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Abstract

Imaging photoplethysmography (iPPG) is an optical technique dedicated to
the assessment of several vital functions using a simple camera. Signi�cant
e�orts have been made to reliably estimate heart and respiratory rates. Cur-
rently, research is focusing on the remote estimation of oxygen saturation and
blood pressure (BP). The limited number of publicly available data tends to
restrict the advancements related to BP estimation. To overcome this limit,
we propose to split the problem in a two-stage processing chain: (i) con-
verting iPPG to contact PPG (cPPG) signals using available video dataset
and (ii) estimate BP from converted cPPG signals by exploiting large ex-
isting databases (e.g. MIMIC). This article presents the �rst developments
where a method for converting iPPG signals measured using a camera into
cPPG signals measured by contact sensors is proposed. Real and imaginary
parts of the continuous wavelet transform (CWT) of cPPG and iPPG signals
are passed to various deep pre-trained U-shaped architectures. Conventional
metrics and speci�c waveform estimators have been implemented to validate
the relevance of the predictions. The results exhibit good agreements towards
a large portion of metrics, showing that the neural architectures properly es-
timated cPPG from iPPG signals through their CWT representations. The
performance indicates that BP estimation from iPPG signals converted to
cPPG signals can now be envisaged. Consequently, future work will focus
on the integration of models dedicated to BP estimation trained on MIMIC.
This is the �rst demonstration of a method for accurate reconstruction of
cPPG from iPPG signals satisfying pulse waveform criteria.
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pulse waveform

1. Introduction

In the recent years, research on contactless technologies dedicated to
physiological signals measurement have made signi�cant progress [1]. Photo-
plethysmography (PPG) can be remotely measured by observing the subtle
�uctuations of skin color. These �uctuations re�ect complex light-tissue
interactions, from which their origin is not fully agreed [2]. The simplest
cameras (webcams) to the most advanced ones (professional, laboratory or
industrial cameras) can be used to reliably measure PPG signals [3]. Dif-
ferent regions of interest (ROI) have been studied over time but the face
remains the most frequently observed area [4].

The �eld is booming and supported by several signi�cant studies. Com-
puter vision, image processing and arti�cial intelligence (AI) methods have
been used or developed speci�cally to reliably transform input video into
biomedical parameters [4]. Numerous studies have shown that pulse rate
and its variability can be estimated with high robustness. In this context,
arti�cial intelligence is playing an increasingly important role [5] where the
most e�cient pulse rate measurement methods are now based on deep neural
models [6]. These architectures are often based on convolutional layers [7]
and can be trained with synthetic data [8] reinforced by real data [9].

Current research in this �eld is now directed towards the measurement
of new physiological parameters such as oxygen saturation [10] and blood
pressure [11]. They impact the amplitude and waveform of PPG signals over
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Figure 1: General overview of the method.
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di�erent wavelength ranges. Blood pressure estimation based on video analy-
sis is complex and very few works show its feasibility. Two research directions
are considered. First, measurement of the pulse transit time (PTT) on single
[12] or several [13] ROI. PTT is a parameter considered to be correlated with
blood pressure. Secondly, analysis of the PPG signal waveform [11]. To our
knowledge, deep learning techniques based on video analysis have not been
considered for the estimation of blood pressure yet.

Training an arti�cial neural network that accurately estimates blood pres-
sure from video is constrained by the amount of available data because few
public databases exist. Djeldjli et al. recently showed that temporal, deriva-
tive and area features computed from imaging PPG (iPPG) waveform and
contact sensor (placed on the �nger or the ear) evolve similarly [14]. This
point is important because it motivates the present study. We envisage es-
timating BP with a two-stage processing chain. A model dedicated to the
conversion of iPPG signals to contact PPG (cPPG) signals using available
video dataset corresponds to the �rst part of the processing chain. The sec-
ond stage consists in constituting a deep learning model dedicated to blood
pressure estimation from these converted signals by exploiting large existing
databases (e.g. MIMIC [15]).

The developments related to the �rst stage are presented in this study.
To add more details, we propose to train a deep U-shaped neural archi-
tecture (U-Net) dedicated to the conversion of contact PPG signals from
imaging PPG signals simultaneously measured on the face by conventional
video analysis. Continuous wavelet representation of the signals is employed
to take advantage of transfer learning through pretrained backbones on large
databases. To the best of our knowledge, this is the �rst demonstration of a
method for accurate reconstruction of cPPG from iPPG signals.

The article includes �ve additional sections. Section 2 presents the back-
ground and related works. Section 3 introduces the used data and the de-
veloped methodologies. The metrics and results of the proposed approach
are presented and discussed in section 4. We present the future works and a
summary of the contributions in sections 5 and 6, respectively.

2. Related works

This section reviews the studies that exploit deep learning for iPPG anal-
ysis as well as conventional and deep learning approaches for blood pressure
assessment from both iPPG and cPPG.
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2.1. Deep Learning for iPPG signal and pulse rate estimation

Relevant surveys in the imaging PPG �eld of research have been proposed
the last past years [1, 3, 4]. They cover conventional techniques that gener-
ally include both image and signal processing approaches to improve PPG
signal-to-noise ratio and therefore the estimation of biomedical parameters
like pulse and breathing rates. Video and image processing operations like
face detection, tracking of region(s) of interest and skin segmentation have
been employed [16, 17, 18]. Constituting an iPPG signal from a sequence of
frames is usually carried out with a spatial averaging operation [19]). Stan-
dard signal processing techniques include blind source separation approaches
[20], Fourier and Wavelet transforms [21]. The impact of color space on pulse
rate assessment has also been investigated in previous research [22, 17].

