
HAL Id: hal-03351957
https://hal.science/hal-03351957

Submitted on 22 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Under the dome: preventing hardware timing
information leakage

Mathieu Escouteloup, Ronan Lashermes, Jacques Fournier, Jean-Louis Lanet

To cite this version:
Mathieu Escouteloup, Ronan Lashermes, Jacques Fournier, Jean-Louis Lanet. Under the dome: pre-
venting hardware timing information leakage. CARDIS 2021 - 20th Smart Card Research and Ad-
vanced Application Conference, Nov 2021, Lübeck, Germany. pp.1-20. �hal-03351957�

https://hal.science/hal-03351957
https://hal.archives-ouvertes.fr

Under the dome: preventing hardware timing
information leakage

Mathieu Escouteloup1, Ronan Lashermes1, Jacques Fournier2, and Jean-Louis
Lanet1

1 Inria, Univ Rennes, CNRS, IRISA
2 Univ. Grenoble Alpes, CEA Leti, DSYS/LSOSP

Abstract. Numerous timing side-channels attacks have been proposed
in the recent years, showing that all shared states inside the microarchi-
tecture are potential threats. Previous works have dealt with this prob-
lem by considering those “shared states” separately and not by looking
at the system as a whole.
In this paper, instead of reconsidering the problematic shared resources
one by one, we lay out generic guidelines to design complete cores immune
to microarchitectural timing information leakage. Two implementations
are described using the RISC-V ISA with a simple extension. The cores
are evaluated with respect to performances, area and security, with a
new open-source benchmark assessing timing leakages.
We show that with this “generic” approach, designing secure cores even
with complex features such as simultaneous multithreading is possible.
We discuss about the trade-offs that need to be done in that respect
regarding the microarchitecture design.

1 Introduction

Since Spectre [18] and Meltdown [20] attacks were published in 2018, the mi-
croarchitecture security is under scrutiny. Numerous attacks have now been
demonstrated [4, 10, 22, 24, 35] targeting the whole microarchitecture to ex-
tract information from timing variations. These weaknesses in the design allow
extracting information across different security domains: a userland application
can read in kernel memory, a virtual machine (VM) can gain information on
another VM, etc. Unfortunately, on the software side, efficient countermeasures
are lacking, and radical solutions have been forcefully implemented. For ex-
ample, in 2018, the OpenBSD operating system (OS) decided [15] to disable
Intel Hyper-Threading (Intels’ simultaneous multithreading (SMT) technology)
to avoid information leakage between hardware threads (also called harts), an
expensive approach that cannot be reproduced for all hardware mechanisms:
disabling Intel HT leads to performance losses of up to 20% [19].

Motivation Solutions have been proposed in the literature [7, 12, 16, 17, 25, 32,
34], but they focus on some microarchitectural components in isolation. In this
paper, we outline new generic design rules based on first principles to prevent

2 Authors Suppressed Due to Excessive Length

timing information leakage, and build whole cores immune to them. In partic-
ular, we explore the instruction set architecture (ISA) modifications that can
help build secure designs for all cores, from simple microcontrollers to complex
microprocessors.

Contributions In this paper we propose and implement a process to build cores
without microarchitectural timing leakage. After analysing the attacks in the
literature (section 2), we extract the design rules that must be followed for
leakage-free implementations (section 3). We propose an ISA modification to
enable circumventing timing information leakage (section 4). We implement two
cores with cache memories, branch prediction or SMT, free of timing leakage
(section 5). We propose a security benchmark suite, timesecbench, that evalu-
ate the timing leakage with respect to several microarchitectural components
(section 6). Our security and performance evaluations highlight the trade-offs
required to design leakage-free cores (section 6).

2 The need to redefine the microarchitecture for security

Sharing is one of the basic principles used in modern cores for achieving high
performances, e.g. cache memories shared between cores or branch prediction
information between programs. But sharing leaks timing information between
users of the same resources, leaks which can be exploited by attackers.

2.1 Threats

Threat model In this paper, we consider the covert channels scenario where
shared resources are used to exchange information. The attacker controls both
the trojan application, sending information through timing dependencies and the
spy application, reading the information. The applications are supposed to be
located in different security domains. A security domain is delimited by a unique
security policy: different policies define corresponding domains. Resisting to this
threat implies that the system can thwart a side-channel scenario, where the
attacker only controls the spy and where the trojan only leaks information un-
willingly. We are interested in microarchitectural timing leakage, therefore the
timing information read by the spy must only be coming from the microar-
chitectural state of the core when the spy is executing. Thus, all trojans that
functionally leak information, by writing to memory or with a time-dependent
function, are out of scope in our paper.

Our threat model is the following: the attacker wins if she is able to transmit
information from the trojan to the spy. But she cannot use any architectural
means of communication (architectural features are the ones exposed by the
ISA). The spy cannot measure the trojan execution time (time measurements
are architectural functionalities).

Under the dome: preventing hardware timing information leakage 3

Shared resources attacks Different kinds of sharing have been shown to be sources
of timing information leakages in modern processor architectures. Timing varia-
tions due to cache memories [6] have been known for many years, with multiple
variants in numerous implementations [13]. Similar results have been achieved
on different resources like branch prediction tables or translation lookaside buffer
(TLB).

The resource usage itself represents an interesting information that can be
recovered by measuring resource contention. Different works [29, 3, 5, 4] have
shown the possibility to recover information from processors with SMT sup-
port. The same kind of observation is also possible with mechanisms like cache
controllers shared between cores.

In 2018, timing leakage attacks have reached a new level of complexity with
transient attacks, adding the use of hardware techniques like speculation or out-
of-order speculation. In Spectre [18] or Meltdown [20] and their variants [10, 28,
9] shared resources are used to leak information. It was an important lesson for
designers: even if ignored during many years, timing leakages are still present in
all modern systems.

2.2 Related work

Since the publication of the first shared resource exploitation, new countermea-
sures are regularly proposed.

Hardware solutions modify the microarchitecture to ensure the security.
Simply removing the problematic mechanisms is not realistic from a performance
point of view [8, 19]. Then, another approach is to design shared resources differ-
ently. Some solutions [11, 17] try to partition cache memories among the users:
each of them has now only access to its own data. It can be spatial partitioning,
where the cache is split between the different users, and/or temporal partition-
ing by flushing the data at the end of a user’s execution. Another approach is to
remove the deterministic behaviour by introducing some randomization [26, 21].
In this case, if timing leakages still exist, they do not depend on confidential
information. Both approaches have been known for many years [30], and can
also be combined to enforce the isolation [12]. Finally, proposals also concern
other mechanisms like speculation [16, 34] or port contention [25].

