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Abstract

Visual 3D Simultaneous Localization And Map-
ping (SLAM) is an important technique to recon-
struct a 3D space which helps in the navigation of
mobile robots. The classical SLAM systems as-
sume that the environment is static. In dynamic
environment, these SLAM systems work in a ran-
dom manner and affects the SLAM system which
degrades the 3D reconstruction as the camera mo-
tion estimation gets distorted due to dynamic ob-
jects. Due to this reason, in real-time scenario, a
mobile robot will have difficulties to navigate in
dynamic environments. In this paper, we have pro-
posed a more robust visual SLAM in dynamic envi-
ronment by eliminating the dynamic objects using
Convolutional Neural Network (CNN) and optical
flow methods. Our proposed method can generate
Sparse 3D maps of dynamic environments by re-
moving the dynamic objects with a robust and more
accurate manner.

1 Introduction

Simultaneous Localization And Mapping (SLAM) is the
main step for navigation of mobile robots. These SLAM
systems are mainly designed keeping in mind for static en-
vironment. Dynamic feature points disrupts the SLAM sys-
tem fully generating wrongly estimated 3D maps. Thus,
in recent years with the increase in use of intelligent mo-
bile robots, navigation becomes difficult in dynamic envi-
ronments. There are many existing 3D SLAM techniques
like Monocular SLAM system [Mur-Artal and Tardés, 2015]
such as ORB-SLAM and Stereo or RGB-D SLAM systems
[Mur-Artal and Tardés, 2017] such as ORB-SLAM?2, based
on ORB feature points. But these SLAM systems mainly rely
on static feature points for the 3D map reconstruction.

In the dynamic environment, the feature points on the dy-
namic object disrupts the process and should be removed
while estimating the camera trajectory path and the 3D map
reconstruction, so that they have less impact on the SLAM

system for better accuracy. Some traditional methods for
moving object detection get rid of dynamic elements by make
use of optical flow [Cheng er al., 2019] or probabilistic meth-
ods [Sheikh and Shah, 2005] that put weights on feature
points or RANSAC [Shao-Wen Yang and Wang, 2009] to fil-
ter motion that are not dominant. Usually these methods are
fast and lightweight but they are more prone to noise and as-
sume that the static part of the environment is dominant over
the dynamic part.

More recent methods rely on Deep Learning and Semantic
segmentation [Zhang et al., 2018] methods like DynaSLAM
[Bescos and Neira, 2018] which uses Mask R-CNN [He et al.,
2017] and Multi-View Geometry to detect the dynamic ob-
jects. These methods are robust but as they are based on Mask
R-CNN which is a two step detector and needs larger compu-
tations for segmentation which are computationally too ex-
pensive and also they are hard to get real-time performance
in onboard platform and sometimes fail to generalize well,
depending on the observed environment. There are other
mixed methods where dynamic objects are removed in RGB-
D SLAM [Sun er al., 2018] using segmentation and optical
flow or in Visual SLAM [Liu ef al., 2019] using YOLOv3
[Redmon and Farhadi, 2018] and optical flow. All these meth-
ods are not that efficient in real-time scenarios as there are
huge number of computations and need larger GPU power to
execute efficiently. They are too costly, really expensive with
regard to memory and computing power and they don’t suit
well for embedded systems.

To solve this problem, we propose a much simpler and ro-
bust method of detecting the dynamic objects and eliminat-
ing them from the RGB-D SLAM system to get more ac-
curate 3D map. Our solution consists of potential moving
object detection, generating masks on the depth images and
compute an initial camera-trajectory estimation without con-
sidering the feature points inside the mask of potential dy-
namic objects. Then using optical flow and the initial camera-
trajectory estimation, the dynamic objects gets detected and
the final camera- trajectory path gets generated removing the
dynamic feature points. Finally, the 3D map gets recon-
structed using the SLAM system. Our proposed method is
sort of hybrid combining low cost deep learning system and
more traditional methods, making it robust in most cases, so
that it can run on a mobile robot in dynamic indoor environ-
ment.



