
HAL Id: hal-03351976
https://hal.science/hal-03351976v1

Submitted on 22 Sep 2021 (v1), last revised 19 Apr 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ClinicaDL: an open-source deep learning software for
reproducible neuroimaging processing

Elina Thibeau-Sutre, Mauricio Diaz, Ravi Hassanaly, Alexandre M Routier,
Didier Dormont, Olivier Colliot, Ninon Burgos

To cite this version:
Elina Thibeau-Sutre, Mauricio Diaz, Ravi Hassanaly, Alexandre M Routier, Didier Dormont, et al..
ClinicaDL: an open-source deep learning software for reproducible neuroimaging processing. Computer
Methods and Programs in Biomedicine, In press, �10.1016/j.cmpb.2022.106818�. �hal-03351976v1�

https://hal.science/hal-03351976v1
https://hal.archives-ouvertes.fr


ClinicaDL: an open-source deep learning software for

reproducible neuroimaging processing

Elina Thibeau-Sutre*a,b,c,d,e,f, Mauricio Dı́az*g,a,b,c,d,e,f, Ravi
Hassanalya,b,c,d,e,f, Alexandre Routiera,b,c,d,e,f, Didier Dormonth,a,b,c,d,e,f,

Olivier Colliota,b,c,d,e,f, Ninon Burgosa,b,c,d,e,f

a
Sorbonne Université, Paris, France

b
Institut du Cerveau – Paris Brain Institute - ICM, Paris, France

c
Inserm, Paris, France
d
CNRS, Paris, France

e
AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France

f
Inria, Aramis project-team, Paris, France

g
Inria, Service d’Expérimentation et de Développement, Paris, France

h
AP-HP, Hôpital de la Pitié Salpêtrière, Department of Neuroradiology, Paris, France

Abstract

Background and Objective As deep learning faces a reproducibility crisis

and studies on deep learning applied to neuroimaging are contaminated by

methodological flaws, there is an urgent need to provide a safe environment

for deep learning users to help them avoid common pitfalls that will bias and

discredit their results. Several tools have been proposed to help deep learning

users design their framework for neuroimaging data sets.

Methods We present here ClinicaDL, one of these software tools. Clini-

caDL interacts with BIDS, a standard format in the neuroimaging field, and

its derivatives, so it can be used with a large variety of data sets. Moreover,

it checks the absence of data leakage when inferring the results of new data

with trained networks, and saves all necessary information to guarantee the

reproducibility of results.

Results The combination of ClinicaDL and its companion project Clinica

allows performing an end-to-end neuroimaging analysis, from the download of

raw data sets to the interpretation of trained networks, including neuroimaging

Preprint submitted to Computer Methods and Programs in BiomedicineSeptember 7, 2021



preprocessing, quality check, label definition, architecture search, and network

training and evaluation.

Conclusions We implemented ClinicaDL to bring answers to three com-

mon issues encountered by deep learning users who are not always familiar

with neuroimaging data: (1) the format and preprocessing of neuroimaging

data sets, (2) the contamination of the evaluation procedure by data leakage

and (3) a lack of reproducibility. We hope that its use by researchers will

allow producing more reliable and thus valuable scientific studies in our field.

Keywords: Deep learning, Reproducibility, Neuroimaging, Data leakage,

Open-source

1. Introduction

In recent years, deep learning has become one of the most used data

analysis technique. This statement also applies to computer-aided diagnosis

systems in which convolutional neural networks (CNNs) are widely used to

provide a diagnosis or predict the future state of patients from neuroimaging

data. Unfortunately, this recent massive use of deep learning has also been

associated with methodological flaws in many studies [1, 2, 3, 4, 5]. Such

studies overestimate the performance of their network in performing classifi-

cation because their test set (when it exists) is contaminated by data leakage.

This is a major issue in the field that may lead to troublesome consequences:

• Real-life applications of these algorithms may lead to dramatic failures.

• Authors producing honest results with a sound method may not succeed

in publishing their results because the biased state-of-the-art perfor-

mance is too high.

• Other methods than deep learning are not explored anymore because

deep learning performance seems impossible to exceed, leading to a loss

of diversity in our research field that may be problematic when the limit

of this technique will be reached.

2



Moreover, [6] points out that the whole deep learning community faces a

reproducibility crisis that discredits the results obtained with this method.

Hence there is an urgent need in publishing open-source software, data sets

and scripts that allow reproducing the methodologies described in deep learn-

ing studies. Finally, another main di�culty encountered by deep learning

users who are not neuroimaging specialists is the access to properly format-

ted and preprocessed data sets. In our field, a standard was developed to

better organize and share neuroimaging data sets: the Brain Imaging Data

Structure (BIDS) [7], then projects such as Clinica [8] or BIDS Apps [9] help

preprocess these BIDS data sets. But unfortunately, many data sets are still

not distributed in this format, and deep learning users are not always familiar

with these preprocessing tools.

Several open-source repositories have been made available in the last

years to ease deep learning application to medical images. [10] proposed a

tutorial-like paper explaining how to use Keras to train a classifier on two

specific data sets hosted on a dedicated repository1. Others preferred to

implement dedicated open-source libraries to propose an easier use of deep

learning for medical image analysis. The most important one is Monai2, a

large library merging three other libraries that are not maintained anymore:

NiftyNet3 [11], DeepNeuro4 and DLTK5 [12]. This library goes beyond the

context of neuroimaging and allows processing medical images from di↵erent

body parts. It is meant to work on MedMNIST6, a series of ten data sets of

preprocessed medical images of di↵erent modalities (cancer histology, chest

X-ray, dermatoscopy, optical coherence tomography, fundus photography,

breast ultrasound and abdominal computed tomography) and the ten data

1https://github.com/ImagingInformatics/machine-learning
2https://monai.io
3https://github.com/NifTK/NiftyNet
4https://github.com/QTIM-Lab/DeepNeuro
5https://github.com/DLTK/DLTK
6https://medmnist.github.io

3

https://github.com/ImagingInformatics/machine-learning
https://monai.io
https://github.com/NifTK/NiftyNet
https://github.com/QTIM-Lab/DeepNeuro
https://github.com/DLTK/DLTK
https://medmnist.github.io


sets of the medical segmentation decathlon challenge [13, 14]7 that aims at

segmenting organs or tumours. It is also possible to use Monai on other data

sets but this requires additional work. Monai provides low-level functions

and classes that must be combined in a Python script to learn a classification

or a segmentation task, or to train a generative adversarial network (GAN).

Attribution methods are also available: class activation mapping (CAM),

gradient-weighted CAM and occlusion sensitivity, which allow interpreting the

trained network results. A large diversity of transforms, loss functions, metrics

and optimizers are provided. Finally, with the support of Nvidia, Monai

provides multi-GPU parallel processing. The other main Python library for

deep learning in medical research is TorchIO [15]. This library does not

implement deep neural network training, but implements a large variety of

transforms for 3D image preprocessing and/or augmentation to prepare data

for deep learning use. As with Monai, two public data sets are integrated with

the library for ease of use: IXI8 and EPISURG [16]. An interface to manage

custom data sets is also provided. Finally, Nobrainer9, focuses on learning

brain segmentations and is documented by Jupyter notebook tutorials. Other

initiatives were launched but seemingly abandoned, such as for example

NiftyTorch10, MildInt11 [17] or pymia12 [18].