Software solutions are also studied, where the application has to directly
consider the microarchitecture. Retpoline [27] tries to protect against branch
target injection used by Spectre [18] by influencing and redirecting speculation
when it is needed. Existing primitives for microarchitecture management can also
be used in some cases. lfence instruction exists in some x86 implementations [1]
to block branch prediction. Other primitives like clflush also exist to manage
cache structures.

If both pure hardware or software approaches have interesting properties,
they also suffer from significant disadvantages. With pure hardware solutions, the
software does not have to consider security issues on the hardware side. However,
no flexibility on the applied constraints is possible, harming the performances.
Conversely with pure software solutions, the application must perfectly know the

4 Authors Suppressed Due to Excessive Length

microarchitecture to protect itself from attacks on the hardware side, harming
its portability. More importantly, it also needs a way to manage all the different
mechanisms with dedicated primitives. It therefore leads to study the role of the
ISA.

The ISA is the interface between the hardware and the software. It creates
an abstraction of the hardware for the software. Here again, two strategies have
been explored to modify the architecture for security purposes. Regarding the
previous software solutions, a first one is to break this abstraction role to allow
a better microarchitecture management from the software. This functional ap-
proach [14, 33] focuses on designing a complete augmented ISA where hardware
shared features must be directly manageable with software. In our opinion, these
works all suffer from the same conceptual weakness: they consider the timing
problem as a microarchitectural design issue. Instead, the problem lies in the lim-
ited ISA semantics regarding security notions: the issue cannot be solved only
by flushing microarchitectural elements, at the risk of forbidding multithreaded
or multicore processors, which require spatial sharing. Other works have shown
the efficiency of a more abstract approach, by allowing an ISA interface to guide
the resource management by the hardware. MI6 [7] adds a new purge instruc-
tion to flush microarchitectural state independently of the implementation. The
DAWG [17] proposal offers new registers to the software to parametrize security
domains in cache-like structures. In ConTExT [23], a dedicated bit is added to
each page entry to indicate if transient execution is possible or not.

However, these solutions are still considering only some specific shared re-
sources and not the problem as a whole. By focusing on microarchitectural el-
ements in isolation, they are still missing the bigger picture: we do not want
to add numerous mechanisms to finely control the cache or the speculation be-
haviour. This path leads to stacking of countermeasures, to complex systems, to
poor portability (how to use ConTExT [23] without virtual memory ?) and will
severely limit the possibility one day of having formal security guarantees for the
software running on such processors. Instead of fine-tuning the microarchitec-
ture, we prefer a formal contract between software and hardware. This leads to
our contribution where the fully abstract approach allows a clear organization.
The ISA must allow the software to communicate its security properties to the
hardware.

3 Design guidelines

Shared resources must be designed by considering security constraints. Secure
design guidelines can be crafted to avoid timing leakages by considering the
attack models based on known attacks.

3.1 Definitions and goals

We call shared resources all states or elements which can be assigned to different
users. A resource is temporally shared when multiple users can request it at

Under the dome: preventing hardware timing information leakage 5

different times. A resource is spatially shared when multiple users can request it
simultaneously. Spatial and temporal sharing are not exclusive: some resources,
particularly caches, can use both. For the rest of this paper, we define a user as
a security domain which must be isolated from the other ones.

In any implementation, shared resources are limited in number: this is one
of the reasons they are shared. A system with multiple security domains implies
that at least one piece of information will inevitably be leaked between them: the
availability of the resource. If a resource is used by a security domain, it becomes
unavailable for another domain. By construction, this cannot be avoided. Yet it is
possible to overcome this difficulty by distinguishing between static and dynamic
availability. The dynamic availability is the possibility for a resource to be used
at any point in time as long as it is not already requested. Static availability
is the possibility for a security domain to lock a resource for a potential future
usage. When the security domain locks the resource, we say that it is allocated, in
which case it is no longer available but not necessarily “used”.To allow correct
execution of a security domain, resource allocation must be done during its
creation and kept during its whole lifetime.

While dynamic availability leaks information with precise execution timings
that can be exploited with port contention attacks [4], static availability does
not permit this kind of leakage. In our case, we only allow static availability as
information leakage, giving the following security property:

Shared resource security property The only information that a security
domain may extract from a shared resource is the domain’s own data or the
resource’s static availability.

Then, the different shared resources must be modified to prevent other infor-
mation leakages. These modifications needed to safely support security domains
can be summarized in three main strategies: lock, flush and split.

3.2 Resource availability: lock

Design guideline 1: static allocation The different minimal resources
needed by a security domain must be allocated during the domain creation and
locked until its deletion.

Each shared resource can only support a limited number of security domains,
which can be one (only temporal sharing) or more (temporal and spatial sharing).

Static allocation allows having the exclusivity of a resource in order to use
it without execution timing leakages. Obviously, it is necessary only in systems
where multiple security domains can simultaneously be executed, leading to
potential spatial leakages. Allocation is simplified when only one security domain
can exist at any time in the whole system: it can simply use all the different
resources.

6 Authors Suppressed Due to Excessive Length

3.3 Temporal resource sharing: flush

The static allocation cannot last forever and the resource must be released even-
tually to make a place for another security domain. The resource design must
ensure that there is no leakage between the security domains, which leads to the
following guideline:

Design guideline 2: release When a security domain ends, all its associated
resources must be released only when all persistent states have also been erased.

We call “persistent states” all information stored in registers or memories
whether data, metadata, finite-state machine (FSM) states etc. All of them are
associated with a security domain for which the associated data must be removed
before allowing allocation from another security domain. Different works [33,
7] have shown that flushing resources is efficient to make a temporal isolation
barrier. Then, all temporally shared resources must support it.

3.4 Spatial resource sharing: split

In some cases, lock and flush strategies are enough: e.g. if there is only temporal
sharing. But fully locking a resource in an exclusive way during each execution
can be limiting. Some resources need to handle requests from different users
simultaneously. In this case, the correct strategy is partitioning, also called split.
Such a resource must be able to isolate all users from each other.