The most recent studies present arti�cial intelligence through deep learn-
ing methods to automatically estimate the pulse signal or directly the pulse
rate. These approaches currently deliver the best performances and present
root mean squared errors between 2.7 and 3.8 beats per minute [5] on public
datasets like UBFC-RPPG [23], MAHNOB-HCI [24] and PURE [25]. Both
hybrid and end-to-end approaches have been investigated. Hybrid strate-
gies take either processed frames or iPPG signals as input and output the
biomedical parameters of interest. End-to-end models takes a video (sequence
of frames) as input and output the biomedical parameters.

Hybrid strategies combine conventional with deep learning methods. For
instance, Qiu et al. developed a three-stage pipeline including face tracking,
features extraction and �nally pulse rate estimation based on a convolutional
neural network (CNN) [26]. Hsu et al. proposed a deep CNN trained to pre-
dict pulse rate based on the time�frequency representation of processed iPPG
signals [27]. Chen et al. proposed DeepPhys [28] and DeepMag [29], deep
CNN trained to respectively predict pulse wave and magnify color variations
produced by the periodic changes in blood �ow. Inputs are transformed us-
ing a skin re�ection model while the convolutional layers are guided using
attention masks to ensure the robust estimation of PPG signals under light-
ing �uctuation and motion. They used a modi�ed version of VGG, a model
dedicated to object recognition in images [30].

End-to-end strategies were recently investigated through di�erent neural
architectures: CNN-based extractor and estimator [31], 3D CNN [8, 32, 33],
combination of CNN and long short-term memory [32, 34], CNN and gated
recurrent unit [35], Siamese network including two branches with identical
structure that analyze two di�erent facial regions [36] and temporal di�erence
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convolution [6]. These models have been trained with synthetic data [8]
reinforced by real data [9, 33]. They estimate the pulse signal [32] or directly
the pulse rate from a sequence of images.

Few studies investigated the interpretability and behavior of the models to
understand the representations learned by the features. Zhan et al. studied
this aspect by analyzing that CNN properly learn PPG during training [7].
They conclude that color variations produced by blood �ow �uctuations are
correctly exploited by the neural networks.

2.2. Blood pressure assessment from iPPG

Both systolic and diastolic blood pressures (BP) have been estimated
using the propagation time of pulse waves from two di�erent skin areas (typ-
ically hand and face) in video recordings [37, 38]. The positional of the two
skin areas must be maintained during the measurement. This approach is
therefore very restrictive. The scienti�c literature covers few studies dedi-
cated to the estimation of BP from a single facial region [39, 12, 40, 41].
To the best of our knowledge, only the seminal work from Luo et al. [11]
presents a pipeline that includes an arti�cial intelligence model. They feed a
multilayer perceptron with 155 features (reduced to 30 after principal com-
ponent analysis) computed from iPPG waves. Their results show that PPG
waveform extracted from video exhibits information that relates to BP. All
these studies pointed out the feasibility of remote BP monitoring from facial
video but showed that there is still room for improvements.

2.3. Blood pressure assessment from cPPG

Based on the current literature, there is clear evidence that the �uctua-
tions in BP are re�ected in cPPG signals [42, 43] even if estimating absolute
BP values from cPPG remains a challenging problem. The changes in mor-
phological contours due to interaction of other physiological systems make
the extraction of features, and thus the estimation of BP, challenging but
achievable [44]. Exploration of deep learning techniques is here particularly
interesting because it allows overriding of handcrafted features [45]. These
features are somewhat restricted because the cPPG waveform �uctuates from
subject to subject and also because the �ltering procedure can change its
morphology [46].

Several recent studies show that deep learning frameworks can e�ectively
be deployed to translate BP from cPPG signals. Tanveer and Hasan proposed
to associate arti�cial neural network (ANN) with long short-term memory
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for BP estimation [47]. A similar network structure was proposed by Panwar
et al. in 2020 [48]. 1D CNN replace the ANN part from Tanveer and Hasan
architecture. The network concurrently estimates diastolic BP, systolic BP
and heart rate from a single cPPG signal. Chowdhury et al. then proposed
to employ machine learning algorithms dedicated to BP estimation using
cPPG signal and demographic features (e.g. weight and height) [49]. Time,
frequency and time-frequency features were extracted from the PPG and
their derivative signals. Feature selection techniques were used for reducing
the computational complexity and simultaneously decreasing the chance of
over-�tting the machine learning algorithms. Slapnicar et al. introduced a
similar framework but with a deep neural network architecture with residual
connections [50]. A part of the network is dedicated to the analysis of the
signal spectral representation using gated recurrent units. Ibtehaz et Raman
employed a deep learning based method that manages to predict the con-
tinuous BP waveform from cPPG signals. An approximation network learns
a rough approximation of the BP waveform while a re�nement network fur-
ther enhances the preliminary estimate. The approximation and re�nement
networks are based on U-Net [51].

3. Methods

3.1. Database and experimental protocol

The data used to learn the neural models (section 3.3) have been presented
in a previously published article [14]. 12 volunteers aged between 20 and 35
years participated to the study. The experiments were conducted in a dark
room where the only source of light was two Neewer LED panels (NL480)
set to 2700 lux / m with a color temperature of 3750 K (neutral white light).
During the experiments, they were asked to seat at approximately 1 meter
from a fast camera (16mm C Series Lens mounted on a EO-2223C Color
camera from Edmund Optics). The recorded sequences of RGB images were
save without compression at resolution 640 × 480 pixels (24 bits per pixel)
and with a frame rate of 125 frames per second. Autoexposure and white
balance have been disabled.