Though there was an e↵ort from previous works to integrate several data

sets that can be easily downloaded through their API, other cohorts might

be quite di�cult to process. Moreover, they do not easily handle longitudinal

data sets, in which several images correspond to the same participants and

then should not be distributed between the training and test sets. Finally,

the reproducibility of the experiments conducted with these frameworks still

7http://medicaldecathlon.com
8https://brain-development.org/ixi-dataset
9https://github.com/neuronets/nobrainer

10https://github.com/NiftyTorch
11https://github.com/goeastagent/MildInt
12https://github.com/rundherum/pymia/tree/master

4

http://medicaldecathlon.com
https://brain-development.org/ixi-dataset
https://github.com/neuronets/nobrainer
https://github.com/NiftyTorch
https://github.com/goeastagent/MildInt
https://github.com/rundherum/pymia/tree/master


heavily relies on the user. Indeed, the hyperparameter values are defined in

the scripts, hence their previous values may be lost as new experiments are

launched.

To help deep learning users to (1) format and preprocess neuroimaging data

sets, (2) prevent data leakage from biasing their results and (3) reproduce their

experiments, we implemented ClinicaDL: a command line software written in

Python meant to train deep learning networks to reconstruct input images, or

to predict a categorical (classification) or a continuous (regression) variable

based on neuroimaging data. As the name suggests, it is meant to work on

the outputs of Clinica [8], an open-source software platform for reproducible

clinical neuroimaging studies. The core of Clinica is a set of automatic

pipelines for multimodal neuroimaging data preprocessing with standard

tools of the community (such as SPM13, FreeSurfer14 or ANTS15). ClinicaDL

takes as inputs these preprocessed images and convert them into tensors to

train deep neural networks. Thus, the combination of these two tools allows

performing an end-to-end neuroimaging analysis, from the download of raw

data sets to the interpretation of trained networks, including neuroimaging

preprocessing, quality check, label definition, architecture search, and network

training and evaluation.

2. Methods: Avoiding common pitfalls in deep learning studies

with ClinicaDL

2.1. Formatting and preprocessing of neuroimaging data

One di�culty faced by data scientists is the manipulation of raw neu-

roimaging data sets as their organization can be quite di�cult to understand.

Moreover, raw images coming from di↵erent scanners may need some prepro-

cessing to be handled by deep neural networks. These preprocessing steps

13https://www.fil.ion.ucl.ac.uk/spm
14https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki
15http://stnava.github.io/ANTs

5

https://www.fil.ion.ucl.ac.uk/spm
https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki
http://stnava.github.io/ANTs


are easier to perform and manage when data are organized in a standard

manner. To allow any researcher to completely or partly reproduce the steps

performed in a study with ClinicaDL, we decided to work with data set struc-

tures, described in the following sections, whose specifications are exhaustive.

Moreover, our framework is adapted to the use of 3D images, as it allows the

user to choose their own way to cut the image in smaller pieces (patches or

slices) to ease network training (see ClinicaDL modes in section 2.1.3).

2.1.1. BIDS format

Clinica and ClinicaDL follow the Brain Imaging Data Structure, described

in [7], to organize their datasets. The BIDS standard provides a list of

specifications16, which specify how files in a BIDS data set should be organized,

named and formatted. It is widely adopted by the neuroimaging community,

and more and more databases try to distribute their data in BIDS format or

approaching (see the OpenNeuro17 platform for a list of BIDS formatted data

sets). However, some databases still use a custom format that can be quite

di�cult to exploit. This is the case for example of the Alzheimer’s Disease

Neuroimaging Initiative (ADNI)18, the Australian Imaging, Biomarker &

Lifestyle Flagship Study of Ageing (AIBL)19, or the Open Access Series of

Imaging Studies (OASIS)20, three databases used for the characterization of

Alzheimer’s disease dementia and its prodromal stage, or of the frontotemporal

lobar degeneration neuroimaging initiative (NIFD), a database including

patients with frontotemporal dementia (available from the same platform as

ADNI and AIBL21). Clinica includes BIDS converters to format these four

raw data sets to BIDS format to ease their use.

16https://bids-specification.readthedocs.io
17https://openneuro.org/
18http://adni.loni.usc.edu
19https://aibl.csiro.au
20https://www.oasis-brains.org
21https://ida.loni.usc.edu

6

https://bids-specification.readthedocs.io
https://openneuro.org/
http://adni.loni.usc.edu
https://aibl.csiro.au
https://www.oasis-brains.org
https://ida.loni.usc.edu


2.1.2. CAPS format

When a database is BIDS-formatted, it is possible to preprocess its images

with Clinica pipelines. These pipelines can for example perform intensity and

spatial normalization of brain images to allow the extraction and analysis

of comparable features from images of di↵erent participants. Two pipelines

have been developed specifically for deep learning use, though the outputs of

the other pipelines can also be used with ClinicaDL. These pipelines mainly

perform a linear registration to a standard space for two di↵erent modalities:

T1-weighted (T1w) magnetic resonance imaging (MRI) and positron emission

tomography (PET) images. They output another folder whose structure is

derived from BIDS: the ClinicA Processed Structure (CAPS)22.

2.1.3. ClinicaDL modes

The preprocessing pipelines of Clinica operate at the image level, but

many deep learning systems work with one or several parts of the original 3D

image. Four possible uses of the image (modes) are currently implemented in

ClinicaDL:

1. image uses the whole 3D image,

2. patch extracts 3D cubic patches with predefined size and stride to cover

the whole image,

3. roi extracts specific 3D regions defined by binary masks generated by

the user,

4. slice extracts 2D slices according to a neuroanatomical plane (sagittal,

coronal or axial).

ClinicaDL computes the image-level performance by assembling the mode-

level performance when it is di↵erent from image. Advanced users may want

to implement their own modes. The documentation describes the steps to

follow to implement and use custom modes.

22https://aramislab.paris.inria.fr/clinica/docs/public/latest/CAPS/
Introduction/

7

https://aramislab.paris.inria.fr/clinica/docs/public/latest/CAPS/Introduction/
https://aramislab.paris.inria.fr/clinica/docs/public/latest/CAPS/Introduction/


2.1.4. MAPS format

Model Analysis and Processing Structure (MAPS) names the output

structure of the ClinicaDL train function. All the functions of ClinicaDL

are meant to work on this structure to easily retrieve the parameters of

the command line, the weights of the best models, the checkpoints, or the

predictions made on the training and validation sets to compute the results

at the image level on independent test sets. At the root of the hierarchy,

the file environment.txt summarizes the environment used for training, and

maps.json gathers the arguments provided to the command line.

This structure includes a hierarchy of three levels:

1. Folds The first level contains one folder per train / validation split.

The training procedure of each fold can be launched independently.

2. Selection metrics During the training procedure of a particular fold,

one network is selected per selection metric given in input. These net-

works correspond to the network having the best validation performance

according to their metric during the training procedure.

3. Data groups Finally, the best networks selected are evaluated on data

groups. The characteristics of these data groups (TSV file of participant

and session IDs with label values, and path to the CAPS directory)

are stored at the first level of the hierarchy in the groups folder. This

specification ensures the consistency between the evaluations of di↵erent

networks trained on di↵erent folds and selected on di↵erent metrics.

An example of the MAPS obtained when training a classification CNN trained

on images is displayed in Table 1. The MAPS also stores training logs. Two

di↵erent formats are available: they can be opened with Tensorboard23 and

are also available as TSV files.