2 Global Architecture

We propose a robust RGB-D SLAM system in dynamic en-
vironment by eliminating the dynamic feature points which
makes the SLAM system stable. First, a Convolutional Neu-
ral Network with small model size and fast inference speed
detects the potential dynamic objects (human beings for in-
stance) from the RGB images and provides bounding boxes.
Now, the bounding boxes of these potential dynamic objects
is fed into a Background-Foreground segmentation using the
depth images and potential dynamic masks gets generated.
An initial camera motion gets estimated without the feature
points inside the potential dynamic masks. Then, using opti-
cal flow motion and the initial camera motion estimation, true
dynamic objects gets detected and finally the camera trajec-
tory gets estimated with the sparse 3D reconstruction using
SLAM system.
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Figure 1: Block Diagram of the proposed method

3 Potential Dynamic Object Segmentation

We have further divided this step into two sub steps using ob-
ject detection and background-foreground segmentation. For
object detection we are using a light-weight CNN for faster
computation in real-time environments. For background-
foreground segmentation, we are using a more traditional
method that is adaptive Gaussian Mixture Model clustering.

3.1 Object Detection

Figure 2: (a) Object detection using YOLO. (b) Potential dy-
namic object detection.

Object Detection is detecting objects in a frame using Ma-
chine Learning or Deep Learning Methods. Various objects
like car, human, cats, dogs, chair, desk can be detected using

simple methods like Hog Detector [Dalal and Triggs, 2005] or
other complex methods using Convolutional neural networks
(CNN) like Mask R-CNN [He et al., 2017], Faster R-CNN
[Ren et al., 2017]. These are two step detectors and includes
high computations. There are also various one step detectors
like SSD [Liu et al., 2016], RetinaNet [Lin et al., 2017] and
YOLO. These one step detectors are fast and can be used in
real-time applications. In our solution, we use YOLOv3-tiny
[Redmon and Farhadi, 2018] as it is more robust in terms
of accuracy and speed. We have trained YOLOvV3-tiny on
the COCO dataset [Lin et al., 2014] which comprises of 80
classes containing both static objects (chair, TV-monitor) and
dynamic objects (like human beings). We are using RGB im-
ages as input to the YOLOv3-tiny which is the neural network
used here as it is light-weight, fast even on embedded devices
and it detects potential dynamic objects like human beings in
the frame and it provides a bounding box around the detected
object. YOLO provides multiple bounding boxes around the
same object, using non-maximum suppression we can get the
bounding box with highest confidence and calculate the In-
tersection Over Union (IOU) with other boxes of the same
object and eliminate other boxes with lower confidence than
the threshold. In our solution, we have kept the threshold of
0.3 and IOU of 0.45 for YOLOv3-tiny, as we got optimal re-
sults in these values.

3.2 Background-Foreground Segmentation

(c)

Figure 3: (a) RGB Image of YOLO bounding box. (b) GMM
clustering on the RGB image. (c) Depth image of the corre-
sponding RGB image. (d) Background-Foreground Segmen-
tation using adaptive GMM clustering on the depth image.

As represented in Fig 3(a), the bounding boxes of the po-
tential dynamic objects still contains some static part. To
remove the static part in the bounding boxes we have im-
plemented a Background-Foreground [Stauffer and Grim-
son, 1999] Segmentation [Bouwmans et al., 2008] on the
corresponding depth images based on adaptive Gaussian
Mixture Model (GMM) [Dar-Shyang Lee, 2005] cluster-
ing. The GMM is based on the expectation-maximization
(EM) [Dempster et al., 1977] algorithm and estimates the
background-foreground segmentation with the help of a sta-
tistical model of intensity for each pixel in the image frame.
We have implemented the adaptive GMM clustering [J ef al.,
2019] on the depth images for faster and efficient compu-
tation and also depth image provides better information for
background-foreground segmentation. We have used the al-



gorithm from the open source openCV library. Using the
adaptive GMM clustering, masks of the potential dynamic
objects are generated.

4 Initial Camera-trajectory estimation

Figure 4: Eliminating feature points from the potential dy-
namic objects estimated by YOLO and GMM Clustering.