The ground truth cPPG signals were recorded using approved contact
probes (BVP-Flex / Pro. By Thought Technologies Ltd.) placed on the �nger
and the ear. Two 60-second videos were recorded for every participant. First
video: participants were asked to stay calm and breathe normally. Second
video: participants were asked to hold their breath as much as possible, the
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Figure 2: Excerpts of participant #1 (collected during breath holding experiment). Top
�gure: raw iPPG signals computed with a spatial averaging operation over the forehead
region [19]. Video recordings have been collected using a fast camera (125 frames per
second). Reference cPPG signals have been recorded with contact probes placed on the
�nger (middle �gure) and the ear (bottom �gure).

objective being to cause physiological variations that modify blood pressure
and impact the recorded PPG signals. We refer the reader to the original
publication for more details concerning the procedure and the material used
[14].

The database contains 724 signals. Each of them contains 5 PPG waves
(more details in section 3.2) de�ned over 256 values. About 80% of the data
(600 signals) were reserved for training and 20% (124 signals) for testing.
The sets contain a balanced portfolio of the di�erent participants and tasks.
We evaluated the models relevance through k-fold cross-validation (k=5). A
fold contains 120 signals that are reserved for validation. The 4 remaining
folds include 480 signals that are employed for training the neural models.

3.2. Image and signal processing

The forehead corresponds to a relevant area of interest in terms of signal-
to-noise ratio [17]. This region has been automatically detected with a model
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composed of 68 points positioned on the main shapes of the face [52]. These
di�erent points are tracked along the video. Some of them are used to �nd the
position of the forehead. In practice, algorithms for face and facial landmarks
detection included in OpenCV 1 and Dlib 2 libraries have been employed.

iPPG signals are computed by averaging all the forehead pixels from the
green channel. This technique has been used since the very �rst publications
related to the measurement of contactless PPG signals by camera [19]. The
raw iPPG signals are then detrended using a speci�c low-pass �lter [53] based
on a smoothness priors that attenuates low frequencies [20]. We then robustly
detect the valleys to extract each PPG signal wave. Each signal is ultimately
sampled over 256 points and contains 5 successive iPPG waves. An excerpt
is presented in �gure 2. The ground truth cPPG signals measured at the
�nger and the ear are also presented in this �gure. All the signals have been
standardize (µ = 0 and σ = 1).

In this article, we propose to exploit the wavelet representation of PPG
signals to train the di�erent neural architectures presented in section 3.3
(�gure 1). The continuous wavelet transform (equation 1) of a signal x (t)
corresponds to a time-frequency representation computed from a prototype
function commonly called mother wavelet. Unlike the Fourier transform, the
wavelet transform can detect abrupt changes in frequency using a family of
wavelets ψτ,s (equation 2) computed from the mother wavelet ψ.

CWTψx (τ, s) =

∫ ∞
−∞

x (t)ψτ,s (t)dt (1)

ψτ,s (t) =
1√
|s|
ψ

(
t− τ
s

)
(2)

ψτ,s corresponds to the mother wavelet dilated by s and translated by
τ . Dilating the wavelet allows the transform to analyze larger portions of
signal in the time domain, thus covering lower frequencies. Di�erent mother
wavelets have been developed and the choice depends mainly on the appli-
cation and the properties of the signal. The Morlet mother wavelet used in
this study was already used in previous work related to the analysis of PPG
signals by camera [54].

1https://opencv.org/
2http://dlib.net/
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The original signal x (t) can be reconstructed by the inverse transform:

x (t) =
1

Cψ

∫ ∞
0

∫ ∞
−∞

1

s2
CWTψx (τ, s)

1√
|s|
ψ

(
t− τ
s

)
dτ ds (3)

Cψ =

∫ ∞
0

∣∣∣ψ̂ (ζ)
∣∣∣2

|ζ|
dζ <∞ (4)

Cψ is the admissibility condition and ψ̂ is the Fourier transform of ψ.
The continuous wavelet transform was computed on each PPG signal in

the frequency range [0.6, 4.5] Hz, which corresponds to the physiological
range of the human heart rate [4]. Wavelet representations of dimension
256× 256 will be used to train the neural architectures presented in section
3.3.

Typical iPPG signal, cPPG signal and their respective wavelet representa-
tions (real, imaginary and absolute part) are presented in �gure 3. A typical
di�erence in shape between both signals and in phase between their wavelet
representations can be noted: the real part of the iPPG signal starts with
a series of low intensity coe�cients (blue pseudo-ellipse) while the real part
of the cPPG signal starts with strong intensity coe�cients (yellow pseudo-
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Figure 3: The continuous wavelet transform of the iPPG signal (top �gure) and cPPG
signal (ear or �nger, see bottom �gure for a �nger cPPG signal) is computed in the
frequency range [0.6, 4.5] Hz. The wavelet representation of the iPPG signal (a complex
image with a real and imaginary part) serves as input for training the neural networks
presented in section 3.3. The absolute of the continuous wavelet transform is depicted for
information and is not learned by the model.
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ellipse). The neural network will learn this speci�city during the training
phase.