Design guideline 3: partitioning A resource able to handle requests from
multiple security domains simultaneously must be able to partition each domain
state in its own isolated compartment. States and data cannot be shared.

In other words, any spatially shared resource must be split between the se-
curity domains. It can be seen as resources with multiple lock slot: multiple
security domains can simultaneously lock a part of this resource, but without
any interaction between them.

Because split is only a form of sharing, it also has both temporal and spatial
variants. In a temporal split, the resource is successively available for each user
and only seems simultaneously available at a global scale. It is simply a way of
transforming a partial simultaneous sharing in a local temporal sharing where
lock and flush strategies are applied. With spatial split, the resource is truly
simultaneously available for each user at any time. It leads to our last design
guideline:

Design guideline 4: availability split A spatially shared resource must
ensure that, at any given time, its availability for any security domain is inde-
pendent from the domains being served.

Partitioning can take several forms depending on the targeted resources [11,
12, 17, 30, 25]. To efficiently apply all these strategies, the hardware must finally
be informed about the security domain switching.

Under the dome: preventing hardware timing information leakage 7

3.5 Exclusive allocation and heterogeneity

As mentioned previously, static allocation only prevents the detection of a re-
source usage, not its availability. In the case of heterogeneous systems, this in-
formation can be exploited to build a covert channel. We call a system het-
erogeneous when all the users do not have exactly the same resources. It is a
common organization in modern microarchitectures: all the threads or cores are
not necessarily equivalent, e.g. to satisfy different performances or power con-
straints. Then, if the trojan allocates some resources and not others, a message
can be sent to the spy: the latter can deduce the trojan allocation from mea-
suring its own available resources. In a completely secure system without even
covert channels, we can deduce the following guideline:

Design guideline 5: homogeneity During their execution, all users must be
treated equally, by allocating the same resources in types and numbers.

Obviously, strictly applying this rule can be very restrictive: no flexibility
is allowed in the resource allocation. If the natural solution would be to have
strictly duplicated cores with their own resources, we will present in the next
section a manner to prevent this covert channel while preserving some flexibility.

4 Domes

The security domains can only be defined at the software level through the
applications themselves. To enforce the shared resource security property we
defined above, the hardware has to be aware of the security domains. Therefore
to communicate their boundaries to the hardware, the ISA must be modified. In
this section, we present our proposal to modify the RISC-V ISA.

4.1 Fine-grained security domains

In current systems, we can find several implementations of security domains.
They are the result of a historical evolution of the security needs due to the
evolution of the threats. The mostly used and classic security domains are the
privilege levels, notably separating the kernel from the userland.

However, in the case of sharing, these domains are too coarse-grained. An
application may want to isolate tasks (e.g. a web server isolating several clients, a
web browser sandboxing its tabs) while having only one address space. It justifies
the works such as ConTExT [23] where security domains are proposed at page
granularity, Time-Secure Cache [26] at process granularity or a completely new
security domain notion managed by the software in DAWG[17]. This domain
notion must now be used by the hardware to manage all the shared resources.

4.2 Fence or context

Boundaries of the security domains have to be communicated from the soft-
ware to the hardware. In classical systems, privilege levels are changed with a

8 Authors Suppressed Due to Excessive Length

dedicated mechanism, often with specialized instructions. Similarly, we must de-
fine the mechanism that allows switching between fine-grained security domains.
Before the precise ISA modifications, we must choose between two possible se-
mantics.

The first possibility is to use stateless switches between domains called fences,
similarly to the timing fences from Wistoff et al. [33]. In this case the boundary
between domains is specified by a dedicated fence.t instruction that separates
the security domains before and after the instruction. Typically, the execution of
this fence must ensure that all states associated with the current security domain
are flushed out of the microarchitecture. Finally, fences are particularly efficient
for creating temporal security domains: each one is delimited by the previous
and the next fences. But this approach does not consider spatial sharing: for
example the hardware has no information to decide whether two harts are in the
same security domain.

The second possibility is the use of contexts, a stateful switch. Each mi-
croarchitectural resource, state or data is at any time explicitly or implicitly
associated with a security domain which constitutes the context. With this in-
formation, the resource can be adapted to the execution and may share states
(same domains) or isolate them (different domains), both temporally and spa-
tially. The context semantics gives more power to the microarchitecture than
fences, but increases the system complexity.

Since we want a global solution able to consider all the different shared re-
sources in the microarchitecture, we choose the context semantics. We call our
specific implementation a dome. A dome is an execution context that corre-
sponds to one security domain. At any given time, each hart is assigned to a
unique dome but several harts can share the same dome. At the microarchitec-
ture level, it defines which resources can be used by each hart: all instructions
and microarchitectural states are implicitly or explicitly assigned to the corre-
sponding dome.

4.3 ISA changes for dome support

Adding dome support in a core requires to augment the ISA with new instruc-
tions, new registers and the corresponding hardware modifications. This proposal
can be seen as an extension over the base RV32I [31]. Our goal here is to analyse
the ISA with context support: their role, what is needed and the consequences.
The contextualization can be implemented in different ways and only one is
described in the rest of this paper. Because our proposal does not use specific
features of the RISC-V ISA, the same principles can be exported to other ones
like x86, ARM etc.

Dome identifier Each dome is represented by a unique number, the dome identi-
fier, stored in a dedicated register domeid, one per hart. This register is read-only,
since a dome cannot dynamically change its own configuration. domenextid is
the register that indicates the identifier of the next dome when a context switch

Under the dome: preventing hardware timing information leakage 9

occurs. The current dome can write into this register. These registers are con-
sidered as new Machine-level control and status registers (CSRs): they are man-
ageable by the same instructions described in the RISC-V ISA [31].

Fig. 1: Resource lifecycle with static allocation.

When our next dome configuration is ready, we need to switch to the new
domain with the dedicated instruction dome.switch. Each resource has a life-
cycle described in Figure 1. Allocated resources have to be flushed and then
released, before those needed by the new dome are allocated. At the same time,
domeid must be updated: it receives the information present in domenextid. If
we want to free all resources from a security domain, for example before turning
the machine off with write-back caches, it is enough to switch to a new domain.

