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France

Abstract

The hallmark pathological features of bone disease in patients with cystic fibrosis 
(CF) include bone micro architectural changes and chronic inflammation which are 
associated with an irreversible loss in bone strength and density that tracks from 
childhood to adulthood. Given the equal importance of inflammation and CFTR-related 
remodeling in bone pathogenesis, there is a significant disparity in studies undertaken 
to investigate the contribution of each. Up to now, the majority focus on the role of 
systemic and lung inflammation, and although novel therapeutics such as improved 
pulmonary function and inflammation have arisen, it is apparent that targeting 
inflammation alone has not allowed amelioration of cystic fibrosis-related bone 
disease (CFBD). Therefore, unless bone remodeling is addressed for future therapeutic 
strategies, it is unlikely that we will progress towards a cure for bone disease. Having 
acknowledged these limitations, the focus of this review is to highlight the gaps in our 
current knowledge about the mechanisms underlying CFTR-related bone remodeling, 
the relationships between inflammation, bone remodeling and clinical phenotypes, and 
the importance of utilizing innovative pre-clinical models to uncover effective, disease-
modifying therapeutic strategies.

INTRODUCTION
The hallmark pathological features of CFBD include bone 

micro architectural changes (bone remodeling) characterized by 
reduced trabecular and cortical volumetric bone mineral density 
(vBMD), increased fracture rates, in particularly of ribs and 
vertebrae and chronic lung inflammation which are associated 
with an irreversible loss in bone density that tracks from 
childhood to adulthood [1,2]. Reduced vBMD associated with CF 
disease are becoming more important as the life expectancy of 
patients continues to improve. Vertebral compressions and rib 
fractures lead to excessive kyphosis in CF which compromises 
the thoracic skeletal architecture, with the consequence of an 
accelerated decline in lung function, ineffective cough and airway 
clearance, limitations in chest physiotherapy, and potentially 
contribute to the development of pulmonary exacerbations [3-
5]. CFBD is a common and serious complication, and has been 
correlated with severity of lung disease [6,7]. Whether CFBD is 
more likely to occur in patients with worse pulmonary disease 
and exacerbations remains uncertain, as does whether or not 
CFBD contributes to worsening of respiratory function.

Less of 5% of children with CF have CFBD, but this proportion 
increases to 20% in adolescence, with 55-65% of patients 

older than 45 years affected [8]. The bone density changes are 
apparent in CF even in mild disease; however, the degree of bone 
deficit often worsens with increasing lung disease severity [9]. In 
addition, the onset of the bone pathological changes can occurred 
early in the course of CF [10,11]. 

Given the importance of both inflammation and remodeling in 
bone pathogenesis, there is a significant disparity in the number 
of studies that have investigated the contribution of each. Most 
studies, both clinical and mechanistic, focus on lung and systemic 
inflammatory parameters alone. Several factors contribute to 
this bias and assessments of bone remodeling cannot be made 
noninvasively at present since the gold standard remains tissue 
analysis which requires bone biopsy. Although imaging with HR-
pQCT scans can be used, the data is variable and currently CT 
scans are not a reliable surrogate for tissue assessments. Even 
when pre-clinical studies are considered, few models investigate 
molecular mechanisms of bone remodeling, perhaps because 
remodeling assessments require long-term models in CFBD [12-
15].

Having acknowledged these limitations, the main focus of 
this review will be to highlight the gaps in our current knowledge 
relating to CFTR-related bone remodeling in CF, and to identify 
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future approaches that will allow better understanding of the 
relationships between remodeling and function, potential 
relationships with clinical phenotypes, and the importance 
of utilizing innovative pre-clinical models to discover novel 
therapies targeted to bone micro architectural changes. Overall, 
therapies to date that have targeted inflammation alone have not 
resulted in CF bone modification. A useful strategy may therefore 
be to give bone formation and remodeling processes equal 
importance for future therapeutics in order to progress towards 
disease-modifying therapies in CFBD. 