3.3. Neural architectures

The U-Net neural architecture was initially proposed by Ronneberger et
al. [51]. This network has been used for segmentation of medical images
[55]. Its architecture consists of a descending (encoder) branch completed
by an ascending (decoder) branch, giving a U-shape to the network. The
descending branch contains an ensemble of convolution and pooling layers.
The ascending branch integrates deconvolution layers connected to the con-
volutions of the descending branch. Connections help to restore the spatial
information. A schematic representation of the network is given in �gure 1.
In this study, we employ the U-Net1 version proposed by Leclerc et al. [55].
The model hyperparameters vary slightly compared to the original version
proposed by Ronneberger et al. Details are presented in table 1. The number
of �lters is given for the �rst and for the last convolutional block as well as at
the center of the network, where the spatial information is most compressed.
Each convolutional layer integrates a core (3, 3) coupled to a Recti�ed Linear
Unit (ReLU) activation function.

A Backbone (e.g. VGG16) can be integrated into the encoder part of the
U-Net network (�gure 4). Its internal parameter are blocked during training
(the weights of the network remain �xed). In practice, a backbone correspond
to a model subpart pre-trained on ImageNet, a database deployed for object
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Figure 4: A backbone corresponds to a pre-trained network included in the encoder part
of U-Net.
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recognition tasks in images [61]. Training a U-Net network supported by a
backbone consists in optimizing the internal parameters of the decoder part.
This approach can be associated to a transfer learning strategy.

The various backbones tested and their main characteristics are sum-
marized in table 1. VGG [30] is a model composed of (3, 3) convolutional
layers and pooling layers. The 16-layer version (VGG16) was used in this
study. ResNet [56] are neural modules nested in a larger network (network-
in-network) through residual units composed of convolutional �lters. The
architecture is about 8 times deeper than VGG. ResNet models at di�erent
depth levels (18, 34, 50, 101 and 152 layers) were trained on the ImageNet
database but only the 101 layers was used in this study. DenseNet networks
[60] include Dense blocks that are densely connected together: each layer is
directly connected with the following ones. Thus, the input vector of a given
layer integrates all the characteristics of those that precede it. The 201-layer
version was chosen. Inception networks [59] contain modules composed of
convolution and pooling layers of di�erent sizes. The InceptionV3 and Incep-
tionResNetV2 versions (with residual connections) were used in this work.

Conventional regularization techniques (e.g. dropout) have not been in-
troduced while a normalization scheme (i.e. batch normalization) is used
in networks having a backbone. These details are summarized in table 1.
No output activation function was speci�ed because the targeted task cor-
responds to a regression in the form of a pixel-to-pixel reconstruction of a
two-channel wavelet representation. The number of variables to be trained

Network
Number of

conv. �lters

Lowest

resolution
Normalization

Number of

parameters

U-Net1 [55] 32 ↓ 128 ↑ 16 8 × 8 ∅ 2M

U-NetVGG16 [30] 64 ↓ 512 ↑ 16 8 × 8 BatchNorm 9M

U-NetVGG19 [30] 64 ↓ 512 ↑ 16 8 × 8 BatchNorm 9M

U-NetResNet101 [56] 64 ↓ 2048 ↑ 16 8 × 8 BatchNorm 9M

U-NetResNeXt101 [57] 64 ↓ 2048 ↑ 16 8 × 8 BatchNorm 9M

U-NetSE−ResNet101 [58] 64 ↓ 2048 ↑ 16 8 × 8 BatchNorm 9M

U-NetSE−ResNeXt101 [58] 64 ↓ 2048 ↑ 16 8 × 8 BatchNorm 9M

U-NetInceptionResNetV2 [59] 32 ↓ 2080 ↑ 16 8 × 8 BatchNorm 7.5M

U-NetInceptionV3 [59] 32 ↓ 448 ↑ 16 8 × 8 BatchNorm 8M

U-NetDenseNet201 [60] 64 ↓ 128 ↑ 16 8 × 8 BatchNorm 8.5M

Table 1: Main properties of the U-Net networks used in this study.
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(weights and biases) is comprised between 2 and 9 million (table 1).
The input dimensions of networks with backbones are �xed by the data

used for their training (256 × 256 pixels RGB images from the ImageNet
database). The inputs being in our case two-channels wavelet representa-
tions, it is necessary to introduce an adaptation strategy. An additional 2D
convolutional layer with a (1, 1) kernel has therefore been placed between the
input layer and the encoder part of the network. The neurons of this layer
allow conversion of the input from N to 3 channels. The weights of all the
networks have randomly been initialized by the method proposed by Glorot
and Bengio [62]. Biases are initialized to zero. The Mean Squared Error
(MSE) has been selected as loss for training all the models:

MSE =
1

n

∑
i,j

(
CWT i,j − ĈWT i,j

)2
(5)

CWT corresponds to the wavelet transform (see section 3.2) of the ground
truth cPPG signal. ĈWT is the wavelet representation predicted by the
neural network starting from the wavelet representation of the iPPG signal.

The architecture implementation was carried out under Python using
Keras API and Tensor�ow library. The Segmentation Models library [63]
proposed by P. Yakubovskiy was used to develop the neural networks pre-
sented in table 1. The training sessions were launched over 5000 epochs
through batches of 16 images. We used, in this study, the Adam optimiza-
tion algorithm [64] with a learning rate of 0.0001. A dedicated computer
equipped with a dual Intel Xeon Silver 4114 and two Nvidia Quadro P6000s
was used to carry out network learning.