23https://www.tensorflow.org/tensorboard

8

https://www.tensorflow.org/tensorboard


results

environment.txt

fold-0

best-loss

model.pth.tar

train

description.log

train image level metrics.tsv

train image level prediction.tsv

validation

description.log

validation image level metrics.tsv

validation image level prediction.tsv

training logs

tensorboard

training.tsv

groups

train

train+validation.tsv

validation

maps.json

Table 1: Example of the Model Analysis and Processing Structure (MAPS) obtained when

training a classification network on whole images. Folders are in bold.

Only the first fold was trained (folder fold-0) and one model was selected based on its

validation loss (folder best-loss).
The only data groups are train and validation, which are automatically created during

training. The characteristics of these groups are defined in groups, whereas the folder in

fold-0/best-loss contains the results for each input image (file * prediction.tsv) and
a set of metrics (file * metrics.tsv) for each data group.

Finally, training logs are available for each fold training in the folder training logs. These
logs are available in two di↵erent formats, Tensorboard compatible and TSV.

As the training procedure ended without raising an error, the checkpoints were erased (this

allows saving memory).

9



2.1.5. Conclusion

Relying on BIDS allows easing the processing of neuroimaging data as

it is a standard format. As already mentioned, many BIDS data sets are

hosted on OpenNeuro24. For the others, tools have been developed to ease

their conversion (a list of these tools is available on the BIDS website25).

The other formats we introduced (CAPS and MAPS) are useful as these

structures are now stable and their elements can be easily processed and

retrieved with tools of Clinica or ClinicaDL. For example ClinicaDL includes

two quality check procedures taking as input the CAPS generated by pipelines

of Clinica (t1-linear26 and t1-volume
27).

2.2. Data leakage handling

As explained by [19], data leakage is “the introduction of information

about the target of a data mining [a.k.a. machine learning] problem that

should not be legitimately available to mine from”. They give two main

reasons for data leakage:

• leaking features, occurring for example when input data include features

that are highly correlated to the target label due to a selection bias or

if the target is a cause of the feature,

• leakage in training examples, occurring when data used for training

is not legitimate towards data used for performance evaluation (for

example, if there is an intersection between training and test data).

Let’s take the example of the inference of the diagnosis from neuroimaging

data. In this case, the leaking feature scenario may happen as a selection

24https://openneuro.org/public/datasets
25https://bids.neuroimaging.io/benefits.html#converters
26https://aramislab.paris.inria.fr/clinica/docs/public/latest/Pipelines/

T1_Linear/
27https://aramislab.paris.inria.fr/clinica/docs/public/latest/Pipelines/

T1_Volume/

10

https://openneuro.org/public/datasets
https://bids.neuroimaging.io/benefits.html%23converters
https://aramislab.paris.inria.fr/clinica/docs/public/latest/Pipelines/T1_Linear/
https://aramislab.paris.inria.fr/clinica/docs/public/latest/Pipelines/T1_Linear/
https://aramislab.paris.inria.fr/clinica/docs/public/latest/Pipelines/T1_Volume/
https://aramislab.paris.inria.fr/clinica/docs/public/latest/Pipelines/T1_Volume/


bias. For example, consider a data set that includes several sites. If each site

has a di↵erent diagnosis distribution (in the worst case, one site only recruits

patients, whereas another one only recruits control subjects), the site is a

leaking feature for the diagnosis. Unfortunately, as these sites use di↵erent

scanners, the site information may be retrieved from the neuroimaging data.

This selection bias requires expert knowledge of the data set used to be

avoided.

We mainly focus in this article on leakage in training examples, which is

independent from the data sets used. In a previous study [1], we reported

that data leakage contaminated nearly half of the studies using a CNN on

T1w MRI for the diagnosis of Alzheimer’s disease. Other studies using deep

learning in the health domain also mention that data leakage pollutes their

field of application: [2] in breast cancer detection from mammograms, [3] for

Covid-19 diagnosis from chest radiography and [4] for image classification in

digital pathology. Finally, [5] quantified the di↵erence between a biased and

a right split between train and test sets on the test accuracy for several tasks

using neuroimaging data. The di↵erences they measured ranged from 25%

on a large data set to 55% on a small data set.

We identified four scenarios of data leakage in our previous paper [1] and

we add here a last one (biased ensemble learning) that has been identified

afterwards.

1. Absence of an independent test set occurs when the classifier

performance is evaluated on the training or the validation set.

2. Biased split occurs when highly correlated data (slices or patches

extracted from the same volume, visits from the same patient, etc.) are

both in the train and the test sets.

3. Late split occurs when another procedure is performed prior to the

data split.

4. Biased transfer learning occurs when data is shared between the

source and the target task and that the train / test split has been

11



done di↵erently. Some authors seem to find that there is no risk of

data leakage when using transfer learning if the target and the source

tasks are di↵erent, however it may happen if they share a subset of

participants.

5. Biased ensemble learning occurs when parts of the images are se-

lected / weighted thanks to the labels of the test set to deduce the

image-level prediction of the test set.

For clarity, these scenarios are illustrated in Figure 1.

Figure 1: Illustration of the scenarios that can lead to data leakage.

ClinicaDL prevents the user from these scenarios by implementing the

following strategies:

1. Data splits are done at the subject level and cannot be performed on-

the-fly but must be done prior to training networks (to avoid a biased

split).

12



2. Data splits are done independently for each label. However, if labels

B & C are subsets of a parent label A, transfer learning from a task

implying A to a task implying B and/or C may result in a biased transfer

learning. Therefore ClinicaDL splits B and C with respect to A split

(see Figure 2 for more insight).

3. Data augmentation is performed on-the-fly (to avoid late split).

4. In the classification case, the image-level prediction is the weighted sum

of parts of the image. These weights are computed from the predictions

on the training or the validation sets, but no other set (to avoid biased

ensemble learning).

5. At the root of the MAPS, the file train+validation.tsv comprises

all the participant and session IDs seen during the training procedure.

If transfer learning is performed, this list of IDs is updated to include

the IDs of participants and sessions seen during the training of the

source task. ClinicaDL prevents the user from creating a data group

having common IDs with this list (to avoid biased data split and transfer

learning).

The absence of an independent test set is still possible, as ClinicaDL does

not force the user to give the test set to evaluate the performance in an

unbiased way during training. We do not wish to enforce such system as

the user could want to do some hyperparameter optimization based on the

training and validation performance only. Then it is the user’s responsibility

to evaluate the final performance once they have done all the research they

wanted on hyperparameters.

2.3. Reproducibility

In the same way as “deep learning”, “reproducibility” is an-ill defined

concept, often mentioned using similar words (repeatability, reproducibility,

replicability) whose meanings may vary across articles. This is why we chose

in this article to work with the definitions of [20], in which three di↵erent

levels of reproducibility are defined:

13



Figure 2: Sequence of data split when diagnostic labels (B and C) are subgroups of another

diagnostic label (A). (1) Participants of each group are identified. (2) B and C subgroups

are split between train and test data sets. (3) The rest of the parent group is split between

train and test, and the train set of each subgroup is added to the parent train set.

• method reproducibility (sometimes called repeatability) is the ability

to repeat the same experiment using the same tools and data to obtain

the same results,

• result reproducibility (sometimes called replicability) is the corrobo-

ration of results by other studies using the same experimental methods,

• inferential reproducibility (often not discussed) exists when di↵erent

scientists deduce the same knowledge claims from a similar study or

the re-analysis of the study.

As explained by the authors, inferential reproducibility may be impossible to

guarantee as the analysis of results is peculiar to each scientist (and this is also

what drives science forward). However, none of these levels are guaranteed

if the research is not transparent. What will mostly be discussed here is

thus the way to achieve transparency, which consists in closely describing the

di↵erent steps linking the prior hypothesis to the final claim.

