
HAL Id: hal-03351948
https://hal.science/hal-03351948v1

Submitted on 22 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Design Space Exploration Applied to Security
Antoine Linarès, David Hely, F. Lhermet, Giorgio Di Natale

To cite this version:
Antoine Linarès, David Hely, F. Lhermet, Giorgio Di Natale. Design Space Exploration Applied to
Security. 16th International Conference on Design & Technology of Integrated Systems in Nanoscale
Era (DTIS 2021), Jun 2021, Montpellier, France. �10.1109/DTIS53253.2021.9505151�. �hal-03351948�

https://hal.science/hal-03351948v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Design Space Exploration Applied to Security
Antoine Linarès1,2,3, David Hely2, Frank Lhermet1, Giorgio Di Natale3

1SiFive France, 13600 La Ciotat, France
2Univ. Grenoble Alpes, CNRS, Grenoble INP*, LCIS, 26000 Valence, France

3Univ. Grenoble Alpes, CNRS, Grenoble INP*, TIMA, 38000 Grenoble, France

Abstract—Software Hardening against memory safety exploits
can be achieved from the silicon, up to the software, with both
compilers and operating systems features. Unfortunately, due
to the growing evolution of attacks, security architects have no
guarantees, at an early stage of the development, that defenses
will match the security needs and overcome the targeted threats.
In addition, after product release, it is difficult to evaluate
the architecture performance against new threats. This paper
presents a dynamic analysis technique that allows the evaluation
of the security profile of a given architecture during design
exploration. The method is designed to highlight and quantify
the security threats covered by the countermeasures embedded
at any level of a given architecture. The provided results will help
for protection evaluation, classification, and architecture choices.
The method comes with a tool that implements this approach
and has been applied to several architectures. This tool helps to
classify architecture along with its alternatives thanks to metrics.

I. INTRODUCTION

Since the beginning of this century, we have seen an
unprecedented expansion in technologies linked to digital
devices. They deal with sensitive data (either in terms of
privacy or security), from bank information stored in credit
cards to family pictures on smartphones. As a result, we have
experienced an outstanding growth of cyber-attacks. Security
architects have thus to address a very large set of vulnerabil-
ities by selecting the more efficient security countermeasures
among the large set of existing and future ones. For instance,
the Common Weakness Enumeration (CWE), the community
project in charge of listing and sorting all known vulnerabilities
and weaknesses for the US National Cybersecurity effort,
has listed, over 760 different vulnerabilities [1]. One memory
vulnerability example is the CWE-226: “Sensitive Information
in Resource Not Removed Before Reuse”. Such a threat source
can be either software or hardware and can be mitigated by
many different hardware or software techniques. As a result,
without effective security-oriented design tools, addressing
these vulnerabilities requires a huge effort for engineers.

Therefore, there is a need for automatic or assisted security
evaluation for mixed hardware-software architectures.

We present in this paper an approach that leverages the
standard criteria commonly used to evaluate security threats
and mitigation. Indeed, several works have tried to address
the challenge to create universal relations between attacks
and defenses such as the approach proposed by the CWE
or the one described in [2] which details a systematization
of knowledge. They highlight that attacks and protections are
divided into stages. A stage is, depending on the point of view
(attack or defense), either to control or to secure. An attack
cannot successfully be performed if a single step is missed.
The approach detailed in our paper aims at identifying which
step should be covered first, and how much it will impact the
product security.

Different security metrics have been used to evaluate the
security capabilities of a given countermeasure. In [3], the

gadget coverage is used as a global metric. In [4], the au-
thors have evaluated the security performances applying well
suited metrics. The challenge is then to keep track of the
evolution according to attackers’ new capabilities. Another
way to measure security is to take the opposite approach and
not to measure security strength but instead to keep track of
attacks’ evolution. The National Vulnerability Database (NVD)
proposed a Scoring System (CVSS). This metric is assigned
to every added vulnerability in the US vulnerability database.
The size of this database makes it a reference to describe the
current security threats. That’s why statistics from this database
are used as an entry in [5].

The approaches listed above provide important references
for security architects, however, even if they provide insights
when considering an attack or a group of attacks, such listings
do not allow a systematic approach to explore the most suited
countermeasures for a given set of threats.

Our objective is then to provide a high-level, dynamic, and
easy to update security evaluation tool for memory safety. The
following example further explains our motivation.

Considering an architect looking for the proper security
solution. His overview of the attacks is done. He has to prevent
a significant amount of threats. Thus, a set of protection
mechanisms is needed to tackle most of them. Nowadays, his
choice will be assisted with few metrics and, may perish briefly
without notice. That is why one needs a dynamic tool that
provides a representation of the security provided by a set
of security mechanisms. This output shall be associated with
reliable metrics to help to make decisions, and to track if the
security choices remain relevant along the time.