3.4. Waveform estimators

Di�erent features have been proposed to characterize the waveform of a
PPG signal [42]. In order to validate the predictions of the neural archi-
tectures presented in the previous section, we propose to compare the esti-
mates of the most commonly observed waveform features [42] [43] between
the reconstructed PPG signal (computed using the inverse transform of the
predicted wavelet representation) and the ground truth cPPG signal. It has
recently been shown that some of these features can properly be estimated
on iPPG signals [14], the contact and contactless waveform features evolving
in a same way.
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Figure 5: Presentation of the features computed from a PPG wave. These parameters
have been categorized in four groups. Temporal: Pulse Interval (PI), Crest Time (CT),
Diastolic Time (DT), time between the main peak and the secondary peak (∆T), Dicrotic
Notch Time (Tn), Pulse Width at Half Height (PWHH), time between the dicrotic notch
and the end of the wave (A2T) and First Derivative Peak Time (D1PT). Derivatives: a, b,
c, d and e correspond to speci�c points that are detected on the second derivative. Area:
Pulse Area (PA) and area computed between the start of the wave and the in�ection point
(A1) and between the in�ection point and the end of the wave (A2). Amplitude: Systolic
Amplitude (SA) and Diastolic Amplitude (DA).

Waveform features can be categorized into 4 families: temporal, amplitude-
based, area-based, and (�rst and second) derivative-based. All features are
presented in �gure 5. We refer the reader to the article of Elgendi et al. [42]
which details the PPG waveform features and their physiological interpreta-
tion.
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3.4.1. Temporal features

The Pulse Interval (PI) corresponds to the total time of the wave, which
is measured between two successive valleys. This feature is used to estimate
the pulse rate. The Crest Time (CT) corresponds to the time between the
start (�rst valley) and the main peak of the wave. The Diastolic Time (DT)
corresponds to the time between the main peak and the end of the wave.
∆T corresponds to the time between the main peak and the secondary peak.
Dicrotic Notch Time (Tn) is the time between the start of the wave and the
dicrotic notch. A2T corresponds to the time between the dicrotic notch and
the end of the wave. Pulse Width at Half Height (PWHH) is the time equal
to the width of the wave at half height. The First Derivative Peak Time
(D1PT) parameter corresponds to the time between the start of the wave
and its �rst derivative peak.

3.4.2. Features based on �rst and second derivatives

The points a, b, c, d and e (�gure 5a) are detected on the second derivative
of the PPG signal. These points re�ect the wave in�ections. They are used
to compute all the ratios presented in �gures 9, 10 and 11. These ratios
change with age and re�ect arterial sti�ness [43].

3.4.3. Area-based features

The area-based features are shown in �gure 5b. The Pulse Area (PA)
parameter corresponds to the total area of the PPG wave. Area 1 (A1) is
computed between the start of the wave and the in�ection point (systolic
phase). Area 2 (A2) is computed between the in�ection point and the end of
the wave (diastolic phase). The In�ection Point Area ratio (IPA) corresponds
to the ratio between A2 and A1.

3.4.4. Amplitude-based features

The systolic (SA) and diastolic (DA) amplitudes are calculated from the
main and the secondary peaks (�gure 5c). The Re�ection Index (RI) is the
ratio between DA and SA while the Augmentation Index (AI) is the di�erence
between SA and DA divided by SA.

3.5. Metrics

In this section, we detail the di�erent metrics employed for evaluating the
performances of the models. The Root Mean Squared Error (RMSE, equa-
tion 6) has been computed between the PPG traces obtained after inverse
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wavelet transform (equation 3). Because the amplitudes are arbitrary and
normalized, we also propose the Mean Absolute Percentage Error (MAPE,
see equation 7). Both metrics along with scatter plots and Pearson correla-
tion coe�cients have been used to quantify the level of agreement between
the predicted (P̂PG) and the ground truth signals (PPG).

RMSE =

√
1

n

∑
i

(
P̂PGi − PPGi

)2
(6)

MAPE =
1

n

∑
i

∣∣∣∣∣ P̂PGi − PPGi

PPGi

∣∣∣∣∣ (7)

4. Results and discussion

4.1. Learning performance

k-fold cross-validation results for each model are presented in table 2.
The MSE correspond to the minimum validation loss (equation 5) observed
during training. Each value presented in the table corresponds to the aver-
age and standard deviation computed for a speci�c U-Net network from the
lowest MSE of each fold.

Network MSEfinger MSEear

U-Net1 0.382 ± 0.054 0.266 ± 0.024

U-NetVGG16 0.319 ± 0.029 0.224 ± 0.032

U-NetVGG19 0.322 ± 0.033 0.232 ± 0.031

U-NetResNet101 0.341 ± 0.037 0.244 ± 0.022

U-NetResNeXt101 0.316 ± 0.036 0.222 ± 0.022

U-NetSE−ResNet101 0.367 ± 0.031 0.249 ± 0.021

U-NetSE−ResNeXt101 0.368 ± 0.042 0.259 ± 0.024

U-NetInceptionResNetV2 0.385 ± 0.041 0.268 ± 0.030

U-NetInceptionV3 0.386 ± 0.036 0.271 ± 0.026

U-NetDenseNet201 0.317 ± 0.036 0.234 ± 0.027

Table 2: k-fold cross-validation results for each model presented in table 2. The MSE
(see equation 5) is computed between predicted and ground truth CWT transforms (real
and imaginary parts). U-Net1 corresponds to the neural network proposed by Leclerc et
al. [55], which does not include a pre-trained backbone. All the other neural networks are
U-shaped architectures supported by a backbone.
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Independently of the measurement site, the network supported by ResNeXt101
presents the lowest MSE, thus indicating the best performance in terms of
wavelet transform reconstruction (real and imaginary parts). We note that
performances of architectures supported by VGG16 and DenseNet101 are
close from ResNeXt101. Backbones based on ResNet and ResNeXt structure
with squeeze and excitation are less e�cient. U-Net1 presents higher MSE
values than the other models. This observation probably re�ects the fact that
the network contains between 4 to 5 times less trainable parameters. Mod-
els supported by a backbone performed generally better. This translates
a real impact of pre-trained convolutional layers on very large databases.
As a reminder, the backbone layers are blocked during the training phase.
Inception-based backbones also present degraded performances.