The initial step to achieve transparency is to share usable code. This

way [21] tried to locate and build the source code of studies of eight ACM

conferences. They first noticed that only half of the source codes could be

located. Among these codes, half of them could be built easily (i.e. in less

14



than 30 minutes without the authors’ help), others needed more time, the

help of the authors, or could even fail (in rare cases). To prevent this pitfall,

the source code of ClinicaDL is available on GitHub. Moreover, tests are run

at each commit to ensure that the code can be correctly installed and that

the main functionalities can be run (see Section 3.1 for more information on

tests).

However, sharing code is not enough to be fully transparent. For non-

deterministic models such as deep learning, method reproducibility can only

be achieved by setting a random seed [22, 23]. [22] also evaluated the impact

of the computational setup, and explained that the software versions of all the

system used, the GPU version and even threading should be explicit to allow

method reproducibility. All these variables can be easily set and retrieved when

using ClinicaDL. First, the code and documentation of ClinicaDL are versioned

to allow the user to retrieve the version needed for method reproducibility.

Then, as explained in Section 2.1.4, two files at the root of the experiment

folder identify the software and dependencies’ versions (environment.txt)

and variables such as threading, GPU usage and random seed (maps.json).

Moreover, the function clinicadl train --config_file was designed to

repeat experiments based on this configuration file (see Section 3.2.5). How-

ever, we remind that it is still the users’ responsibility to describe their GPU

system.

As explained by [23] and [24], documentation is also a crucial point to en-

sure transparency and code usability by other teams, which then allows result

reproducibility. This is why ClinicaDL comes with di↵erent documentation

supports, including tutorials (see Section 3.1.4).

Finally, [20] and [25] encourage others to report all the explored paths and

negative results to be more transparent and to avoid potential bias in reporting.

This process may also avoid unfair claims (inferential non-reproducibility)

based on the comparisons to weak baselines [22]. Indeed, the performance of

deep learning systems highly depends on the time spent on their design. This

15



is why it could be interesting to report all the architectures trained to find

the final system compared with the ones trained for the baseline one. Again,

ClinicaDL allows easily compiling this information as the (hyper)parameters

of all the networks trained are saved in their MAPS.

3. Results: ClinicaDL overview

ClinicaDL is an open-source software platform entirely written in Python.

It uses the PyTorch library as backbone. ClinicaDL extends PyTorch features

for neuroimaging applications where the data set structure plays a key role

in the organisation of the data and metadata. The software is publicly

distributed as an easy-to-install package and is referenced in the Pypi package

index28. Releases are done on a periodic basis and the code follows the most

standard current practices for software development.

ClinicaDL has been designed to be used via the command line interface,

with separate sub-commands performing the main tasks, as defined in a clas-

sical machine learning pipeline: extract, train, predict. Other sub-commands

are available in order to allow the user to structure the data sets, create

synthetic data, look for hyperparameters and interpret trained networks.

These features are also available through the command line (tsvtool, generate,

random-search, interpret).

3.1. Development Practices

ClinicaDL has adopted standard practices for software development and

distribution of the software with the aim to facilitate the reproduction of

experiments. The main features of the software, the management of its

inputs/outputs, the data flow and the way the program is used were designed

with the objective of staying as close as possible to the definition of repro-

ducibility, as previously given in Section 2.3. The main development practices

are described below.

28https://pypi.org/project/clinicadl

16

https://pypi.org/project/clinicadl


3.1.1. Distribution and Installation

The source code is hosted on Github29. It uses a version control system

(VCS) and the releases are strictly labeled with the version number. As

consequence, the source code used in a specific experiment can be easily

retrieved. Labeled versions of the code are released as Python packages that

are permanently stored in the o�cial Python Package Index. Good practices

related to the VCS include atomic committing, clear commit messages and

peer-reviewed contributions.

The installation of the released packages is done with a single command

(pip install clinicadl). As often when installing Python packages, users

are advised to install it into a virtual environment to avoid requirement

conflicts. Instructions for developer installation are also available in the

README of the repository.

3.1.2. Continuous Integration and Deployment

Each contribution is peer-reviewed by a developer di↵erent from the

original author. The resulting code is only integrated to the development

branch if the post commit actions are executed in a satisfactory way. The

ensemble of these actions is described in the Continuous Integration pipeline.

This includes:

• Environment and dependencies verification: The creation of an

environment with all the dependencies necessary to install the package

is performed in this step.

• User interface tests: The command line interface is tested using the

Pytest library. This library allows combining several sets of possible

commands used in the user interface. These are systematically tested

to avoid errors in the main interface of ClinicaDL.

29https://github.com/aramis-lab/ClinicaDL

17

https://github.com/aramis-lab/ClinicaDL


• Functional tests: A di↵erent kind of tests is executed before the

integration of new code. These tests are called functional tests and are

designed to check for the proper operation of the di↵erent tasks proposed

by the software: e.g. “Train”, “Transfer Learning”, “Interpretation”

and “Random Search” tests use a truncated data set to verify that these

tasks run properly on a GPU machine. Other functionalities such as

“Predict” to perform inference, “Generate” to create custom data sets

or “TSV Tools” to generate files adapted to the task / data set are also

checked.

• Documentation build: New contributions and/or modifications to the

code are expected to be accompanied by the respective documentation.

For that reason, documentation is built during the continuous integration

pipeline. More details are explained in Section 3.1.4.

• Deployment: This step is only executed on labeled commits. Indeed,

if a commit has a label to reference a version, a Python package is

built and uploaded to the Python Package Index and a new version is

published.

3.1.3. Model distribution

The work described in [1] used a preliminary version of ClinicaDL. Several

pretrained models generated from the methods described in this paper are

available to download via Zenodo30. These models are also publicly available

via a classical https server31 to facilitate interactive downloading. New versions

of the software may induce changes on the organisation of the available models

and the way they are loaded and processed by ClinicaDL. For these reasons,

new models are trained regularly and stored in folders named with the

corresponding software version, e.g. models_v020 corresponds to the models

30https://zenodo.org/record/3491003
31https://aramislab.paris.inria.fr/files/data/models/dl/

18

https://zenodo.org/record/3491003
https://aramislab.paris.inria.fr/files/data/models/dl/


trained with the version 0.2.0 of ClinicaDL.

3.1.4. Documentation

The documentation of ClinicaDL is available online at https://clinicadl.

readthedocs.io. It is automatically built after each commit by Read the

Docs32. It can also be built locally by running the command mkdocs serve

with mkdocs-material installed33.

The documentation is versioned in the same way as the source code. All

previous tags are easily accessible online with the version panel in the bottom

right corner of any page.

In addition to the user documentation, some tutorials have been created to

help users in their first steps with ClinicaDL. These tutorials are designed with

Jupyter Books34, a tool that mixes Markdown content with interactive note-

books. They are referenced in the documentation and GitHub main pages and

are accessible online at https://aramislab.paris.inria.fr/clinicadl/

tuto. The first sections introduce the clinical context of Alzheimer’s disease

and basics on deep learning classification. The rest of the book is made

of interactive notebooks that present the main functionalities of ClinicaDL

and can be easily run locally or on Google Colab (which provides free GPU

environments).

Finally a discussion forum is available at https://groups.google.com/

g/clinica-user. Users can interact with the development team. This

tool will be replaced soon by https://github.com/aramis-lab/clinicadl/

discussions.