Dome capability Sometimes, there are not enough resources in number to satisfy
the needs of each hart. For example, we may think of a system with only one
cryptographic accelerator, one floating-point unit, or as in our case one multiply
and divide execution unit (MULDIV) execution unit. To deal with this case, we
add new registers to store the dome capabilities, specifying if the dome needs
access to these few resources: domecap and domenextcap. Bits are set in these
registers if the dome has or need access to some predetermined features (such as
RISCV M extension) that map to hardware resources.

Upon a switch, the system will try to lock the resources corresponding to
the capabilities of the next dome. Therefore dome.switch rd can now fail if the
resources asked are not available; in case of success rd is set to 0.

4.4 Software implications

In addition to having an impact on the hardware, the ISA also changes the way
software must be designed.

Compiler The RISC-V ISA naturally suggests linking a capability bit for each
supported extension: because each instruction is already associated to an ex-
tension, the compiler knows when a piece of code requires a capability. As a
consequence, the compiler can automatically insert the proper instructions for
a dome switch (capability and all), apart from the next dome identifier. Indeed,
identifying the security domains is part of the application logic.

10 Authors Suppressed Due to Excessive Length

Dome management In our implementation, domes are managed by the higher
level of privilege, the Machine-level. It is responsible for selecting the correct
IDs and capabilities for the different domes where are executed the applica-
tions. It must also perform the different switches needed. Domes are only tools
to allow isolation of the software and, as any tool, they can be used improp-
erly. Software developers have to be aware that these guarantees are offered at
dome granularity. Monolithic systems are not going to take full advantages of
the dome switching guarantees, while too many dome switches can make static
resource allocations similar to dynamic ones. Also, since capabilities are in con-
tradiction with the Design guideline 5, it is the responsibility of this higher
privilege-level to ensure that multiple domes are not trying to communicate
with resource allocation, e.g. abusing dome.switch. This can be detected with
a failing dome.switch.

Spatial sharing in the single hart case The cost of dome switching can be high in
some scenarios. For example, in the case of an exception, all the shared resources
must be flushed twice. It can be interesting to allow some spatial sharing, even
in a single hart case, between an active dome currently being executed and a
background dome that will eventually be returned to.

5 Implementation

To demonstrate and validate our design rules, we build several cores with a mod-
ular architecture that are evaluated in section 6. We choose the Chisel language
to allow a better modularity and configuration management. It becomes partic-
ularly easy to compare designs by only modifying some parameters: dome sup-
port can be enabled by switching a boolean variable to true. Code for our cores
and the evaluations are available online: https://gitlab.inria.fr/mescoute/
hsc-eval.

5.1 Target description

Global view To evaluate dome support in the case of a simple core but also with
spatial sharing, two cores have been implemented. The first core, named Aubrac
is based on a 5-stage in-order pipeline. The second core, named Salers, is a more
complex dual-hart 6-stage in-order pipeline as illustrated in Figure 2. In Salers,
the two harts are running simultaneously and can be switched off using custom
CSRs: one hart working alone takes all the resources and a classic superscalar
execution is achieved.

These two cores are implementations of the open-source RISC-V RV32IM
ISA [31], with CSR and fence.i support. Both cores have separate first-level
write-through cache memories for instructions (L1I) and data (L1D) with branch
prediction and basic speculation mechanisms through a branch history table
(BHT) and a branch target buffer (BTB). The different modifications, described
later in this section, are represented with a dedicated dome unit and with existing
modified components bordered with red dotted lines.

https://gitlab.inria.fr/mescoute/hsc-eval
https://gitlab.inria.fr/mescoute/hsc-eval

Under the dome: preventing hardware timing information leakage 11

Fig. 2: Global view of the Salers core microarchitecture.

Shared resources These cores are designed to model multiple resource sharing,
allowing reproducing a representative sample of attacks from the literature. Sev-
eral temporally shared resources have to be considered in both cores. The most
obvious ones are cache lines in L1I and L1D or the prediction tables. But this
also applies to the pipeline, cache controllers or replacement policy registers.

Spatially shared resources are only present in the Salers core, including cache
memories and execution units. Since the latter are shared between harts, port
contention might occur. Particularly, our MULDIV represents a worst case: oper-
ations take many cycles (8 to 32 cycles), timing variations are possible depending
on the operation (division or multiplication) and more importantly, there is only
one unit for two potential users. When one hart is using this unit, if the other one
needs it too, it must wait until the unit is released. This kind of problem is not
exclusive to execution units, and is valid for each resource not spatially shared
and present in fewer instances than the potential users. For example, port con-
tention could be possible, in our design, with cache memories. They are spatially
shared and can securely handle transactions with the pipeline, but contention is
possible with the next memory level without the special care described below.

5.2 Aubrac core

In the case of the Aubrac core, only one hart is running at a time: there is no
need to support the simultaneous execution of multiple domes. Modifications are
simply needed to have dome support (dedicated instruction and CSRs) and to
ensure that there is no persistent traces after a dome switch. For that purpose, a
dedicated execution unit implements a simplified version of the FSM described
in Figure 1. Since only temporal sharing exists here, free and allocate steps are
merged: all the resources are always allocated by a dome. The release only occurs
when all the resources are empty after the flush cycles.

12 Authors Suppressed Due to Excessive Length

5.3 Salers core

In the case of the Salers core in the Figure 2, two harts are running simultane-
ously. We need to ensure dome security properties even with spatial sharing. In
addition to the flush strategy, resource allocation with split and lock strategies
must also be implemented. We find the different modified components which
now also support partitioning and a more complex dome unit, responsible for
the resource allocation and release in addition to flush.

Allocation and release During a dome switch, allocation and release must be
performed in the case of spatial sharing. To manage each kind of spatially shared
resource, a mechanism called spread resource unit has been implemented. It is
responsible for associating each resource with a dome depending on the received
allocation and release requests. For example, we have one unit dedicated to the
arithmetic and logic units (ALUs), another for the MULDIVs, etc. They are all
implemented in the dome unit in the Figure 2 and are accessed before performing
a dome.switch.

After the allocation, each resource is tagged with its corresponding dome
and has a port number inside this context. Only free resources can be allocated
and, to respect as much as possible the Design guideline 5, this allocation is
always fixed. Then, independently of the resources available, the same number
will always be allocated: only the types can change depending on the capabilities.
Finally, when the execution of a dome is ended, it sends a release request to flush
and free resources.