RECOGNISING BONE REMODELING PHENOTYPES 
IN ADDITION TO CLINICAL AND INFLAMMATORY 
PHENOTYPES IN CFBD

The CFBD is likely directly related to the CFTR defect 
itself [15-18], but is worsened by secondary factors such as 
pulmonary inflammation/infection, pancreatic insufficiency, 
diabetes mellitus, use of exogenous glucocorticoids and physical 
inactivity [3-5,16,17,19-22]. The extent to which the shorter 
stature observed in individuals with CF is a direct manifestation 
of altered CFTR function rather than a manifestation of 
nutritional deficiencies and inflammation, is still unknown [23]. 
Interestingly, a recent clinical study has shown that children 
with CF had thicker and denser cortical bone compared to age-
and sex-matched controls with greater differences in older 
children, but this not compensate for the smaller bone size 
which compromised the bone strength in children with CF [24]. 
In a relatively large group of children, adolescents and young 
adults with mild to moderate lung disease, multiple measures 
of tibial cortical geometry, density, and strength were reduced 
compared to a healthy cohort [10]. In addition, in CF males, 
worsening pulmonary function was associated with greater 
deficits that was not explained by increasing age or compromised 
nutritional status. These data suggested that bone remodeling 
was also related to lung function. Other clinical data have also 
shown a strong association between increased bone resorption 
and systemic inflammation induced by chronic lung infection 
and acute bronchial exacerbations, suggesting that aggressive 
treatment of lung infection may prevent the progression of CFBD 
[7,9,25]. 

It is certain that future therapeutic strategies for CFBD will 
incorporate phenotype-specific approaches as we head towards a 
personalized approach to treating bone disease, but to allow this 
to be successful, it is essential that we include both CFTR-related 
bone remodeling and inflammatory markers in analyses. The 
identification of alterations in bone geometry and strength in CF 
are important given that bone size is predominantly established 
during childhood and is a key determinant of bone mass and 
ultimately fracture risk. A recent study showed a 9-fold higher 
fracture rate in young German CF adults compared to the age-
matched reference population [26]. Bone quality and fragility, 
the subject of growing interest and research efforts, comprises 
a number of parameters such as the micro-architecture of 
trabecular bone, bone geometry, prevalence of micro cracks, and 
importantly, bone matrix material properties including elastic 
modulus and fracture toughness [27]. 

We need to accept that CFBD incorporates a clinical phenotype, 
inflammatory phenotype and bone remodeling phenotype, and 

the interactions and contributions from each facet will determine 
the most effective therapy in the individual patient (Figure 1). 

An example of the use of bone micro architectural changes 
to identify phenotypes was undertaken using HR-pQCT scans 
in both children and adults with CF. This allowed distinction of 
patients into phenotypes according to their bone geometry and 
strength and revealed one specific phenotype had evidence of 
bone changes with lower bone strength that might be compatible 
with fracture trabecular-rich bones, such as ribs and vertebrae 
[10,28]. An interesting avenue for future investigation would be 
to define the degree of each bone microstructural change in a 
patient to see whether there is concordance; so does a deficit in 
trabecular bone strength associate or not with an inflammatory 
phenotype in the same patient? 

During the past 15-20 years, improvements in the control of 
lung infections, therapies towards a better inflammatory control 
and an early identification of non-pulmonary complications have 
contributed to ameliorate the clinical care of young patients 
with CF [29-31]. However, despite significant improvements 
in clinical care and life expectancy, recent data from Putman et 
al. demonstrated that average BMD in spine and distal radius 
in young adults with CF is always reduced and has not changed 
over a 15-years period when compared to that previously 
evaluated in an age-, race-, and gender-matched cohort of 
young adults with CF in the 1995-1999 period [32]. Therefore, 
despite improved respiratory function and lower prevalence of 
vitamin D deficiency in these CF patients, other factors such as 
inflammation, hyperglycemia, reduced physical activity and the 
CFTR dysfunction itself, may be playing an important role in the 
pathogenesis of CFBD. 

RELATIONSHIPS BETWEEN INFLAMMATION AND 
BONE REMODELING: DO ANY EXIST? 

