

 

The mean processing time was significantly shorter with Mirocam® images (20.7 ± 6.5 ms) 

compared to what obtained with Pillcam® images (24.6 ± 7.0 ms, p<0.0001). 

 

Discussion  
 

To the best of our knowledge, this is the first study where a DL-based AI solution trained on 

CE specific proprietary image datasets (namely Pillcam® SB3) demonstrated excellent 

diagnostic performances for frame detection, delineation of ROI and characterization of ROI, 

not only on an independent dataset of GIA images from the same proprietary system (overall, 

Se of 97.4%, Sp of 98.8%), but also (overall, Se of 96.1%, Sp of 97.8%) on an independent 

dataset of GIA images captured from a different CE system (namely MiroCam®). The system 

was fast (mean processing time of 20 to 25 ms per image) and displayed a high level of 

confidence in the diagnostic of GIA (above 80% in most cases). 

 

Our findings with the Pillcam® system are similar to that found for AI-based GIA detection by 

Noya et al. in 2017 (Se of 89%, Se of 97%) (12) and by our group in 2019 (Se of 100%, Sp of 

96%) (8), thus providing some external validity. Current Se for GIA detection of our DL-

based solution is slightly lower – but still over 95% – compared to the initial study (100%). 

This is possibly because the solution has evolved and now addresses more varied and 

complex tasks (detection, delineation, and characterization of GIA and inflammatory lesions, 

plus cleanliness evaluation). Diagnostic performances (for all endpoints) were slightly lower 

when tested on the A4/N4 datasets (MiroCam® images) than when tested on the A3/N3 

datasets (Pillcam® images). We have three main hypotheses for explaining these subtle 

variations. First, training and testing on images from the same trademark likely makes a 

difference. Second, technical characteristics between devices such as different fields of view, 

resolutions (320x320 for MiroCam®,  340x340 for Pillcam®), contrasts, brightness, 

blurriness or opacity may also have an impact on performances (table 4)(13).  Third, using a 

convolution process may also explain why the processing time was significantly shorter with 

MiroCam ® images than with Pillcam® images (in relation with heavier calculations in 

frames with higher resolution in the latter system). Still, overall, these differences were not 

statistically significant, and diagnostic performances were all above 95%. 

 

Our study has several strengths. Image datasets were built from several centers across Europe. 

All images were reviewed (before and after testing) and categorized (for all clinical 

outcomes) by experts (14) according to well-defined criteria (for GIA definition and for 

outcome measurements). Still, we must acknowledge several limitations as well. First, the 

evaluation was retrospective, with potential bias. Among those, GIA were selected to be 

typical (4) and possibly in a visually clean environment. GIA detection in a real-life setting, in 

a prospective manner, may be more challenging. Second, the evaluation is based on still 

frames and not on video recordings which is a source of bias. However, the likelihood for a 

DL-based solution to capture a GIA is certainly higher when lesions are present on several 

consecutive frames on a video sequence than once on a single, selected, still frame. Still, 

another study at the video level would be of interest. Third, only GIA were considered 

because it is the more common and emblematic lesion seen in SB CE at the stage of a proof-

of-concept study. Demonstration of similar results with more varied types of findings is 

needed. 



 

Overall, these preliminary findings on still images pave the way for a “killing two birds with 

one stone” approach in the development of AI solutions for SBCE interpretation. A similar 

strategy has been used successfully for DL-based solutions for polyp detection in 

colonoscopy, developed on a proprietary video database, claimed to work well with all major 

endoscopy brands (15) and now commercially available (GI Genius®, Medtronic). Among 

advantages, this approach allows building resource-sparing, “universal”, CE databases and AI 

solutions. Such solutions could be either plug-and-play boxes (as for colonoscopy) or on-line 

platforms (Software as a Service, SaaS, as proposed with our solution) where CE video 

recordings from any brand/company could be uploaded and semi-automatically interpreted. 
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Table 1: definitions of true positive findings for various study endpoints 

Outcome Definition of true positive 

GIA frame 

detection 

Any output (box) of the AI solution within a frame containing a GIA, 

wherever the box is placed, whatever label is displayed (GIA, or not) 

(see figures 1A, 1C, 1D and 1F for examples).  

Delineation of 

ROI 

Delineating box covering at least 50% of the GIA, being no larger than 

twice and no smaller than half the area of the GIA, whatever label is 

specified (GIA, or not) (see figures 1A, 1C, and 1D for examples). 