The number of implemented spread units depends on the number of spatially
shared resources. During a switch, requests to release and allocate resources are
sent to the spread units to respect the resource lifecycle. The final result of a
dome.switch depends on the results of the requests to all spread units.

Spatial sharing Spatial partitioning has been applied for cache memories. It is
a well-known mechanism to allow execution of multiple security domains in the
memory hierarchy, with multiple variants. In our case, we decided to use soft-
partitioning at the way-level. Then, each way is viewed by the corresponding
spread unit as a different allocable resource. When a memory request is received
by the cache, the dome tag of the request and the one of each way are compared
to know if the data can be accessed. It is interesting to note that this is a locking
strategy applied locally on each way, leading to a splitting strategy at the scale
of the whole cache.

Cache controllers and memory bus to the main memory are other interesting
cases in our design, because they cannot be fully duplicated nor fully locked since
they are required for all executed domes. A hybrid approach between spatial
and temporal sharing is used in the form of fine-grained multithreading. The
controllers can be requested only during a fixed cyclic period by each dome,
which has an impact on the cache miss operations. The memory bus has also been
modified to support dome id transmission: the master controller is responsible
for making bus contention transparent.

Under the dome: preventing hardware timing information leakage 13

Based on the previously defined strategies, multiple implementations are pos-
sible for the same design: only some possible choices are described in this paper.
This is the designer’s role to decide where and when which mechanisms are
more interesting depending on her constraints: execution units can also be time
partitioned, prediction mechanisms partially shared if not fully duplicated etc.

6 Evaluation

6.1 Security evaluation

Timesecbench In order to validate the security properties of our approach,
we propose Timesecbench: a security benchmark suite that measures timing
leakages in various scenarios. It is inspired by the Embench[2] performance
benchmark and is fully available online: https://gitlab.inria.fr/rlasherm/
timesecbench. Obviously, even if the benchmarks can be customized indepen-
dently of the processor, the microarchitectural mechanisms under test must be
implemented.This benchmark suite can be expanded to test other mechanisms
or different cores.

Six different attacks are currently available in our security benchmark target-
ing cache memories, branch prediction mechanisms and execution units. They
have been designed with the same following covert channels scenario: a trojan
tries to send information to a spy by exploiting timing information leakage due
to shared resources. Inspired by the work of Ge et al. [14], for each attack we
measure a timing associated with the trojan sending a value i (column index)
and the spy reading a value j (row index).

We then apply a discrimination criterion (here minimal timing for the spy
reading a given value) giving a probability for the spy to read a value j when
the value sent by the trojan is i. The benchmarks are executed without any OS,
cancelling most noises between tests, allowing a better control of the system and
thus reinforcing the power of the attacker. From this joint probability matrix,
we can compute the mutual information MI, that gives the amount of informa-
tion that can be sent through the channel for a uniform distribution at input.
The normalized values for our benchmarks are presented in Table 1: it gives
the proportion of the trojan information that can be recovered by the spy. For
example, in the L1I case, the trojan sends a 3-bit symbol through the channel
(choose one set among eight), but the spy can only recover 46% of it (or 1.37
bits per symbol). The channel is closed, i.e. our design is secure if the mutual
information is zero.

For our security analysis, the benchmarks have been executed on both unpro-
tected and protected versions of Aubrac and Salers cores. In the case of protected
designs, trojan and spy are placed in two different domes.

Benchmark results All the benchmark results are shown on Figure 3. The first
two benchmarks evaluate timing leakage for both cache memories L1D and L1I
on Aubrac. The trojan encodes its value i by accessing the corresponding address,
either by loading a value (for L1D) or by executing an instruction (for L1I).

https://gitlab.inria.fr/rlasherm/timesecbench
https://gitlab.inria.fr/rlasherm/timesecbench

14 Authors Suppressed Due to Excessive Length

Since a dome.switch is performed after the trojan encoding and before the spy
decoding, it is able to prevent the timing leakage as illustrated on Figure 3. In
the unprotected L1I case, the attack is not perfect as in the L1D case, due to the
presence of the benchmark own instructions in the L1I cache. Two benchmarks
target the branch prediction mechanisms BTB (for direct jumps) and BHT (for
branches) on Aubrac. Here the trojan trains the branch predictor to ensure that
only the i-th branch is accelerated by the branch predictor. Dome support is able
to remove this timing leakage. The results obtained on the unprotected versions
are polluted by the execution of the benchmarks themselves, that do include
branches and direct jumps. One benchmark attempts to transmit information
across harts on Salers through the L1D cache timing. This is similar to the
previous L1D benchmark but trojan and spy are executed on two different harts.
Interestingly, the timing depends on the value j read by the spy in this case.
This is an overhead due to the fine-grained multithreading technique used by the
memory controller. The last benchmark demonstrates that the MULDIV port
contention can also be used to encode information. In this case, if we enable dome
support, we cannot run this benchmark: the spy hart cannot lock the MULDIV
unit, as intended. The unsecured application cannot be run.

Table 1: Normalized mutual information for the 6 benchmarks in Timesecbench
with 0 for no measured leakage.
Normalized MI L1D L1I BHT BTB cross-L1D port contention

Unprotected 1.0 0.46 0.38 0.31 0.46 1.0

Protected 0.0 0.0 0.0 0.0 0.0 X

In the scenarios that have been tested, our solution has removed all leakages:
timing information leakage cannot occur across security domain boundaries.

6.2 Performances/cost analysis

Dome support involves modifications in the whole microarchitecture. After eval-
uating its security efficiency, we need to analyse the impact on both perfor-
mances and area. The different measurements were carried out after perform-
ing synthesis and implementation with Vivado 2019.2 (default parameters with
phys opt design enabled), targeting the Xilinx ZCU104 FPGA. Sixteen config-
urations are compared: we vary the cache size (1 kB or 4 kB), the next-Line
Predictor (NLP) support for branch prediction and the dome support, both for
Salers and Aubrac. Our goal is to compare both protected and unprotected ver-
sion of the same cores since performances and area overhead highly depend on
the implemented shared resources. Direct comparisons with other works are not
relevant: their implemented shared resources are different.