After creating the mask of the potential dynamic objects, an
initial camera-trajectory estimation is done using the RGBD-
PTAM [Pire et al., 2017] which is a RGB-D SLAM system
able to compute the camera trajectory in real-time and to build
a sparse 3D map. RGBD-PTAM uses Good Features to Track
(GFTT detector of openCV) [Jianbo Shi and Tomasi, 1994]
which is based on the Shi-Tomasi method to get the feature
points. Before the initial camera motion estimation, the fea-
ture points inside the potential dynamic masks are eliminated
and not used for the estimation. Only the static feature points
are used for the camera motion estimation, so that the error
gets decreased.

S Dynamic Object Detection

(b)

Figure 5: (a) Optical Flow. (b) Dense Optical Flow.

For dynamic object detection we have used the initial camera
pose estimation with the optical flow method. Optical flow
describes the apparent motion of objects between two frames
which is caused due to the dynamic objects or camera move-
ment. Optical flow can be generated using Lucas Kanade
method [Lucas and Kanade, 1981] which is the sparse optical
flow and Gunnar Farneback method [Farnebick, 2003] which
is the dense optical flow. In our proposed method, we have
used the dense optical flow using Gunnar Farneback method
for the dynamic object detection. Dense optical flow detects
all the pixel intensity change between the two frames and
computes the flow vectors (as represented in Fig 5(a)) of the

highlighted pixels. For our solution, we have used the dense
optical flow as its more accurate and robust than the sparse
optical flow.

Estimation of Optical
Flow vectors in 3D
space

Optical Flow
Estimation in 2D

h

(Flow vector in 3D -
Camera Motion) = Threshold

Create mask with the |
dynamic pixels

Dynamic pixels

Figure 6: Dynamic Object detection using Optical Flow and
Initial Camera motion estimation.

After generating the optical flow in 2D, we have estimated
set of flow vectors (py, py) in 2D space. Using the camera
intrinsic parameters (cx, Cy, fx, fy) and the depth values from
RGB-D, we have estimated the flow vectors (Px, Py, Pz) in
3D space. We have converted the 2D frames into 3D point
cloud. For 2D pixels p(u,v) and depth d to be converted into
3D pixels P(x,y,z) we use the following equations:

x=(u—cg)*xd/fs

y=(v—cy)xd/fy,
z=d
Using the initial camera motion estimation, we can get the ro-
tational and the translational motion from the rotational ma-
trix and the translational values (ty, ty, t,). The optical flow
we have computed is from current frame to previous frame
and the camera motion estimation is from previous frame to
current frame. Using the equation below we have computed
the Camera Motion in 3D space.

Py =(R)T*P—(R)T xt

where, Py is the position of a 3D point in previous frame ob-
tained by applying the inverted camera motion to the position
of a 3D point in current frame, R is the rotational matrix, P is
3D pixels P(x,y,z) and t is the translational value (ty, ty, t,).

PF:(PXaPYaPZ)

where, Pr is a pixel position in previous frame obtained by
adding the flow displacement associated to a pixel in current
frame and (Px, Py, Pz) are the flow vectors in 3D space.

In theory, the difference between the pixel position Pr and
Pwm in 3D space for static pixels should be zero. However, be-
cause of noisy depth measurements and due to inaccuracies
in the calculated optical flow, the difference in value is not
equal to zero. So, we have kept an optimal threshold to deter-
mine whether an pixel is dynamic or static. If the difference is
greater than the threshold then the pixels are dynamic or else



static. Using these dynamic and static pixels we have created
a mask to determine the dynamic objects in the RGB-D frame
as presented in Fig 7(b).

Figure 7: (a) Static features points after eliminating the dy-
namic feature points. (b) Mask generated using Optical Flow
and Initial Camera motion estimation which depicts the dy-
namic objects in black and static objects in white.

6 Sparse 3D reconstruction

Figure 8: Static features points after eliminating the dynamic
feature points

After eliminating the dynamic feature points as presented in
Fig 8, we compute the final camera motion estimation using
the RGBD-PTAM SLAM system and generate the sparse 3D
map reconstruction as presented in Fig 9.
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Figure 9: Final Camera-trajectory estimation and Sparse 3D
map reconstruction using RGBD-PTAM.