3.2. Main functionalities

The main functionalities of ClinicaDL cover all the steps needed for deep

learning experiments, from data set management to the evaluation of results

32https://readthedocs.org/
33https://squidfunk.github.io/mkdocs-material/getting-started
34https://jupyterbook.org/intro.html

19

https://clinicadl.readthedocs.io
https://clinicadl.readthedocs.io
https://aramislab.paris.inria.fr/clinicadl/tuto
https://aramislab.paris.inria.fr/clinicadl/tuto
https://groups.google.com/g/clinica-user
https://groups.google.com/g/clinica-user
https://github.com/aramis-lab/clinicadl/discussions
https://github.com/aramis-lab/clinicadl/discussions
https://readthedocs.org/
https://squidfunk.github.io/mkdocs-material/getting-started
https://jupyterbook.org/intro.html


and network interpretation. In addition to pre-implemented features, the

source code aims at being modular and the documentation helps users to

implement easily their custom experiments35. Technical details for each

command can be found in the user documentation.

3.2.1. Preprocessing images

ClinicaDL works preferably with images that had been previously pre-

processed but one can also perform experiments with unprocessed images,

the only requirement is to convert these images to the right format (see Sec-

tion 2.1.2). Preprocessed images can be obtained using Clinica for di↵erent

imaging modalities. This software provides, in its current version (0.5.0), light

preprocessing pipelines for T1w and PET images that output images suited for

further deep learning. For example, the t1-linear pipeline mainly performs

bias field correction and spatial normalization to the MNI space of T1w MR

images, while the pet-linear pipeline mainly performs spatial normalization

to the MNI space and intensity normalization of PET images. As ClinicaDL

and Clinica are fully compatible, outputs of the formerly mentioned pipelines

can be introduced easily into a train or classification function of ClinicaDL.

ClinicaDL proposes a simple tool to transform NIfTI images into PyTorch

format. The objective is to facilitate the training phase by decompressing the

images beforehand (the NIfTI format usually provides compressed images).

This functionality writes future input images for neural network training

or inference formatted as tensors. The number and shape of these tensors

depend on the mode chosen: image, patch, roi or slice (see Section 2.1.3).

The tool will run through the entire CAPS/BIDS folder searching for an

imaging modality specified by the user and will apply the conversion and

extraction of corresponding images. It will also produce a configuration file

summarizing all the characteristics of the extraction procedure. The training

procedure will then rely on this file to find the images needed for network

35https://clinicadl.readthedocs.io/en/latest/Contribute/Custom/

20

https://clinicadl.readthedocs.io/en/latest/Contribute/Custom/


training.

3.2.2. Generation of toy data sets

ClinicaDL facilitates the generation of semi-synthetic data for evaluation

and verification purposes. The new data can be used to test a binary classifi-

cation task, and it is already organized in the CAPS format (see Section 2.1.2).

Two types of data can be created:

• Trivial data: A mask is used to create incomplete images. By default,

a mask based on a neuroanatomical atlas is used to create images where

only half of the brain is present (half-left or half-right). Other kinds of

distortions can be created by supplying a customized mask. The final

result is the suppression of the region present in the mask.

• Random data: All the images belonging to this type of data are

obtained from a single image, adding random white noise. The standard

deviation of the noise is a parameter chosen by the user. Resulting

images are then randomly distributed between two possible labels.

3.2.3. Preparing metadata

To use the train and inference functionalities of the software or to analyse

the data, inputs must be organized in the right way. A collection of tools to

handle metadata of BIDS-formatted data sets is proposed with ClinicaDL.

These tools are intended to provide the correct organisation of the data: get the

labels used in classification tasks, split the data to define test, validation and

train subsets, and analyze the population of interest. This set of commands

is available through the command clinicadl tsvtool. Some of them are

still specific to the study of Alzheimer’s disease:

• Generation of TSV files including only participants with particular

restrictions on two Alzheimer’s disease data sets (AIBL and OASIS).

21



• Extraction of labels specific to a particular diagnosis trajectory (e.g.

participants labeled with an Alzheimer’s disease diagnosis for all their

sessions).

Other commands are more generic, and may be applied to any label list,

even if they were not generated with ClinicaDL:

• Splitting labels to produce similar distributions from a specific popula-

tion using as parameters sex and age.

• Splitting labels to perform k-fold cross validation.

• Writing reports to summarize the demographics and clinical distributions

of a specific label.

3.2.4. Random search

Random search [26] is a procedure to find automatically the hyperparam-

eters (architecture and other training hyperparameters) of a framework. It

consists in randomly generating sets of hyperparameters to select the best

set of hyperparameters as a result. This random generation is based on

a hyperparameter space from which hyperparameter sets are sampled. In

ClinicaDL, this hyperparameter space is described by a configuration file

created by the user.

The main advantage of the random search is its easy parallelization,

contrary to other optimization methods that may require successive runs and

be time consuming. On the other hand, it is computationally costly and it

requires minimum knowledge regarding the subspace of hyperparameters that

may work to limit the search and find satisfying results. Moreover, although

it can significantly improve the performance of a framework, it will not lead

to the optimum, which is very hard to find.

It is also possible to improve the results of a random search by using its re-

sults to initialize another technique (genetic algorithm, Bayesian optimization,

etc.).

22



3.2.5. Training networks

The main functionality of ClinicaDL is to train neural networks to learn a

task. These tasks can be:

1. Classification (of a categorical label, for example the diagnosis),

2. Regression (of a continuous label, for example the age),

3. Image reconstruction.

These tasks are highly dependent from the architecture. All tasks take as

input the image or part of it (see Section 2.1.3); but for classification the

output is a flattened array of size equal to the number of classes, for regression

it is a single node, whereas for image reconstruction it has the same size as

the input. When the user chooses a task and an architecture, the software

will check if the task is compatible with the wanted architecture and will raise

an error if it is not the case.

Some pre-built architectures are already available in ClinicaDL, but an

objective of the library is to allow the users to add their custom architectures

easily. The procedure of such addition is detailed in the documentation.

The models produced by ClinicaDL correspond to the ones that obtained

the best performance on the validation set according to metrics chosen by

the user. ClinicaDL saves at the end of each epoch the state of the network

and of the optimizer. For each selection metric given in input, it replaces

the corresponding current best model by the current state if the performance

on the validation set is better than the current best value. To minimize the

size of the produced MAPS, the checkpoints are removed at the end of the

training procedure. They are only used to resume a stopped job, thanks to

the dedicated command resume.

The command line interface of ClinicaDL o↵ers many options, as there is a

large number of training parameters. This is why we tend to a parametrization

by configuration files only. Currently, it is already possible to train a network

parametrized by a configuration file instead of entering each parameter individ-

ually in the command line using clinicadl train --config_file FILENAME.

23



3.2.6. Performance evaluation

ClinicaDL provides specific functions to easily perform inference with

models previously trained with the tool. This functionality is available in a

specific sub menu of the command line (clinicadl predict). For example,

one may want to evaluate the performance of a trained model on a set of

new samples. In this case, the command will load the best model, the input

images (in a BIDS/CAPS-like format) and the list of subjects of the data

group. Trained models are available within the MAPS produced during the

training and the other information can be either integrated into this structure

or proposed as a command line option. The results are written in the MAPS

as pre-formatted reports with the metric values at di↵erent levels (e.g. image-

level and patch-level) and the output values computed for each input image

of the data group.