Performances overhead We start by evaluating the overhead in terms of clock
cycles to execute the Embench [2] benchmark suite. Considering that we do not

Under the dome: preventing hardware timing information leakage 15

Unprotected Protected Unprotected Protected

L1D

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

S
p
y
 v

a
lu

e

Trojan value

 2

 3

 4

 5

 6

 7

 8

C
y
c
le

s

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

S
p
y
 v

a
lu

e

Trojan value

 2

 3

 4

 5

 6

 7

 8

C
y
c
le

s

BHT

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

S
p
y
 v

a
lu

e

Trojan value

 31

 32

 33

 34

 35

 36

 37

 38

 39

C
y
c
le

s

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

S
p
y
 v

a
lu

e

Trojan value

 31

 32

 33

 34

 35

 36

 37

 38

 39

C
y
c
le

s

L1I

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

S
p
y
 v

a
lu

e

Trojan value

 11

 12

 13

 14

 15

 16

 17

 18

 19

C
y
c
le

s

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

S
p
y
 v

a
lu

e

Trojan value

 11

 12

 13

 14

 15

 16

 17

 18

 19

C
y
c
le

s

BTB

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
p
y
 v

a
lu

e

Trojan value

 32

 34

 36

 38

 40

 42

 44

 46

C
y
c
le

s

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
p
y
 v

a
lu

e

Trojan value

 32

 34

 36

 38

 40

 42

 44

 46

C
y
c
le

s

Cross
L1D

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

S
p
y
 v

a
lu

e

Trojan value

 2

 4

 6

 8

 10

 12

C
y
c
le

s

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

S
p
y
 v

a
lu

e

Trojan value

 2

 4

 6

 8

 10

 12

C
y
c
le

s

Fig. 3: Timesecbench timing matrices: horizontal variability denotes a timing
leakage.

modify the critical path of our design, it is important to note that the clock
frequency is not impacted in our designs. The geometric means for the different
configurations are shown in Table 2. When comparing Aubrac and Salers, all
the Embench benchmarks but two are taken into account: aha-mont64 gives
an erroneous output and nbody is too slow and hits the simulation timeout (it
involves floating point arithmetic). The single versus dual hart comparison is
performed on Salers by taking into account three benchmarks (nettle-sha256,
nsichneu and slre) adapted to a multithreaded core.

Table 2: Embench normalized timing geometric means, lower is better. Normal-
ized with respect to the Aubrac-1kB implementation.
Cache size 1 kB 4 kB 1 kB 4 kB

Aubrac Salers (1 hart)

1.00 0.86 0.95 0.90

Dome 1.00 0.86 1.16 0.92

NLP 0.92 0.78 0.95 0.81

NLP Dome 0.92 0.78 1.07 0.82

Cache size 1 kB 4 kB 1 kB 4 kB

Salers Single hart Dual hart

1.05 0.91 0.56 0.51

Dome 1.07 0.88 0.76 0.62

NLP 1.03 0.88 0.55 0.51

NLP Dome 1.05 0.86 0.75 0.61

From Table 2, we can see that dome support has no timing overhead for
Aubrac, as expected since the benchmarks run in the same security context. Yet
in the Salers case, dome support can really slow down the computation due to

16 Authors Suppressed Due to Excessive Length

cache partitioning as the cache size is in effect divided by two. In the worst case,
we can observe a loss of 20% on the runtime when L1 caches are split without
speculation. The cache influence is confirmed as multiplying the cache size by
four reduces the overhead by a factor of 2 (10%).

Table 3: Total timings (cycles) for the security benchmarks

Unprotected Protected Overhead%
overhead (cycles) per

dome.switch

L1D 27256 35880 +32% 67.4

L1I 57416 64264 +12% 53.5

BHT 1756202 1796774 +2% 19.8

BTB 445544 463443 +4% 35.0

Cross-L1D 188026 134395 −29% X

Port contention 59250 X X X

But our protection is meant to be used, we must therefore evaluate the over-
head due to switching domes. Obviously, since dome. switch performs a mi-
croarchitectural flush, performances are impacted at the beginning of the new
dome execution: no data is stored in cache memories and we have cache and
prediction misses all the time. This can be seen on Figure 3, where for example
in the L1D case we measure in the protected case a timing of 8 cycles, corre-
sponding to a miss, in all cases. Therefore, the cost of dome.switch is composed
of both the time for the flush and misses due to this operation. As shown in Ta-
ble 3, in these heavily domain switching scenarios, the average timing overhead
is 68 clock cycles per switch for L1D and 54 for L1I.

We see that the total execution of the benchmark is significantly reduced
(−29%) with dome support with respect to the unprotected case for the Cross-
L1D benchmark. Upon investigation, this performance improvement is due to
the better isolation between caches: one hart having a cache operation does not
slow down the other hart. The performance cost of having an effective cache
size divided by two is low in this case due to the extremely small program
executed for this evaluation. In our designs, flushing can be done in few cycles.
The cost of dome switching is mostly due to the penalty of increased misses in
the microarchitectural buffers. But this is not a universal rule: for example if
write-through caches allow efficient flushes, the story is different for write-back
caches. For these latter caches, upon a flush the data must be written back to
the upper memory level, which cannot be done rapidly.

Hence, the only parameter to modify the switch duration is the microar-
chitectural flush methodology. This criterion is highly dependent on the other
implementation choices.

Under the dome: preventing hardware timing information leakage 17

Area overhead Area results for each core are presented in Table 4. Lookup tables
(LUTs) are necessary for the combinatorial logic whereas flip-flops (FFs) are
memory elements for storing states in the microarchitecture.

Table 4: FPGA resource utilization.
Cache size 1 kB 4 kB 1 kB 4 kB

Aubrac Salers

9, 370 LUTs ×2.62 21, 000 LUTs ×2.24

4, 408 FFs ×1.90 8, 270 FFs ×1.65

Dome ×1.03 ×2.62 ×1.09 ×2.14

×1.07 ×1.97 ×1.32 ×1.99

NLP ×1.30 ×2.93 ×1.27 ×2.58

×1.19 ×2.10 ×1.21 ×1.88

NLP Dome ×1.30 ×2.88 ×1.34 ×2.67

×1.26 ×2.17 ×1.52 ×2.20

Finally, the area cost to mitigate security issues due to temporal sharing is
only a few percents (between +3% and +0% of LUTs, in the same ballpark as
fence.t’s +1%[33]). The FFs increase in Aubrac core is more important (up to
7%) but must be qualified: it is mainly due to the addition of several CSRs in
a small core. Moreover, considering that a switch with only temporal sharing
simply performs a flush, these additional registers are not essential in this case.
On the other hand, the impact is much more important when spatial sharing
has to be considered because of its complexity. For the Salers core, we have a
significant impact of up to 32% in the number of flip-flops. It is mainly due to
new CSRs for both harts, a more complex dome unit with associated states for
each resource and cache controllers with temporal split. In this case, our results
are difficult to compare with other works on secure SMT [25]: we modify all the
shared resources and not only the multithreaded execution units. Moreover, this
overhead must be put into perspective, as SMT is mainly used in much more
complex cores with expensive features like out-of-order execution.