7 Results

We have used the TUM RGB-D [Sturm ef al., 2012] dataset
to test our proposed RGB-D SLAM system. The TUM RGB-

D dataset consists of many sequences but we have tested our
model on the dynamic indoor sequences as our robot is an
indoor mobile robot. The sequence freiburg3 walking half-
sphere is an indoor office high dynamic scene where two
persons walk and the RGB-D sensor has been moved on a
small half sphere of approximately one meter diameter. This
sequence is intended to evaluate the robustness of RGB-D
SLAM and odometry algorithms to quickly moving dynamic
objects in large parts of the visible scene. We have tested our
model on a laptop (with 12 GB RAM and i7 8th generation
processor CPU power only).
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Figure 10: Absolute Trajectory Error (ATE): (a) With normal
SLAM System. (b) With potential dynamic object elimina-
tion. (c) Our SLAM system with dynamic object elimination.
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Figure 11: Relative Pose Error (RPE): (a) With normal
SLAM System. (b) With potential dynamic object elimina-
tion. (c) Our SLAM system with dynamic object elimination.

For Visual SLAM, there are two main evaluation crite-
ria: Absolute Trajectory Error (ATE) and Relative Pose Error
(RPE). ATE estimates the difference between the real coor-
dinates and the estimated coordinates as presented in Fig 10
and RPE represents the local accuracy of the measured trajec-



Table 1: COMPARISON OF ABSOLUTE TRAJECTORY
ERRORS (RMSE)

TUM Dataset | Normal With With our
RGB-D sequences | SLAM YOLO method

fr3 walking half- | 0.76m 0.33m 0.17m

sphere

Table 2: COMPARISON OF RELATIVE POSE ERROR

(RMSE)
TUM Dataset | Normal With With our
RGB-D sequences | SLAM YOLO method
fr3 walking half- | 25.85 deg 25.33 deg | 25.21 deg
sphere

tory within a certain time interval as presented in Fig 11. The
translational error can be estimated using ATE but the to esti-
mate the rotational error we need to take RPE into account.

When we have tested our SLAM system on the freiburg3
walking halfsphere sequence of TUM Dataset, we got an Ab-
solute Translational Error (RMSE) of around 0.17m and Rel-
ative Pose Error of 25.21 deg. Our result depicts that our
method can deal with the high-dynamic scenarios very ef-
fectively and the accuracy of our RGB-D SLAM system is
increased by 60 %. We have implemented our solution in
python using openCV modules (Gunnar-Farneback dense op-
tical flow, GFTT Detector, GMM), pyTorch (YOLOv3-tiny)
and RGBD-PTAM.

Moreover, our solution is very robust and efficient as we
have used light weight Neural Networks (YOLOV3 tiny),
GMM on depth image which runs fast and give accurate re-
sults and the dense optical flow which is a bit slower than the
sparse optical flow but gives high accuracy in dynamic ob-
ject detection. Over all, our solution runs quite good on a
CPU but will work much faster on GPU (like the Nvidia Jet-
son Board on our mobile robot). Hence our solution is robust
and lightweight and is perfect for mobile robot navigation in
dynamic indoor environment.

8 Conclusions

We have proposed a robust method to distinguish and elim-
inate dynamic feature points in this paper which makes the
visual SLAM system robust and more accurate, so that, it can
be implemented on mobile robots for navigation in dynamic
indoor environments. The proposed method can be divided
into two main parts, one being the initial camera motion esti-
mation by eliminating features points from potential dynamic
objects and other being the final camera pose estimation using
optical flow method and the initial camera motion estimation.
We have tested our SLAM system on TUM dataset and we
got nice results. The SLAM system is robust and our method
is light-weight which is why it is perfect to run on embedded
boards. However, there are some limitations which we need
to take care especially in terms of accuracy in highly dynamic
environments.

9 Future Works

Here, we have suggested some future works regarding our
SLAM system to make it more efficient.

e Adaptive threshold in optical flow which will help to
eliminate dynamic feature points more efficiently and
avoid eliminating static feature points.

e Due to the pandemic situation, our proposed solution
couldn’t be tested on our mobile robot (consisting of In-
tel RealSense D435 as the RGB-D camera and Nvidia
Jetson board as GPU) which is at the GIPSA Labs. In
future, we want to test our solution on the mobile robot
in dynamic indoor environment.

e Lastly, in our solution we have used Dense optical flow,
instead we could have used sparse optical flow to make it
much faster as it will reduce the computation time which
will speed up the system and we can actually compare
between the accuracy and robustness.
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