Dysregulated inflammation leads to increased bone resorption 
and suppressed bone formation. Crosstalk among inflammatory 
cells and cells related to bone healing is essential to the formation, 
repair and remodeling of bone [33]. Until recently, it was thought 
that in CF patients with bone disease, chronic inflammation may 
drive bone remodeling, but increasingly this proposition has 
been disputed. Studies in infants and from animal models have 
been the strongest to refute the notion that inflammation causes 
structural bone changes. In children with CF as early as 6 years 
of age lower bone mineral density gains were observed with 
mild disease and normal nutritional status, suggesting that CFBD 
may in part, be due to a primary defect in bone metabolism [11]. 
Ten years ago, CFTR protein was discovered in human normal 
bone cells [34] and was reported to be expressed early during 
development [35], so in utero alterations are plausible. Indeed, 
studies in pigs, rats and mice with CF shortly after birth reveal 
abnormalities in bone development [13,15,36] and tracheal 
cartilage with early airflow obstruction [37-40], suggesting a 
critical role of CFTR dysfunction independent of deficient ion 
transport/airway surface liquid depletion. 

A limitation of human studies, especially paediatric studies, 
is the relative difficulty in obtaining invasive biopsies to assess 
longitudinal changes in pathology over time. Access to bone 
tissue in newborns is extremely limited, and the invasive in vivo 
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and ex vivo experimental interventions required elucidating 
the pathogenesis most often cannot be performed in humans. 
However, evidence that pathophysiological abnormalities of 
bone cells had become apparent from rib explants harvested in 
adolescents and young adults with CF during lung transplantation 
[17]. In this study, we confirmed the genetic contribution by 
which F508del mutation in Cftr resulted in severely compromised 
maturation of osteoblasts (cells that form bone) associated with 
an elevated RANKL-to-OPG mRNA ratio, reduced COX-2 mRNA 
expression and a drastic reduction in prostaglandin E2 (PGE2) 
production, the latter being identified as a key regulator of 
skeletal growth and efficient bone fracture healing [41,42]. 

TARGETING BONE REMODELING TO ACHIEVE 
CFBD MODIFICATION: POTENTIAL CELLS AND 
MEDIATORS OF INTEREST

Bone-mass regulation depends on the dynamic balance 
between bone formation and bone resorption, which are driven 
by both the activity of osteoblasts and osteoclasts (cells that 
resorb bone). Major pathogenic mechanisms mediating the 
development of CFBD may result from a combination of episodes 
of low bone turnover and formation rate during periods of 
disease stability, and an increased bone turnover and resorption 
during inflammation and infective exacerbations. Studies have 

reported that CF newborns are shorter and have a lower body 
weight that non-CF newborns [43]. Others have suggested that 
reduced levels of serum insulin-like growth factor I (IGF-1) might 
be responsible, at least in part, for the growth defect reported 
in patients with CF [44] which was also observed in both Cftr-/- 
mouse and newborn Cftr-/F508 pig models [36]. Reinforcing these 
findings, we also reported lower levels of serum IGF-1 in young 
and adult F508del mice which might contribute to the reduced 
bone formation [13]. 

A low bone turnover with reduced bone formation and no 
evidence for increased bone resorption has been reported in 
young adults with CF [45-47] which might be related to sex steroid 
imbalance [5]. Regarding sex hormones, 17β-estradiol deficiency 
is known to affect bone metabolism in both humans and mouse 
models [48]. Interestingly, both the CF mouse models with the 
489X and F508del mutation in Cftr gene display higher follicular 
stimulating hormone levels, suggesting a possible decrease in 
17β-estradiol production [49]. Low serum 17β-estradiol levels 
were found in patients with CF with prevalent vertebral fractures 
in both genders [50]. 