7 Discussion and conclusion

For many years now, timing leakages due to resource sharing have been identi-
fied as a major threat to the security of processors. Nevertheless vulnerabilities
related to such timing leakages are still being found at an alarming rate. This is
mainly because, so far, the proposed mitigation look at specific mechanisms of
a processor architecture in isolation and not at the processor as a whole. This
paper is a step in this direction.

In our approach, we first describe how the ISA has a crucial role to play
in making the software communicate to the hardware the applications’ security
constraints. Two possible semantics, fences and contexts, are discussed. Fences

18 Authors Suppressed Due to Excessive Length

are simple but limited since they cannot handle spatial sharing. Contexts, on
the other hand, allow designing secure systems with a lot of liberty on the core
features, at the price of more complexity.

We then introduce generic principles for designing shared resources securely
whether it is temporal or spatial sharing and with different granularities : we
discuss such things like shared memories (like caches), but also more subtle com-
ponents such as finite state machines (e.g. cache controllers) and buses (shared
between several subsystems).

We demonstrate the application of our new approach by implementing two
different processors, including one with simultaneous multithreading. We analyse
the impact of this new security dogma on the design of such exemplar processors.
We also foresee that taking into account security will profoundly modify the
canon of processor design: as an example, write-through caches are much faster
to flush than write-back and should supersede the latter one in secure designs.

To evaluate the efficiency of our security approach, we propose a new bench-
mark that shows that the implemented features circumvent timing leakages. This
benchmark tests and detects known vulnerabilities. It will be regularly updated
so that it can be used to help designers validate the security of their processors
at design time. But it cannot be used to guarantee that no timing leakage is
present at all. In our opinion, the formalization of the hardware seems the only
approach for future works to allow real exhaustiveness, a feat that can only be
achieved with a clear ISA semantics to delimit security domains.

Our research shows that, if our principles can be implemented with the ade-
quate ISA, securely implementing resource sharing within processors is possible.
A future work will consist in studying the trade-offs between this security dogma,
performances and design complexity (size and power). Processors with simulta-
neous multithreading will be a relevant use case for this, with deep resources
sharing that can lead to important leakages. Particularly, an analysis of the
trade-offs must be done to compare with multicore processors while maintaining
a high level of security. An exploration of domes impact on out-of-order cores
and many core systems must also be considered.

References

1. Managing-Speculation-on-AMD-Processors. Tech. rep., Advanced Micro Devices
(2018)

2. Embench: A modern embedded benchmark suite (2020), https://embench.org/
3. Aciicmez, O., Seifert, J.P.: Cheap Hardware Parallelism Implies Cheap Security.

In: Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC 2007).
pp. 80–91. IEEE, Vienna, Austria (Sep 2007)

4. Aldaya, A.C., Brumley, B.B., ul Hassan, S., Pereida Garcia, C., Tuveri, N.: Port
Contention for Fun and Profit. In: 2019 IEEE Symposium on Security and Privacy
(SP). pp. 870–887. IEEE, San Francisco, CA, USA (May 2019)

5. Andrysco, M., Kohlbrenner, D., Mowery, K., Jhala, R., Lerner, S., Shacham, H.:
On Subnormal Floating Point and Abnormal Timing. In: IEEE Symposium on
Security and Privacy (SP). pp. 623–639. IEEE, San Jose, CA, USA (May 2015)

Under the dome: preventing hardware timing information leakage 19

6. Bernstein, D.J.: Cache-timing attacks on AES. p. 37 (2005)
7. Bourgeat, T., Lebedev, I., Wright, A., Zhang, S., Devadas, S.: Mi6: Secure en-

claves in a speculative out-of-order processor. In: Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. pp. 42–56 (2019)

8. Bulpin, J.R., Pratt, I.A.: Multiprogramming Performance of the Pentium 4 with
Hyper-Threading. In: Second Annual Workshop on Duplicating, Deconstruction
and Debunking (WDDD). p. 10 (2004)

9. Canella, C., Genkin, D., Giner, L., Gruss, D., Lipp, M., Minkin, M., Moghimi,
D., Piessens, F., Schwarz, M., Sunar, B., Van Bulck, J., Yarom, Y.: Fallout: Leak-
ing data on meltdown-resistant cpus. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. p. 769–784. CCS ’19, As-
sociation for Computing Machinery, New York, NY, USA (2019)

10. Canella, C., Van Bulck, J., Schwarz, M., Lipp, M., von Berg, B., Ortner, P.,
Piessens, F., Evtyushkin, D., Gruss, D.: A Systematic Evaluation of Transient
Execution Attacks and Defenses. In: 28th USENIX Security Symposium (USENIX
Security 19) (Nov 2019)

11. Costan, V., Lebedev, I., Devadas, S.: Sanctum: Minimal Hardware Extensions for
Strong Software Isolation. In: 25th USENIX Security Symposium (USENIX Secu-
rity 16). pp. 857–874. USENIX Association, Austin, TX, USA (Aug 2016)

12. Dessouky, G., Frassetto, T., Sadeghi, A.R.: HybCache: Hybrid Side-Channel-
Resilient Caches for Trusted Execution Environments. In: 29th USENIX Security
Symposium (USENIX Security 20). USENIX Association (Sep 2020)

13. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware. Journal of Cryptographic
Engineering 8(1), 1–27 (2018)

14. Ge, Q., Yarom, Y., Heiser, G.: No Security Without Time Protection: We Need a
New Hardware-Software Contract. In: Proceedings of the 9th Asia-Pacific Work-
shop on Systems - APSys ’18. pp. 1–9. ACM Press, Jeju Island, Republic of Korea
(2018)