3.2.7. Interpretation

The most critical issue of deep learning methods is their lack of trans-

parency. This is why some interpretability methods have been developed

specifically for the field. These methods allow better understanding which

patterns or zones of the images have been linked to the result produced

by the network. Currently, only the gradient back-propagation method of

[27] is implemented in ClinicaDL. We plan to strengthen the content of this

command in future releases.

4. Discussion

In this paper we presented ClinicaDL, a Python open-source software for

neuroimaging data processing with deep learning. This software includes

many functionalities, such as neuroimaging preprocessing, synthetic dataset

generation, label definition, data split with similar demographics, architecture

search, network training, performance evaluation and trained network inter-

pretation. The three main objectives of ClinicaDL are to (1) help manipulate

24



neuroimaging data sets, (2) prevent data leakage from biasing results and (3)

reproduce deep learning experiments.

First, ClinicaDL relies on BIDS and CAPS formats to organize raw and

processed data, respectively. Though these formats were first introduced for

neuroimaging data management, they can be easily extended to any kind of

medical imaging data, as it would only require renaming and formatting files

of a data set.

Secondly, ClinicaDL prevents data leakage as train and validation data

characteristics are saved when the output structure (MAPS) is created. Then,

when evaluating the performance of a trained model on a new data group,

ClinicaDL checks that this data group is independent from the training and

validation groups. However, this only works under the assumption that

participants are always named in the same way across data groups. For

example, the cohorts OASIS-1, OASIS-2 and OASIS-3 comprise common

participants anonymized with di↵erent names depending on the cohort. If

OASIS-3 is used for training and OASIS-1 for test evaluation, ClinicaDL will

not detect that there is an intersection between training and test data. Then

it is the responsibility of the users to check the independence of their data

sets.

Thirdly, ClinicaDL improves deep learning experiment reproducibility by

sharing usable and tagged code, saving all parameters of the training set

and data groups used for evaluation, and providing extensive documenta-

tion. However, though all these elements improve method reproducibility,

reproducibility can still be easily broken. For example [22] explained that

using another GPU system may make the results irreproducible. Then it may

not be possible for two di↵erent users to obtain the same results on di↵erent

machines. However, one user may be interested in having a deterministic

setting to correctly evaluate the impact of one particular property to improve

their performance. Moreover, result reproducibility may also be broken by

manual architecture search and the overuse of the same data set [28]. Indeed,

25



research studies may be globally overfitting this data set and if one day

another data set is released, performance of previous studies may collapse.

This is why we implemented the random search method, although its very

high computational cost may limit its reproducibility power. In conclusion,

as reproducibility is a property which may be broken by many aspects of a

study, we advise data scientists to refer to reproducibility checklists made

available online36 to ensure that their work is (largely) reproducible.

Among the three main issues tackled by ClinicaDL, the one which is the

most often addressed is the first (data management). For example, TorchIO

and Monai ease the use of some public data sets (MedMNIST, medical

segmentation decathlon challenge, IXI and EPISURF), then other data sets

can be plugged to the library components by specifying individually the paths

to images and labels (Nobrainer only o↵ers this second option). This way,

newcomers can easily begin to handle the libraries by running examples based

on integrated data sets, and then try to use their own. The main default of

this system is the lack of reproducibility: the list of participants used must

be saved by the user independently, and the preprocessing information may

be lost. This is not the case with ClinicaDL as the characteristics of each

group are saved in the MAPS and the preprocessing is fully described in the

configuration file. TorchIO and Monai also deal with reproducibility: TorchIO

guarantees that transforms with a random factor can be reproduced as one

can get the transforms’ history, and Monai allows setting a random seed to

compute a deterministic training. However, they do not propose any system

similar to the MAPS, thus experiment settings and environment versions may

be lost by the user. Finally, none of the libraries reviewed proposed systems

to avoid data leakage, though it is a crucial issue in our domain.

As exposed in Section 3.2, the association of Clinica and ClinicaDL covers

a large variety of procedures needed in deep learning experiments, that

36https://miccai2021.org/files/downloads/MICCAI2021-Reproducibility-Checklist.
pdf

26

https://miccai2021.org/files/downloads/MICCAI2021-Reproducibility-Checklist.pdf
https://miccai2021.org/files/downloads/MICCAI2021-Reproducibility-Checklist.pdf


starts from the raw data format and ends with network interpretability. On

the contrary, TorchIO is more specialized as it focuses on medical imaging

transforms, particularly for data augmentation. This focus results in a

larger amount of options in this particular domain. This is why we consider

integrating modules from TorchIO for data augmentation in the future. Monai

is more complete with the possibility to transform images, and train, evaluate

and interpret networks. They also provide a large amount of options for many

features which are not customizable yet in ClinicaDL (for example the loss

and the optimizer). We would also like to enable the parametrization of more

features, whose options could be easily added by advanced users.

ClinicaDL aims at being flexible, thus a section of the documentation is

dedicated to the addition of new options of the main features. At the present

time it is possible to customize:

• the architecture of the network (dependent from the task learnt),

• the mode extracted from the 3D image (current options: image, patch,

roi, slice),

• the task learnt by the network (current options: classification, regression,

image reconstruction),

• the metrics used for evaluation and best weights selection (dependent

from the task learnt).

Even if some options are not already integrated to the framework, we hope

that advanced users will be prone to propose new pipelines to the repository.

5. Conclusion

In this paper we presented ClinicaDL, an open-source software for deep

learning processing on neuroimaging data. With this software, we solve the

three main issues encountered by deep learning users who are not specialist

27



of the neuroimaging domain: (1) the data management and preprocessing of

neuroimaging data sets, (2) the contamination of results by data leakage and

(3) the lack of reproducibility of deep learning experiments.

Acknowledgments

The authors would like to thank Junhao Wen for his initial contribution

to what became ClinicaDL, Simona Bottani and Omar El Rifai for their

contributions and feedback, and Igor Koval for his soothing support.

Statements of ethical approval

Not applicable to this study.

Funding

The research leading to these results has received funding from the French

government under management of Agence Nationale de la Recherche as

part of the “Investissements d’avenir” program, reference ANR-19-P3IA-0001

(PRAIRIE 3IA Institute) and reference ANR-10-IAIHU-06 (Agence Nationale

de la Recherche-10-IA Institut Hospitalo-Universitaire-6).

Competing interests

The authors do not have any competing interests to declare.

References

[1] J. Wen, E. Thibeau-Sutre, M. Diaz-Melo, J. Samper-González,

A. Routier, S. Bottani, D. Dormont, S. Durrleman, N. Burgos, O. Colliot,

Convolutional neural networks for classification of Alzheimer’s disease:

Overview and reproducible evaluation, Medical Image Analysis 63 (2020)

101694. doi:10.1016/j.media.2020.101694.

URL https://www.sciencedirect.com/science/article/pii/

S1361841520300591

28

https://www.sciencedirect.com/science/article/pii/S1361841520300591
https://www.sciencedirect.com/science/article/pii/S1361841520300591
https://doi.org/10.1016/j.media.2020.101694
https://www.sciencedirect.com/science/article/pii/S1361841520300591
https://www.sciencedirect.com/science/article/pii/S1361841520300591


[2] R. K. Samala, H.-P. Chan, L. Hadjiiski, S. Koneru, Hazards of data

leakage in machine learning: a study on classification of breast cancer

using deep neural networks, in: Medical Imaging 2020: Computer-Aided

Diagnosis, Vol. 11314, International Society for Optics and Photonics,

2020, p. 1131416. doi:10.1117/12.2549313.