The contributions of this paper are the following:

• We develop a description methodology for security tech-
niques that are generic enough to be performed on most
systems.

• We provide a mathematical approximation for the security
capability for systems made of several protection tech-
niques.

• We apply the two methods to a set of security techniques.
• We develop a tool that can apply these concepts, with as-

sistance tools like graphs, sorting capability, and dynamic
updates capabilities.

• The presented tool also provides to the user different
security alternatives, enabling a security-oriented design
space exploration.

This paper is organized as follow: First, the environment and
the background of the study are presented in section II. Then,
an accumulation approach (section III), and a tool for dynamic
evaluation based on this approach (section IV) is introduced.
Both the approach and the tool are illustrated with a real
security system example in section V. Finally, the perspectives
of this work are discussed in section VI before to draw some
conclusions in section VII.



Fig. 1. Partial view of the online tool proposed to simulate and track security performances

II. BACKGROUND

The problem we are trying to solve has a large set of
variables (here the set of security protections existing in the
literature that can be combined). A known approach that suits
such type of problem is design space exploration.

Design Space Exploration is a technique that allows ex-
ploring large sets of solutions. A set of criteria is applied at
the same time on a large subset or all the solutions. Then it
is easier for the users to choose a suitable solution among a
reduced number of elements. Tools, frameworks, or usages can
be found as [6], [7].

Advanced mathematical concepts are not required for our
solution, but the problem we are addressing is close to the
mathematical concept of set covering. A set covering problem
can be described as a system with a pool (P) of subset elements
(P = {S1, S2, ..., Sn}) from a universe (Υ). The objective is
with a minimum number of subsets (ρ ⊆ P ) to cover all
elements (ε ∈ Υ) in the universe as in equation (1).

ε ∈
⋃
Sx∈ρ

Sx ∀ε ∈ Υ (1)

This approach is close to our objective, as each protection
can be modeled as the subset of all existing countermeasures
and the universe as the set of known attacks. But, our problem
is different from the classical set-covering because many
architectures can accept a not fully covered universe, and
this sub-universe to be covered might be weighted. Therefore,
our problem is closer to the ”partial set covering“ approach
described here [8]. If this mathematical approach may give
a probabilistic best solution, our method is designed to be
used as a very early stage of design where many assumptions
are made. Indeed we are not confident on these assumptions’
accuracy and even more on the results that should be done on
top of them. Thus we decided not to get into this direction
and provide to the user all the elements to challenge the tool
outputs and find the solution.

One line description
attack type 1

coverage
deduced

attack type 2
coverage
deduced

...
attack type n

coverage
deduced

Executable codes are
placed on random place 1 0 ... 0

jump or call can only target
”landing pad” 0 1 ... 0

TABLE I
COVERAGE ATTRIBUTION EXAMPLE.

Attacks and defenses are central as we decided to make a
helping tool for security. The field of attack and defense is
vast. We chose to reduce the scope to provide a usable and
efficient tool that may be extended. We focus our work on
memory corruption attacks, this large set of attacks is popular
and we can find in the literature great classification efforts.
Consequently, many security techniques and attacks exist at
any level from silicon to the compiler, making it a perfect
topic for this approach.

III. METHODOLOGY

We have tried to reduce memory protection techniques to
a basic representation. We observe or derive a binary perfor-
mance for each security technique considered against several
types of attacks. This concept is illustrated in table I. To have
the best accuracy possible and to provide more information
for a system made of several of theses techniques the attack
pool should contain at least for each studied protection, one
avoided or detected exploit, and one that is not. It will be
furthermore important to add any vulnerability that is added
by systems (For example, some security implementations add
side-channel to inspect the program at runtime, this channel
may be accessible in an “evil maid scenario” as described in
[9]).

The result is a table of properties that provide for every
protection the type of attack covered as well as the uncovered
ones. This tab is called “database” in the following of this
paper.

It is now possible to compute an approximation for the
coverage of any architecture that is made of inherited prop-
erties. This choice may not reflect a real security system as



some security techniques may not be used together without
side effects. The mathematical representation is given by
equation (2)1.

SystemAttackCoveragej =

protectionChosennb⋃
i=protectionChosen

databasei,j

(2)
This evaluation is done for each attack type j in the database.

The result is an approximation of the coverage provided by the
system thanks to the security techniques it uses.

IV. THE TOOL

This paper introduced the feature accumulation approach,
and rules to apply this approach to any system. This allows
designing a tool for the exploration of large fields of techniques
and attacks. We propose an implementation of this tool as
illustrated in figure 1. The choices we made, discussed in the
following section, can be changed either to match a different
objective or to consider some threats or security techniques
that might have been missed in our proposed solution.