15. Kettenis, M.: (Jun 2018), https://www.mail-archive.com/source-changes@

openbsd.org/msg99141.html

16. Khasawneh, K.N., Koruyeh, E.M., Song, C., Evtyushkin, D., Ponomarev, D., Abu-
Ghazaleh, N.: SafeSpec: Banishing the Spectre of a Meltdown with Leakage-Free
Speculation. In: Proceedings of the 56th Annual Design Automation Conference
2019 (DAC16). pp. 1–6. ACM Press, Las Vegas, NV, USA (Jun 2019)

17. Kiriansky, V., Lebedev, I., Amarasinghe, S., Devadas, S., Emer, J.: DAWG: A
Defense Against Cache Timing Attacks in Speculative Execution Processors. In:
2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO). pp. 974–987. IEEE, Fukuoka (Oct 2018)

18. Kocher, P., Horn, J., Fogh, A., Genkin, a.D., Gruss, D., Haas, W., Hamburg, M.,
Lipp, M., Mangard, S., Prescher, T., Schwarz, M., Yarom, Y.: Spectre Attacks: Ex-
ploiting Speculative Execution. In: 40th IEEE Symposium on Security and Privacy
(S&P’19). IEEE Computer Society, Los Alamitos, CA, USA (May 2019)

19. Larabel, M.: Intel Hyper Threading Performance With A Core i7 On Ubuntu
18.04 LTS - Phoronix (Jun 2018), https://www.phoronix.com/scan.php?page=

article&item=intel-ht-2018&num=4

20. Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn, J.,
Mangard, S., Kocher, P., Genkin, D., Yarom, Y., Hamburg, M.: Meltdown: Reading
Kernel Memory from User Space. In: 27th USENIX Security Symposium (USENIX
Security 18). pp. 973–990. USENIX Association, Baltimore, MD, USA (Aug 2018)

https://www.mail-archive.com/source-changes@openbsd.org/msg99141.html
https://www.mail-archive.com/source-changes@openbsd.org/msg99141.html
https://www.phoronix.com/scan.php?page=article&item=intel-ht-2018&num=4
https://www.phoronix.com/scan.php?page=article&item=intel-ht-2018&num=4

20 Authors Suppressed Due to Excessive Length

21. Qureshi, M.K.: CEASER: Mitigating Conflict-Based Cache Attacks via Encrypted-
Address and Remapping. In: 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). pp. 775–787. Fukuoka (2018)

22. van Schaik, S., Milburn, A., Österlund, S., Frigo, P., Maisuradze, G., Razavi, K.,
Bos, H., Giuffrida, C.: RIDL: Rogue In-Flight Data Load. In: 40th IEEE Sym-
posium on Security and Privacy (S&P’19). p. 18. San Francisco, CA, USA (May
2019)

23. Schwarz, M., Lipp, M., Canella, C., Schilling, R., Kargl, F., Gruss, D.: Context:
A generic approach for mitigating spectre. In: Proceedings of the 27th Annual
Network and Distributed System Security Symposium (NDSS20). Internet Society,
Reston, VA (2020)

24. Schwarz, M., Lipp, M., Moghimi, D., Bulck, J.V., Stecklina, J., Prescher, T., Gruss,
D.: ZombieLoad: Cross-Privilege-Boundary Data Sampling. In: Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security. p. 15
(May 2019)

25. Townley, D., Ponomarev, D.: Smt-cop: Defeating side-channel attacks on execu-
tion units in smt processors. In: 2019 28th International Conference on Parallel
Architectures and Compilation Techniques (PACT). pp. 43–54 (2019)

26. Trilla, D., Hernandez, C., Abella, J., Cazorla, F.J.: Cache side-channel attacks and
time-predictability in high-performance critical real-time systems. In: Proceedings
of the 55th Annual Design Automation Conference. pp. 1–6. ACM, San Francisco,
CA, USA (Jun 2018)

27. Turner, P.: Retpoline: a software construct for preventing branch-target-injection
(Jan 2018), https://support.google.com/faqs/answer/7625886

28. Van Bulck, J., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F., Sil-
berstein, M., Wenisch, T.F., Yarom, Y., Strackx, R.: Foreshadow: Extracting the
Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution. In: Pro-
ceedings of the 27th USENIX Security Symposium (USENIX Security 18). pp.
991–1008. USENIX Association, Baltimore, MD, USA (Aug 2018)

29. Wang, Z., Lee, R.: Covert and Side Channels Due to Processor Architecture. In:
2006 22nd Annual Computer Security Applications Conference (ACSAC’06). pp.
473–482. IEEE, Miami Beach, FL, USA (Dec 2006)

30. Wang, Z., Lee, R.B.: New cache designs for thwarting software cache-based side
channel attacks. In: Proceedings of the 34th annual international symposium on
Computer architecture - ISCA ’07. p. 494. ACM Press, San Diego, CA, USA (2007)

31. Waterman, A., Asanovic, K.: The RISC-V Instruction Set Manual, Volume I: User-
Level ISA (Dec 2019)

32. Werner, M., Unterluggauer, T., Giner, L., Schwarz, M., Gruss, D., Mangard, S.:
SCATTERCACHE: Thwarting Cache Attacks via Cache Set Randomization. In:
28th USENIX Security Symposium (USENIX Security 19). pp. 675–692. USENIX
Association, Santa Clara, CA (2019)

33. Wistoff, N., Schneider, M., Gürkaynak, F.K., Benini, L., Heiser, G.: Prevention of
microarchitectural covert channels on an open-source 64-bit RISC-V core. CoRR
abs/2005.02193 (2020)

34. Yan, M., Choi, J., Skarlatos, D., Morrison, A., Fletcher, C., Torrellas, J.: InvisiS-
pec: Making Speculative Execution Invisible in the Cache Hierarchy. In: 2018 51st
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). pp.
428–441. IEEE, Fukuoka (Oct 2018)

35. Yarom, Y., Falkner, K.: FLUSH+RELOAD: a High Resolution, Low Noise, L3
Cache Side-Channel Attack. In: 23rd USENIX Security Symposium (USENIX Se-
curity 14). pp. 719–732. USENIX Association, San Diego, CA, USA (2014)

https://support.google.com/faqs/answer/7625886

	Under the dome: preventing hardware timing information leakage