Osteoblasts 

Bone formation is a complex process [51] which starts 
with the recruitment of mesenchymal skeletal (stromal) cells 

Figure 1 Interaction between bone remodelling, clinical and inflammatory phenotypes characterizes cystic fibrosis bone disease.
Remodeling and inflammation may directly influence clinical manifestation of bone disease. Interactions and contributions from each facet will determine the most 
effective therapy in the individual patient. Receptor activator of nuclear factor k B ligand=RANKL. Osteoprotegerin=OPG.
Cyclooxygenase-2=COX-2. Prostaglandin E2=PGE2. Sphingosine-1-phosphate 1=S1P. Interleukin-17=IL-17.
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(MSCs) located within the bone marrow stroma, or of pericytes 
in sinusoids in the bone marrow. The commitment and 
differentiation of these cells to osteoblasts is dependent on the 
expression of the osteoblast transcriptional factors Runx2 and 
Osterix, followed by the expression of alkaline phosphatase, 
type 1 collagen and non-collagenous proteins, leading to matrix 
deposition and mineralization [52,53]. At the end of the bone 
formation period, some osteoblasts die by apoptosis or become 
flattened lining cells, whereas others are embedded in the 
bone matrix as osteocytes which control bone remodeling [54]. 
The activity of bone formation at the tissue level is dependent 
on both the number and function of differentiated osteoblasts. 
Both the number of functional osteoblasts and the activity of 
each osteoblast are controlled by transcriptional and epigenetic 
mechanisms and are regulated by hormonal and local regulatory 
proteins [55], mechanical strain, cell–cell and cell–matrix 
interactions [56]. Thus, any cellular and molecular abnormalities 
in the recruitment, function or life-span of osteoblasts induced by 
genetic diseases may impact bone formation at the tissue level. 

Patients with CF often display low bone mass with a significant 
clinical increase in bone fragility [2,5,8]. The underlying 
mechanisms remain unknown but may involve alterations in 
bone metabolism. CFTR was reported to be expressed in human 
osteoclasts and osteoblasts, but its role in bone cells is elusive 
[34,57]. In a CF mouse model, global Cftr knock-down causes 
bone loss and altered bone microarchitecture associated with 
decreased bone formation and increased bone resorption [58], 
but cell mechanisms that cause these effects are unknown. More 
relevant to the human disease, we have showed that prevalent 
F508del mutation in Cftr was found to cause decreased bone 
formation in mice, as a consequence of reduced osteoblast 
activity, independently of other etiological factors such as 
inflammation and nutritional defects [59]. Furthermore, we 
found that oral administration of a CFTR corrector led to 
improved bone formation rate, bone mass and microarchitecture 
in F508del mice, suggesting a potential therapy strategy to reduce 
bone loss in CF patients [13]. More recently, we reported an 
over-expression of receptor activator of NF-kB ligand (RANKL) 
and high membranous RANKL localization related to defective 
CFTR channel chloride activity in human osteoblasts bearing 
the F508del mutation in Cftr, and therefore may worsen bone 
resorption leading to bone loss in patients with CF [16].

Osteoclasts 

Coupling between bone formation and bone resorption 
refers to the process within basic multicellular units in which 
resorption by osteoclasts is met by the generation of osteoblasts 
from precursors, and their bone-forming activity, which needs 
to be sufficient to replace the bone lost [55]. Osteoclasts, bone-
resorbing multinucleated cells, are differentiated from the 
monocyte-macrophage lineage under the tight regulation of 
osteoblasts. Osteoblasts express two cytokines essential for 
osteoclast differentiation: RANKL and macrophage colony-
stimulating factor (M-CSF). M-CSF is constitutively expressed by 
osteoblasts, whereas the expression of RANKL is up-regulated by 
osteogenic factors [60,61]. 

The separate origins of the osteoblast from mesenchymal 
and osteoclast from hemopoietic precursors was not accepted 