Regarding the two sites, ear measurements deliver better general perfor-
mances (lower MSE) than �nger measurements. We assume that this gap
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Figure 6: The real and imaginary parts of the reconstructed wavelet transform by the
U-Net network supported by ResNeXt101 (middle �gures) are similar to those computed
from the �nger ground truth signal (bottom �gures). We can notice a small phase di�er-
ence in the wavelet representations of the raw iPPG signal (top �gures) and the ground
truth cPPG signal (bottom �gures). The neural network learned this speci�city, the re-
constructed wavelet transform being in phase with the ground truth one. The absolute
representations are depicted for information.
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re�ects the di�erences between signal waveform: a PPG signal measured at
the forehead surface is generally closer to a PPG signal measured at the ear
than measured at the �nger [65].

4.2. Point-to-point validation of reconstructed PPG signals

This section is dedicated to the evaluation of PPG signals produced by
the neural architectures presented in table 1.

The trained neural models deliver a two-channel wavelet representation
(a real part and an imaginary part). The temporal PPG signal is then recon-
structed from the inverse transform (equation 3). An example is presented
in �gure 6, where we can appreciate the prediction quality of the real and
imaginary parts of the wavelet transform produced by the U-NetResNeXt101

network. The phase has been properly recovered. We can also observe that
the dicrotic notch is well reproduced whereas it was almost absent on the
raw iPPG signal. The reconstructed PPG signal is smooth and its width is
smaller. This shows that the network properly corrects the high frequency
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Figure 7: PPG signal prediction (bottom �gure) from an iPPG signal (top �gure). U-Net
supported by ResNeXt101 and trained on �nger cPPG signals produced wavelet coe�cients
that gave, after inverse transform, the reconstructed PPG signal. Ground truth and
reconstructed signals are quite similar even if small discrepancies can be noticed.
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coe�cients, which transcribe the noise, as well as the central frequency co-
e�cients, which determine the pulse signal.

In order to better appreciate the quality of the reconstruction, we present,
in �gure 7, a superposition of a reference �nger cPPG signal and the PPG
signal predicted by the U-Net network supported by ResNeXt101 (after com-
putation of the inverse wavelet transform). The RMSE and MAPE have
been computed between the two signals (equations 6 and 7). The results after
cross-validation on k-fold are presented in table 3. The predictions delivered
by the neural models present good overall performance.

The error on the U-Net network supported by ResNeXt101 is slightly
lower, which is consistent with the results presented in section 4.1 and table
2. This particular network was therefore selected for further analysis. Table
4 presents the same results but across the test set. Additional comparisons,
in particular raw iPPG against ground truth cPPG signals, are presented for
information. The errors are here much more important, the MAPE being
higher than 50%. The last row of the table is given for comparison and indi-
cates the error between the cPPG signals recorded on the two measurement
sites.

Network
cPPGfinger vs

ĉPPGfinger

cPPGear vs

ĉPPGear

RMSE MAPE RMSE MAPE
U-Net1 0.260 ± 0.018 0.064 ± 0.010 0.210 ± 0.010 0.033 ± 0.007

U-NetVGG16 0.245 ± 0.013 0.053 ± 0.014 0.196 ± 0.014 0.031 ± 0.010

U-NetVGG19 0.248 ± 0.011 0.055 ± 0.012 0.197 ± 0.014 0.034 ± 0.006

U-NetResNet101 0.251 ± 0.013 0.058 ± 0.009 0.205 ± 0.010 0.032 ± 0.008

U-NetResNeXt101 0.244 ± 0.014 0.045 ± 0.008 0.196 ± 0.009 0.032 ± 0.009

U-NetSE−ResNet101 0.260 ± 0.010 0.058 ± 0.008 0.207 ± 0.012 0.032 ± 0.005

U-NetSE−ResNeXt101 0.261 ± 0.014 0.060 ± 0.003 0.211 ± 0.012 0.037 ± 0.009

U-NetInceptionResNetV2 0.265 ± 0.012 0.063 ± 0.008 0.213 ± 0.013 0.038 ± 0.007

U-NetInceptionV3 0.266 ± 0.011 0.061 ± 0.010 0.213 ± 0.011 0.032 ± 0.004

U-NetDenseNet101 0.245 ± 0.012 0.052 ± 0.007 0.201 ± 0.012 0.033 ± 0.004

Table 3: k-fold cross-validation for RMSE and MAPE (see equations 6 and 7) com-
puted between reconstructed PPG signals and ground truth cPPG signals. cPPGfinger

and cPPGear correspond to ground truth cPPG signals measured at �nger and ear re-

spectively (see signal depicted in blue in �gure 7 for a typical example). ĉPPGfinger and