URL https://www.spiedigitallibrary.org/

conference-proceedings-of-spie/11314/1131416/

Hazards-of-data-leakage-in-machine-learning--a-study/10.

1117/12.2549313.short

[3] H. Panwar, P. K. Gupta, M. K. Siddiqui, R. Morales-Menendez,

V. Singh, Application of deep learning for fast detection of COVID-19 in

X-Rays using nCOVnet, Chaos, Solitons & Fractals 138 (2020) 109944.

doi:10.1016/j.chaos.2020.109944.

URL https://www.sciencedirect.com/science/article/pii/

S096007792030343X

[4] N. Bussola, A. Marcolini, V. Maggio, G. Jurman, C. Furlanello, AI

slipping on tiles: data leakage in digital pathology, arXiv:1909.06539

[eess, q-bio] (Nov. 2020).

URL http://arxiv.org/abs/1909.06539

[5] E. Yagis, S. W. Atnafu, A. G. S. de Herrera, C. Marzi, M. Giannelli,

C. Tessa, L. Citi, S. Diciotti, Deep Learning in Brain MRI: E↵ect of

Data Leakage Due to Slice-Level Split Using 2D Convolutional Neural

Networks, Preprint, In Review (2021). doi:10.21203/rs.3.rs-464091/

v1.

[6] M. Hutson, Artificial intelligence faces reproducibility crisis, Science

359 (6377) (2018) 725–726. doi:10.1126/science.359.6377.725.

URL https://www.sciencemag.org/lookup/doi/10.1126/science.

359.6377.725

29

https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11314/1131416/Hazards-of-data-leakage-in-machine-learning--a-study/10.1117/12.2549313.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11314/1131416/Hazards-of-data-leakage-in-machine-learning--a-study/10.1117/12.2549313.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11314/1131416/Hazards-of-data-leakage-in-machine-learning--a-study/10.1117/12.2549313.short
https://doi.org/10.1117/12.2549313
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11314/1131416/Hazards-of-data-leakage-in-machine-learning--a-study/10.1117/12.2549313.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11314/1131416/Hazards-of-data-leakage-in-machine-learning--a-study/10.1117/12.2549313.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11314/1131416/Hazards-of-data-leakage-in-machine-learning--a-study/10.1117/12.2549313.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11314/1131416/Hazards-of-data-leakage-in-machine-learning--a-study/10.1117/12.2549313.short
https://www.sciencedirect.com/science/article/pii/S096007792030343X
https://www.sciencedirect.com/science/article/pii/S096007792030343X
https://doi.org/10.1016/j.chaos.2020.109944
https://www.sciencedirect.com/science/article/pii/S096007792030343X
https://www.sciencedirect.com/science/article/pii/S096007792030343X
http://arxiv.org/abs/1909.06539
http://arxiv.org/abs/1909.06539
http://arxiv.org/abs/1909.06539
https://doi.org/10.21203/rs.3.rs-464091/v1
https://doi.org/10.21203/rs.3.rs-464091/v1
https://www.sciencemag.org/lookup/doi/10.1126/science.359.6377.725
https://doi.org/10.1126/science.359.6377.725
https://www.sciencemag.org/lookup/doi/10.1126/science.359.6377.725
https://www.sciencemag.org/lookup/doi/10.1126/science.359.6377.725


[7] K. J. Gorgolewski, T. Auer, V. D. Calhoun, R. C. Craddock, S. Das,

E. P. Du↵, G. Flandin, S. S. Ghosh, T. Glatard, Y. O. Halchenko, D. A.

Handwerker, M. Hanke, D. Keator, X. Li, Z. Michael, C. Maumet, B. N.

Nichols, T. E. Nichols, J. Pellman, J.-B. Poline, A. Rokem, G. Schaefer,

V. Sochat, W. Triplett, J. A. Turner, G. Varoquaux, R. A. Poldrack,

The brain imaging data structure, a format for organizing and describing

outputs of neuroimaging experiments, Scientific Data 3 (2016) 160044.

doi:10.1038/sdata.2016.44.

[8] A. Routier, N. Burgos, M. Dı́az, M. Bacci, S. Bottani, O. El-Rifai,

S. Fontanella, P. Gori, J. Guillon, A. Guyot, R. Hassanaly, T. Jacque-

mont, P. Lu, A. Marcoux, T. Moreau, J. Samper-González, M. Teich-

mann, E. Thibeau-Sutre, G. Vaillant, J. Wen, A. Wild, M.-O. Habert,

S. Durrleman, O. Colliot, Clinica: An Open-Source Software Platform

for Reproducible Clinical Neuroscience Studies, Frontiers in Neuroinfor-

matics 15 (2021) 39. doi:10.3389/fninf.2021.689675.

[9] K. J. Gorgolewski, F. Alfaro-Almagro, T. Auer, P. Bellec, M. Capotă,

M. M. Chakravarty, N. W. Churchill, A. L. Cohen, R. C. Craddock,

G. A. Devenyi, A. Eklund, O. Esteban, G. Flandin, S. S. Ghosh, J. S.

Guntupalli, M. Jenkinson, A. Keshavan, G. Kiar, F. Liem, P. R. Raa-

mana, D. Ra↵elt, C. J. Steele, P.-O. Quirion, R. E. Smith, S. C. Strother,

G. Varoquaux, Y. Wang, T. Yarkoni, R. A. Poldrack, BIDS apps: Improv-

ing ease of use, accessibility, and reproducibility of neuroimaging data

analysis methods, PLOS Computational Biology 13 (3) (2017) e1005209.

doi:10.1371/journal.pcbi.1005209.

[10] P. Lakhani, D. L. Gray, C. R. Pett, P. Nagy, G. Shih, Hello World Deep

Learning in Medical Imaging, Journal of Digital Imaging 31 (3) (2018)

283–289. doi:10.1007/s10278-018-0079-6.

URL https://doi.org/10.1007/s10278-018-0079-6

30

https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.3389/fninf.2021.689675
https://doi.org/10.1371/journal.pcbi.1005209
https://doi.org/10.1007/s10278-018-0079-6
https://doi.org/10.1007/s10278-018-0079-6
https://doi.org/10.1007/s10278-018-0079-6
https://doi.org/10.1007/s10278-018-0079-6


[11] E. Gibson, W. Li, C. Sudre, L. Fidon, D. I. Shakir, G. Wang,

Z. Eaton-Rosen, R. Gray, T. Doel, Y. Hu, T. Whyntie, P. Nachev,

M. Modat, D. C. Barratt, S. Ourselin, M. J. Cardoso, T. Ver-

cauteren, NiftyNet: a deep-learning platform for medical imaging,

Computer Methods and Programs in Biomedicine 158 (2018) 113–122.

doi:10.1016/j.cmpb.2018.01.025.

URL https://www.sciencedirect.com/science/article/pii/

S0169260717311823

[12] N. Pawlowski, S. I. Ktena, M. C. H. Lee, B. Kainz, D. Rueckert,

B. Glocker, M. Rajchl, DLTK: State of the Art Reference Implementa-

tions for Deep Learning on Medical Images, arXiv:1711.06853 [cs]ArXiv:

1711.06853 (Nov. 2017).