Characterization “Angiectasia” label is displayed within any frame where a GIA is 

present (wherever the box is placed) (see figures 1A and 1D for 

examples). 

GIA: gastrointestinal angiectasia 

 

Table 2: True positive findings in images containing angiectasias 

 Pillcam® SB3 

A3 dataset (n=305) 

Mirocam1200® 

A4 dataset (n=308) 

p 

Frame detection 297/305  

97.4%    

95%C.I.[95.6% ; 99.2%] 

296/308 

96.1% 

95%C.I.[93.9% ; 98.3%] 

 

0.50 

Delination of ROI* 296/297  

99.7%    

95%C.I.[99.1% ; 100.0%] 

295/296 

99.7%    

95%C.I.[99.1% ; 100.0%] 

 

>0.99 

Characterization* 296/297 

99.7%    

95%C.I.[99.1% ; 100.0%] 

295/296 

99.7%    

95%C.I.[99.1% ; 100.0%] 

 

>0.99 

All three combined 295/305 

96.7%    

95%C.I.[94.7% ; 98.7%] 

294/308 

95.5%    

95%C.I.[93.2% ; 97.8%] 

 

0.53 

* among true positive frame detections only 

 

 

 

 

 

 

 

 

 



Table 3: Diagnostic performances in terms of detection of frames with angiectasia 

 Pillcam® SB3 

A3/N3 datasets (n=626) 

Mirocam1200® 

A4/N4 datasets (n=629) 

Sensitivity 97.4% 

C.I.95%[96.2% ; 98.7%] 

96.1% 

C.I.95%[94.6% ; 97.6%] 

Specificity 98.8% 

C.I.95%[98.0% ; 99.7%] 

97.8% 

C.I.95%[96.7% ; 99.0%] 

PPV 98.7% 

C.I.95%[97.8% ; 99.6%] 

97.7% 

C.I.95%[96.5% ; 98.9%] 

NPV 97.5% 

C.I.95%[96.3% ; 98.7%] 

96,3% 

C.I.95%[94.8% ;97.8%] 

Level of confidence 

in angiectasia diagnosis* 
82.5% ± 22.9% 81.6% ± 24.8% 

Calculation time (ms) 24.6 ± 7.0 20.7 ± 6.5 

PPV: positive predictive value 

NPV: negative predictive value 

* among images with true positive characterisation only 

 

Table 4: Main technical differences between Pillcam® SB3 (Medtronic, MN, USA) and 

MiroCam® (Seoul, South Korean). (6) 

 
Pillcam® SB3 MiroCam® 

Sensor CMOS CMOS 

Light emitting diodes 4 6 

Resolution 340 x 340 320 x 320 

Field of view 156° 170° 

Capture rate 2 to 6 frames per second (adaptative) 3 frames per second  

Transmission 
Radiofrequency 

communication 

Human body electrical 

communication 

CMOS: Complementary Metal Oxide Semiconductor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 1. Examples of artificial intelligence-based outputs.  

A. Pillcam® (Medtronic) image with angiectasia; True positive frame detection, true positive 

delineation of region of interest, true positive frame characterization. 

B. Pillcam® (Medtronic) normal image, false positive frame detection. 

C. Pillcam® (Medtronic) image with angiectasia; True positive frame detection, true positive 

delineation of region of interest, false negative characterization. 

D. Pillcam
®
 (Medtronic), false positive frame characterization. A red sport were described by 

the expert while a angiodysplsia were detected.  

E. Pillcam
®
 (Medtronic), false detection and characterization. The angiodysplasia was 

correctly detected, with good delineation and characterization. However an inflammatory 

lesion was also detected in the same place.  

F. Mirocam®(Intromedic) image with angiectasia; True positive frame detection, true positive 

delineation of region of interest, true positive frame characterization. 

G. Mirocam®(Intromedic) normal image, false positive frame detection. 

H. Mirocam®(Intromedic)) image with angiectasia; True positive frame detection, false 

negative delineation of region of interest (the box is more than twice larger the angiectasia), 

false negative characterization. 

I.  Mirocam
®
(Intromedic), two angiodysplasias were described by the expert while only one 

were detected 

J. Mirocam
®
(Intromedic) normal image, false positive frame detection. The expert described a 

bubble, while an angiodysplasia were detected.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