ĉPPGear correspond to reconstructed PPG signals computed by inverse transform on the
CWT predicted by the di�erent neural architectures (see signal depicted in orange in �gure
7 for a typical example).
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Comparison RMSE MAPE ρ

cPPGfinger vs ĉPPGfinger 0.219 0.045 0.97

cPPGear vs ĉPPGear 0.185 0.0187 0.98

cPPGfinger vs iPPG 0.985 0.534 0.47

cPPGear vs iPPG 0.994 0.543 0.46

cPPGfinger vs cPPGear 0.198 0.020 0.98

Table 4: RMSE, MAPE and Pearson correlation (ρ) computed across samples included
in the test set for ground truth cPPG signals, predicted cPPG signals and raw iPPG
signals. An illustration of an iPPG signal is presented in black in �gure 7. Predicted

signals (ĉPPG) are produced by the selected U-NetResNeXt101 model (see signal depicted
in orange in �gure 7 for a typical example). All correlations presented p-values lower than
0.001.

Figure 8 presents scatter plots coupled with Pearson correlation coe�-
cients. These representations aim to assess and compare the amplitudes of
iPPG, ground truth cPPG and reconstructed cPPG signals over the test set.
The graph representing cPPGear against iPPG signals is not presented in
this �gure because of its close similarity with the graph presented in �gure
8a. The concentric shape of the points distribution re�ects the natural wave-
form di�erence between raw iPPG signals and cPPG signals. This speci�city
is mainly due to the dicrotic notch which is generally prominent on cPPG
signals and, in contrast, not perceptible on iPPG signals (see �gure 2 for a
typical example). The inherent pulse width di�erence between cPPG and
iPPG signals also impacts the scatter plot representation presented in �gure
8a. Figure 8b depicts �nger and ear cPPG measurements and is provided for
information.

Figures 8c and 8d illustrate the quality of cPPG signal reconstruction
by the U-NetResNeXt101 network on the test set. The Pearson correlations
coupled with the statistical results presented in table 4 (in particular the low
MAPE) show that the PPG waveform is suitably reconstructed through its
wavelet representation. This conclusion is valid for both �nger (�gure 8c)
and ear (�gure 8d) cPPG signals.

We propose, in the next subsection, an in-depth analysis of these results
by studding pulse waveform features, whose values are originally very di�er-
ent between iPPG and cPPG signals.
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(a) cPPGfinger vs iPPG
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(b) cPPGfinger vs cPPGear
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(c) cPPGfinger vs ĉPPGfinger
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(d) cPPGear vs ĉPPGear

Figure 8: Scatter plots along with their respective Pearson correlation (ρ). All the p-
values are lower than 0.001. The concentric shape observed in �gure (a) re�ects the
natural waveform di�erence between raw iPPG signals and cPPG signals. Figure (b)
depicts �nger and ear cPPG measurements. Bottom row �gures present the cPPG signals
reconstructed by the U-NetResNeXt101 network for both �nger (c) and ear (d) measurement
sites.

4.3. Waveform features

The point-to-point evaluation presented in the previous subsection pro-
vides an overall vision of the predictions quality made by the neural architec-
ture presented in table 1. Here, we propose an evaluation of the reconstructed
PPG waves through speci�c waveform features across the test set. The stud-
ied features have brie�y been presented in section 3.4. They are divided into
4 categories: temporal, area-based, amplitude-based and based on �rst and
second derivatives.
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Scatter plots along with their correlation coe�cients are presented for
each feature in �gures 9 and 10. We focus this speci�c evaluation on the
U-NetResNeXt101 network. A good general performance on each feature can
be observed on each sub�gure, showing that the neural network (that take
as input CWT of iPPG waves) reliably recovered the shape of �nger and
ear cPPG waves. As a reminder, iPPG signals computed from video on the
forehead region are quite noisy, include artifacts and present a signature that
is very di�erent from cPPG signals measured on other sites [65] (see �gure
2).

Several temporal features like PI (total width of the pulse wave) show
high correlations. PI directly re�ects the pulse rate, a parameter estimated
from iPPG signals with reliability and precision. Crest time (CT) presents
better correlation than DT (diastole time), which seems to be in accordance
with studies focusing on arterial pressure estimation based on PPG wave-
form analysis [45]. In contrast, the temporal parameter ∆T exhibits low
correlation. We assume that the speci�c points associated with the detection
of ∆T, in particular the secondary peak, are less accurately recovered. Its
estimation is therefore potentially less reliable. It is however interesting to
note that this weak correlation is also observed in �gure 11 that presents a
scatter plot computed between �nger cPPG and ear cPPG signals for each
waveform feature.

The parameters related to the amplitudes (SA, DA, RI and AI) present
more or less high scores. The arbitrary nature of the PPG signals ampli-
tudes makes their estimation very complex. The amplitude of cPPG signals
is mainly modulated by the pressure applied between the sensor and the
measurement site, by the light absorption of the tissues as well as by the
optical properties of the skin. The iPPG signal amplitude also depends on
the emitted and re�ected quantity of light, the distance as well as internal
camera parameters. In general, the predictions produced from �nger cPPG
signals (�gure 9) exhibit higher correlations for the amplitude features than
for the predictions computed from ear cPPG signals (�gure 10).

Waveform features related to areas and derivatives are relatively well
transcribed by the neural model. The correlations presented in �gures 9 and
10 are close to the correlations between �nger cPPG and ear cPPG signals
presented in �gure 11.