until the late 1970s, which was also the first time that bone cells 
could be cultured and studied in vitro. When it was suggested that 
the osteoblast lineage might control osteoclast formation and 
activation, this was greeted with skepticism. This theory was, and 
still is, often misinterpreted as suggesting that osteoclastogenesis 
is stimulated by the same cells that produce the bone matrix, but 
this was not the case [62]. It nevertheless led to the discovery 
of the physiological control of osteoclast formation and activity 
by osteoblast lineage-derived RANKL, its signaling through 
its receptor, RANK, on hemopoietic cells, and inhibition of this 
by the decoy receptor, osteoprotegerin (OPG), derived from 
osteoblasts [60]. The importance of this control mechanism 
in bone remodeling is well established. During the chronic 
inflammatory process observed in some patients with CF, the 
balance between formation and bone resorption could be skewed 
toward osteoclast-mediated bone resorption [7,9]. An alternative 
theory speculates that disruption of osteoblastic activity, in the 
face of normal osteoclastic activity leads to a failure to lay down 
enough bone. There is evidence in F508del mice that osteoblasts 
are dysfunctional [12,59]. Further support of this theory is the 
normal level of markers of bone resorption in patients with CF 
[63]. However, the clinical use of biochemical bone markers 
remains controversial because values in individual patients are 
variable and difficult to interpret, and because bone turnover 
markers have not been found effective in following skeletal 
manifestations of CF [8,64]. Indeed, serum resorption markers 
are not consistently elevated, serum osteoclast precursors seem 
to be increased only in the context of infective exacerbations [7] 
and potent inhibitors of bone resorption, as oral bisphosphonates 
have modest effects in amelioration of bone mass in CF [65]. 

Of all the pathological parameters that might affect the 
natural history of CFBD development from childhood to 
adulthood, current data suggests the function of bone cells, 
including osteoblasts and osteoclasts, may be the most 
important. However, nothing is known about bone cell function 
in infants or adolescents with CF. Studies involving children at 
early age might reveal the origins of CFBD and thereby change 
the clinical practice. Additional reasons to elucidate the origins of 
the CFBD are the implantation of universal screening to detect CF 
in newborns and potential novel therapeutic avenues that target 
directly CFTR [66,67].

In box 1, we have outlined novel ideas and hypotheses for 
strategies optimizing bone health in CF patients.

Box 1 Strategies for optimizing bone health in cystic fibrosis

•	 Not all patients with cystic fibrosis have similar changes 
in each parameter of bone remodeling. Remodeling 
phenotypes should therefore be delineated, i.e. the 
contribution of each bone micro architectural change 
(trabecular and cortical volumetric bone mineral density 
(vBMD) in vertebrae and distal tibia, bone geometry and 
strength evaluated by cross section areas and section 
modulus, and individual trabecular segmentation (ITS)-
based morphological analysis) using high-resolution 
peripheral quantitative computed tomography (HR-
pQCT) scans in an individual patient needs to be assessed. 
Subsequently, together with the clinical phenotype 
and inflammatory phenotype, the most appropriate 



Central
Bringing Excellence in Open Access





Jacquot et al. (2017)
Email:  

JSM Bone and Joint Dis 1(1): 1005 (2017) 5/9

personalized therapy can be identified for the individual. 

•	 Getting bone microarchitecture data in youngest 
population using radiological tools will be challenging but 
highly relevant. 

•	 The bone remodeling phenotype of no inflamed children, 
adolescents and young adults needs to be investigated 
early to allow discovery of effective molecular therapies.

•	 Clinical trials should incorporate HR-pQCT scans of 
radius, tibial and vertebral bone as outcome measures in 
both children and adults.

THE NEED OF CLINICALLY RELEVANT MODELS 
TO IDENTIFY THERAPEUTIC TARGETS FOR BONE 
REMODELING

Studies in pigs, rats and mice with CF shortly after birth 
reveal abnormalities in bone development [13,15,36] and 
tracheal cartilage with early airflow obstruction [37-40]. In order 
to identify novel therapeutics to target bone remodeling, several 
factors need to be considered. First, pre-clinical models that are 
translatable and truly reflect patient phenotypes must be used. 
An example is the recent development of a mouse model in which 
features of bone disease with osteoblast dysfunctions in F508del-
Cftr mice [13,59]. Not only can this be used to study factors 
underlying bone disease remission, but also to understand disease 
persistence. Genetic studies have showed that the deletion of 
intermediate filament protein keratin 8 (Krt8(-/-)) in F508del-
Cftr mice increased the levels of circulating markers of bone 
formation, corrected the expression of osteoblast phenotypic 
genes, promoted trabecular bone formation and improved 
bone mass and microarchitecture [12]. Mechanistically, Krt8 
deletion in F508del-Cftr mice corrected overactive NF-kappaB 
signaling and decreased Wnt-beta-catenin signaling induced 
by the F508del-Cftr mutation in osteoblasts. In vivo, short-term 
treatment with compound 407, a CFTR corrector, ameliorated 
the altered Wnt-beta-catenin signaling and bone formation 
in F508del-Cftr mice. Collectively, these results showed that 
genetic or pharmacologic targeting of Krt8 leads to correction of 
osteoblast dysfunctions, altered bone formation and osteopenia 
in F508del-Cftr mice, providing a therapeutic strategy targeting 
the Krt8-F508del-CFTR interaction to correct the abnormal bone 
formation and bone loss in CF. 