URL http://arxiv.org/abs/1711.06853

[13] M. Antonelli, A. Reinke, S. Bakas, K. Farahani, AnnetteKopp-Schneider,

B. A. Landman, G. Litjens, B. Menze, O. Ronneberger, R. M. Summers,

B. van Ginneken, M. Bilello, P. Bilic, P. F. Christ, R. K. G. Do, M. J.

Gollub, S. H. Heckers, H. Huisman, W. R. Jarnagin, M. K. McHugo,

S. Napel, J. S. G. Pernicka, K. Rhode, C. Tobon-Gomez, E. Vorontsov,

H. Huisman, J. A. Meakin, S. Ourselin, M. Wiesenfarth, P. Arbelaez,

B. Bae, S. Chen, L. Daza, J. Feng, B. He, F. Isensee, Y. Ji, F. Jia,

N. Kim, I. Kim, D. Merhof, A. Pai, B. Park, M. Perslev, R. Rezaiifar,

O. Rippel, I. Sarasua, W. Shen, J. Son, C. Wachinger, L. Wang, Y. Wang,

Y. Xia, D. Xu, Z. Xu, Y. Zheng, A. L. Simpson, L. Maier-Hein, M. J.

Cardoso, The Medical Segmentation Decathlon, arXiv:2106.05735 [cs,

eess] (2021). arXiv:2106.05735.

[14] A. L. Simpson, M. Antonelli, S. Bakas, M. Bilello, K. Farahani, B. van

Ginneken, A. Kopp-Schneider, B. A. Landman, G. Litjens, B. Menze,

O. Ronneberger, R. M. Summers, P. Bilic, P. F. Christ, R. K. G. Do,

M. Gollub, J. Golia-Pernicka, S. H. Heckers, W. R. Jarnagin, M. K.

31

https://www.sciencedirect.com/science/article/pii/S0169260717311823
https://doi.org/10.1016/j.cmpb.2018.01.025
https://www.sciencedirect.com/science/article/pii/S0169260717311823
https://www.sciencedirect.com/science/article/pii/S0169260717311823
http://arxiv.org/abs/1711.06853
http://arxiv.org/abs/1711.06853
http://arxiv.org/abs/1711.06853
http://arxiv.org/abs/2106.05735


McHugo, S. Napel, E. Vorontsov, L. Maier-Hein, M. J. Cardoso, A large

annotated medical image dataset for the development and evaluation

of segmentation algorithms, arXiv:1902.09063 [cs, eess] (2019). arXiv:

1902.09063.

[15] F. Pérez-Garćıa, R. Sparks, S. Ourselin, TorchIO: A Python library for

e�cient loading, preprocessing, augmentation and patch-based sampling

of medical images in deep learning, Computer Methods and Programs in

Biomedicine 208 (2021) 106236. doi:10.1016/j.cmpb.2021.106236.

[16] F. Pérez-Garćıa, R. Rodionov, A. Alim-Marvasti, R. Sparks, J. Duncan,

S. Ourselin, EPISURG: a dataset of postoperative magnetic resonance

images (MRI) for quantitative analysis of resection neurosurgery for

refractory epilepsy, publisher: University College London (Dec. 2020).

doi:10.5522/04/9996158.v1.

URL /articles/dataset/EPISURG_a_dataset_of_postoperative_

magnetic_resonance_images_MRI_for_quantitative_analysis_of_

resection_neurosurgery_for_refractory_epilepsy/9996158/1

[17] G. Lee, B. Kang, K. Nho, K.-A. Sohn, D. Kim, MildInt: Deep Learning-

Based Multimodal Longitudinal Data Integration Framework, Frontiers

in Genetics 10 (2019). doi:10.3389/fgene.2019.00617.

[18] A. Jungo, O. Scheidegger, M. Reyes, F. Balsiger, Pymia: A Python

package for data handling and evaluation in deep learning-based medical

image analysis, Computer Methods and Programs in Biomedicine 198

(2021) 105796. doi:10.1016/j.cmpb.2020.105796.

[19] S. Kaufman, S. Rosset, C. Perlich, O. Stitelman, Leakage in data mining:

Formulation, detection, and avoidance, ACM Transactions on Knowledge

Discovery from Data 6 (4) (2012) 15:1–15:21. doi:10.1145/2382577.

2382579.

32

http://arxiv.org/abs/1902.09063
http://arxiv.org/abs/1902.09063
https://doi.org/10.1016/j.cmpb.2021.106236
https://doi.org/10.5522/04/9996158.v1
https://doi.org/10.3389/fgene.2019.00617
https://doi.org/10.1016/j.cmpb.2020.105796
https://doi.org/10.1145/2382577.2382579
https://doi.org/10.1145/2382577.2382579


[20] S. N. Goodman, D. Fanelli, J. P. A. Ioannidis, What does research

reproducibility mean?, Science Translational Medicine 8 (341) (2016)

341ps12–341ps12. doi:10.1126/scitranslmed.aaf5027.

[21] C. Collberg, T. A. Proebsting, Repeatability in computer systems

research, Communications of the ACM 59 (3) (2016) 62–69. doi:

10.1145/2812803.

[22] M. Crane, Questionable Answers in Question Answering Research:

Reproducibility and Variability of Published Results, Transactions

of the Association for Computational Linguistics 6 (2018) 241–252.

doi:10.1162/tacl_a_00018.

[23] A. L. Beam, A. K. Manrai, M. Ghassemi, Challenges to the Reproducibil-

ity of Machine Learning Models in Health Care, JAMA 323 (4) (2020)

305–306. doi:10.1001/jama.2019.20866.

[24] M. Baker, 1,500 scientists lift the lid on reproducibility, Nature News

533 (7604) (2016) 452. doi:10.1038/533452a.

[25] V. Stodden, M. McNutt, D. H. Bailey, E. Deelman, Y. Gil, B. Hanson,

M. A. Heroux, J. P. A. Ioannidis, M. Taufer, Enhancing Reproducibility

for Computational Methods, Science 354 (6317) (2016) 1240–1241. doi:

10.1126/science.aah6168.

[26] J. Bergstra, Y. Bengio, Random Search for Hyper-Parameter Optimiza-

tion, Journal of Machine Learning Research 13 (Feb) (2012) 281–305.

[27] K. Simonyan, A. Vedaldi, A. Zisserman, Deep Inside Convolutional

Networks: Visualising Image Classification Models and Saliency Maps,

arXiv:1312.6034 [cs] (2013). arXiv:1312.6034.

[28] W. H. Thompson, J. Wright, P. G. Bissett, R. A. Poldrack, Dataset

decay and the problem of sequential analyses on open datasets, eLife 9

(2020) e53498. doi:10.7554/eLife.53498.

33

https://doi.org/10.1126/scitranslmed.aaf5027
https://doi.org/10.1145/2812803
https://doi.org/10.1145/2812803
https://doi.org/10.1162/tacl_a_00018
https://doi.org/10.1001/jama.2019.20866
https://doi.org/10.1038/533452a
https://doi.org/10.1126/science.aah6168
https://doi.org/10.1126/science.aah6168
http://arxiv.org/abs/1312.6034
https://doi.org/10.7554/eLife.53498

	Introduction
	Methods: Avoiding common pitfalls in deep learning studies with ClinicaDL
	Formatting and preprocessing of neuroimaging data
	BIDS format
	CAPS format
	ClinicaDL modes
	MAPS format
	Conclusion

	Data leakage handling
	Reproducibility

	Results: ClinicaDL overview
	Development Practices
	Distribution and Installation
	Continuous Integration and Deployment
	Model distribution
	Documentation

	Main functionalities
	Preprocessing images
	Generation of toy data sets
	Preparing metadata
	Random search
	Training networks
	Performance evaluation
	Interpretation


	Discussion
	Conclusion