Overall, the reconstructions of cPPG signals measured on the ear (�gure
10) exhibit features that are slightly better correlated with the corresponding
ground truth than those measured on the �nger (�gure 9). This conclusion
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Figure 9: Scatter plots showing the di�erent waveform features computed from ground
truth �nger cPPG signals (cPPGfinger, x-axis) against the waveform features computed

from signals reconstructed by U-NetResNeXt101 network (ĉPPGfinger, y-axis). Associated
Pearson correlation coe�cients are presented for each feature (on each sub-�gure). p-values
are all lower than 0.001.
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Figure 10: Scatter plots showing the di�erent waveform features computed from ground
truth ear cPPG signals (cPPGear, x-axis) against the waveform features computed from

signals reconstructed by U-NetResNeXt101 network (ĉPPGear, y-axis). Associated Pearson
correlation coe�cients are presented for each feature (on each sub-�gure). p-values are all
lower than 0.001.
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Figure 11: Scatter plots showing the di�erent waveform features computed from ground
truth �nger cPPG signals (cPPGfinger, x-axis) against the waveform features computed
from ground truth ear cPPG signals (cPPGear, y-axis). Associated Pearson correlation
coe�cients are presented for each feature (on each sub-�gure). p-values are all lower than
0.001.
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is in accordance with what we presented in sections 4.1 and 4.2, in particu-
lar in tables 2 and 3. We assume that this di�erence in performance is due
to the recovering of the dicrotic notch and the secondary peak that char-
acterize PPG signals. The notch is much more prominent on �nger cPPG
signals than on ear cPPG signals. It directly impacts the pro�le of the wave
by considerably modifying the in�ections and therefore the features linked
to the second derivatives. The neural models trained on the wavelet rep-
resentations computed from �nger cPPG signals must therefore recover the
coe�cients describing the dicrotic notch with more di�culty because this
trait is rarely apparent on raw iPPG signals. The top illustration presented
in �gure 12 shows a prediction of lesser quality where the successive dicrotic
notches are approximately reconstructed by the model. The bottom illus-
tration exhibits phase discrepancies. These di�erences do not systematically
impact the shape of the waves but can create unwanted �uctuations in several
temporal features, the number one factor being the pulse interval.
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Figure 12: Predictions of lesser quality include approximate dicrotic notch reconstruction
(top �gure) or phase discrepancies (bottom �gure). The signals presented in the two
sub�gures correspond to �nger PPG signals.
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5. Limitations and future works

The principal limitation of this study corresponds to the small number
of volunteers that participated to the experiments. First validation of the
concept on well-formed signals validated this choice. Thus, the videos we
employed present a high frame rate which, after processing, results in highly
sampled iPPG signals. These signals do not completely re�ect those consti-
tuted from frames delivered by conventional cameras or webcams. In addi-
tion, participants were asked to remain still even during the breath holding
experiment.

Several ways of improvement for this work are therefore considered. We
�rst propose expanding the currently limited database by increasing the num-
ber of recordings and participants. We also envisage studying the impact of
skin color, which directly a�ects the quality of PPG signals, on performances
by assessing the evolution of waveform features against skin phototype.

Continuous wavelet transform using Morlet's wavelet has been employed
in this work. We propose evaluating the impact on performances with di�er-
ent mother wavelets as well as investigating di�erent time-frequency repre-
sentations like short-time Fourier and constant-Q transforms. Modi�cation
of the internal parameters of the U-Net architectures (e.g. the number of
layers and number of neurons by layer) will also be assessed. Moreover, we
propose to study the impact of convolutional attention networks [28] and
temporal di�erence convolution [6] on performances. Currently, the wavelet
transform of 5 consecutive waves sampled over 256 values are inputted to the
neural network. We envisage varying the number of consecutive waves but
with particular consideration for small values (e.g. a single wave) that can
produce inconsistencies in the time-frequency representations.

As stated at the beginning of this section, the videos used in this research
were acquired by a fast (125 fps) camera. We plan to study in future work
iPPG signals computed from recordings delivered by conventional (30 fps)
cameras. The waves present, in this context, less details and are therefore
more complex to analyze. Training models with larger volume of data can
however be envisaged because many databases dedicated to the study of PPG
signals measured by conventional cameras are now publicly available.

Inputting video in an U-Net architecture rather than time-frequency rep-
resentation will be the subject of long-term research. We propose to test 3D
U-Net architectures coupled with custom loss function that will constrain re-
construction of cPPG signals through their waveform features. This speci�c
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loss function will be directly integrated into the training phase. The neural
network will thus try to minimize an overall error regarding the shape of the
pulse waves. Compliance with these criteria could thus allow high quality
reconstruction of cPPG from iPPG waves.

6. Summary of contributions

We proposed, in this article, neural architectures that allow accurate re-
covering of cPPG signals from iPPG signals estimated in video recordings.
The reconstruction is carried out using the time-frequency representation of
the signals via the continuous wavelet transform. The proposed neural net-
works correspond to U-Net architectures supported by speci�c backbones.
The recovered signals present waveform features close to those computed on
ground truth �nger and ear cPPG signals. To the best of our knowledge, this
is the �rst demonstration of a method for accurate reconstruction of cPPG
from iPPG signals.

The main motivation behind this work corresponds to the possibility of
proposing an estimation of arterial blood pressure from video by analyzing
iPPG signals. The next step towards this direction is therefore the integration
of the recovered cPPG signals into AI models dedicated to the estimation of
blood pressure using contact signals collected from large public databases
[50, 48, 45].
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