There are many sources of activities that contribute to 
coupling at remodeling sites, including growth factors released 
from the matrix, soluble and membrane products of osteoclasts 
and their precursors, signals from osteocytes and from immune 
cells and signaling taking place within the osteoblast lineage. 
As bone remodeling occurs at many sites asynchronously 
throughout the skeleton, locally generated activities comprise 
very important control mechanisms [55,56]. It has become 
increasingly clear that CFTR plays a role in immune cells, and 
that the dysfunction of the CFTR affects immune cell responses 
[68,69]. T-helper 17 lymphocytes (Th17) has been implicated 
in various immune-mediated diseases [70]. In patients with CF, 
there is some evidence that Th17, neutrophils and natural killer 
T cells, all producing the pro-inflammatory cytokine IL-17A 
perpetuate the excessive inflammatory process in lung tissue 
[71,72]. Moreover, IL-17 has been implicated in the pathogenesis 

of bone diseases such as rheumatoid arthritis, osteoarthritis 
[73,74] and post-menopausal osteoporosis through an alteration 
in the RANKL-to-OPG system in osteoblasts [75]. However, in 
patients with CF, data supporting a bone deficit by elevated IL-17 
levels is currently lacking. 

Increasing evidence highlights the local actions of lipids in 
bone physiology [76]. CFTR dysfunction causes abnormalities 
in sphingolipid metabolism [77,78], and a decreased level 
of sphingosine-1-phosphate (S1P) was observed in CF lung 
disease [79,80], a ubiquitous signalling mediator that directs a 
diverse array of biological processes in vertebral development, 
physiology and pathology [81-83]. S1P is a well-known bioactive 
lipid mediator, playing important roles in many tissue repair 
processes, including bone regeneration and osseous tissue 
growth in vivo [84]. CFTR has been shown to be involved in 
the cellular uptake of S1P in a mouse model of heart failure 
[85,86], and new data highlight S1P as a potentially important 
player in the activity of osteoblasts by increasing the RUNX-2 
expression and PGE2 production, reducing the RANKL/OPG ratio 
expression, and ameliorating bone formation [87-89]. The egress 
of osteoclast precursors from the vasculature is stimulated 
by chemotactic factors including S1P [90] via a process that 
is stimulated by 1,25-dihydroxyvitamin-D3 [91]. There are 
nevertheless paradoxical actions of 1,25-dihydroxyvitamin-D3 
on bone that continue to pose questions, [92] and local 
events related to remodeling are providing clues. S1P is a 
lysophospholipid mediator in blood that facilitates the migration 
of osteoclast precursors from bone to blood through actions 
on one of its receptors, S1PR1 [90]. A second receptor, S1PR2, 
mediates the reverse effect of chemo repulsion, resulting in a 
change in direction of osteoclast precursors from blood to bone. 
Active vitamin D has been shown to inhibit production of the 
chemo repulsive S1PR2, thereby inhibiting osteoclast generation 
and bone resorption [91]. These actions related to S1P are all the 
more intriguing because it is one of the several osteoclast-derived 
factors currently postulated as contributing to the coupling of 
bone formation to resorption.

Although the role of S1P in the process of bone remodeling 
is suggestive, it needs to be explored in CFBD development 
further and put into the context of other actions of S1P, which 
has been invoked as a signaling mechanism in the actions of a 
number of cytokines, growth factors and hormones [93]. Among 
these an interaction with vitamin D has been reported, in that 
1,25-dihydroxyvitamin-D3 inhibition of apoptosis in HL60 cells 
[94] and keratinocytes [95] has been found to be mediated 
by S1P; perhaps a similar antiapoptotic role for S1P exists in 
osteoblasts. It is thus tempting to speculate that CFTR might be 
also involved in the S1P signalling in bone cells, which would 
explained some of the aberrant activities observed in CFTR-
deficient osteoblasts. Future studies also need to analyze the S1P 
role in CFBD development and more particularly its involvement 
in the regulation of osteoblasts-osteoclast coupling factors 
modulating bone formation.

EMERGING NOVEL THERAPIES FOR CFBD
Early recognition and treatment are the most effective 

strategies for sustaining bone health to help maintain quality 
of life in young patients with CF. Strategies for optimizing 
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bone health and providing preventive care are necessary from 
childhood to adolescence to minimize CFBD in adult patients. 
Clinical trial data are especially limited in the CF pediatric age 
group. Clinical trials are underway with the goal of finding new 
potential treatments that might prevent the development of CFBD 
including anti-resorptive agents such as oral bisphosphonates 
[96] and anabolic agents such as human recombinant growth 
hormones (hrGH) and parathyroid hormone (PTH) in CF 
adults [65]. One report provides convincing evidence that the 
oral bisphosphonate alendronate is effective, well tolerated 
and safe for young patients with CF [96]. However, the use of 
biphosphonates in children with CF is controversial because of 
potential long-term safety and tolerability concerns including 
over suppression of bone formation. Intravenous administration 
of bisphosphonates in CF adults has been also associated with 
bone pain and flu-like symptoms, which could adversely impact 
the pulmonary status of patients with CF [5]. Denosumab, an 
available antiresorptive medication that targets RANKL in post-
menopausal women and osteolytic diseases such as rheumatoid 
arthritis [97,98] might be particularly effective in CF patients to 
counteract elevated membranous RANKL observed in F508del-
Cftr osteoblasts. Hence, targeting upstream factors responsible 
for the membranous localization of RANKL also could lead to a 
specific therapeutic approach in CFBD.

New treatments that target the CFTR mutations through the 
use of potentiates and correctors of chloride channels are being 
developed in the care of cystic fibrosis-related lung pathology 
[99]. The CFTR corrector Ivacaftor (VX-770) improves respiratory 
function and nutritional status in patients with CF carrying 
the p.Gly551Asp mutation [100]. Recently, we showed that the 
rescue of mutated CFTR protein by invocator also improves bone 
remodeling in patients and support the link between CFTR and 
bone cell physiology [101]. A combined therapy with a CFTR 
corrector and potentiator (VX-809 and VX-770) named Orkambi 
has been tried in patients with CF carrying the F508del mutation, 
on pulmonary end-points (FEV1), with promising data based on 
hypothesized synergic effects of two combined molecules [67]. We 
reported that the corrector C18, a dual F508del-Cftr potentiator 
and corrector, significantly decreased the RANKL production by 
F508del-Cftr osteoblasts, even under inflammatory condition, 
suggesting a strong potential for therapeutic trials with CFTR 
correctors and potentiators in CFBD [16,18]. 

CONCLUSION
Inflammation and CFTR-related bone remodeling are 

critical components of the pathophysiology of CFBD. Although 
both contribute significantly to disease pathogenesis, to date 
mechanistic studies and drug discovery have focused on 
inflammatory targets. Although novel therapeutics such as 
improved pulmonary function and inflammation has arisen, it 
is apparent that targeting inflammation alone has not allowed 
amelioration of bone disease. Therefore, we suggest that to make 
a step-change in CFBD therapy, the focus of research now needs 
to be on investigating mechanisms underlying the coupling of the 
activities of bone formation and resorption, and the approaches 
used will have to reflect disease heterogeneity, and include 
complex experimental approaches with in vitro, in vivo, animal 
and human studies. CFBD is a common and serious complication 

in the aging CF population, and can significantly affect the 
health, well-being, and longevity of these patients. Getting bone 
microarchitecture data in youngest population using radiological 
tools will be challenging but highly relevant. The longer life 
expectancy and better diagnostic methods have made CFBD one 
the prevalent co-morbidity of CF, beside typical lung pathology 
and diabetes.
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