The 24 protection techniques that have been chosen are a
set of protections against memory-based attacks. This set of
protections is meant to be a representation of the solutions that
are available today. Some listed protections are Control Flow
Integrity (CFI) techniques, these techniques are useful against
control flow deviation and several memory corruptions. Other
protections as cache flush are not designed against memory
attacks, but they were added to provide a better representation
of existing solutions. Attacks have been chosen to reflect
as much as possible the capabilities and weaknesses of the
proposed protections. Some attacks may appear to be out of
the memory corruption scope, nevertheless, since these could
be inhibited by some memory corruption countermeasures, it
is worth adding them to our tool.

Thanks to the very low computation needed to get coverage
with the accumulation approach, the tool we propose is capable
of dynamic updates from both the user and the provider.
The user can change coverage attributes of any technique
and, dependent characteristics are refreshed dynamically. This
feature is really important as the protection is complex to
derive from system known properties, and may be subject to
interpretation. Thus, in case a user disagrees with the proposed
result, he can quickly identify which values are not properly
set and how it impacts both the modeled environment and the
results. Depending on his conclusion and perspectives, the user
can further improve the model.

As proof of the dynamic capability from the provider
perspective, in our tool, the attack critical score is updated
daily with data from the NVD to reflect as much as possible
the trends.

Our goal is to provide efficient discrimination between
techniques. For this purpose, it is important to take into account
costs and constraints. But this cost may vary depending on
the user of the system, it may also vary depending on the
target it is running on. To have a common approach with less
bias and errors, the cost of each used security technique is
defined thanks to different sub-costs that are easier to measure
or extrapolate. Each of these sub-cost has a value in {0, 1, 2}
where 0 means no impact, 1 means an influence is visible and

1Here U is a representation for OR operation performed over the array

Fig. 2. 3D representation of user’s result close to fuzzy campaign results
provided by the tool.

2 means an important cost. The granularity is important but,
the objective is to provide easily an estimation of the cost for
every solution, with easy assumptions, even if the accuracy
will not be perfect.

The sub-costs considered are listed below:
• Runtime cost: indicates the consumption of computing

time
• Memory cost: indicates the memory usage for security

purpose
• Process cost: indicates the process complexity needed to

benefit from the security technique (like rebuilding the
code, extensive redesign, post compilation tool...)

To keep a very objective point of view, costs are computed
by a very simple sum described in equation (3).

cost =

subcostnb∑
i=1

subcosti (3)

The cost for a solution made of several security techniques’
is also a sum of all the selected techniques global cost. Thanks
to this, we can derive for any aggregation of techniques, a cost.

As shown beside, the proposed implementation is con-
sidering 24 techniques. So 224 different macro-systems are
resulting. The tool provides a graphic view displaying user
propositions near thousands of macrosystems randomly gen-
erated. The user can see where his proposition is located in
this set of solutions. This pool of solutions is derived from a
database initially made of over 7 million solutions. To avoid
an extensive load of memory (about 3GBytes) only 2000 best
solutions are displayed (as in figure 2).

As our tool considers dozen of attacks and several of them
are currently not widespread, a weight can be applied to the
attacks. The user may decide not to consider some attacks
or to consider another as highly critical. This choice as any
other will be reflected in the different views and graphs and
tabs dynamically provided by the tool. Other helping tools
are provided as sorting but also link to reference paper for
each vulnerability and defense alongside with filtering options,
highlight and zoom options.



V. APPLICATION EXAMPLE

We challenged our solution with a threat model correspond-
ing to the state-of-the-art protection proposed for laptops and
personal computers. This threat model may remain the most
popular for memory attacks in the following years. This may
confirm that this system keeps track of the threat evolution as
intended.

The tool aims at modeling the security environment of a
running C program on top of Linux with an Intel processor
including Intel’s Control-flow Enforcement Technology (CET).

Intel CET is an aggregation of hardware security techniques
that will be supported by Intel’s 11th (and next) generation of
microprocessors (released in September 2020). On top of this,
an Operating System, here Linux provides its security. At last,
a program is running. It has been designed with a programming
language and some security practices, compiled by a compiler
that provides support for the lower level protection, and add
some more.

To represent the environment the following techniques have
been chosen:
• For CET extension provided by Intel: Shadow Stack;

Landing pad (ENDBRANCH instruction); Speculation
protection (LFENCE instruction)

• For Linux Operating System: ASLR; NX Bit
• For GCC Compiler: StackGuard (Return address protec-

tion)
Our system provides several results that may be useful: Cost

for the global solution, coverage of each attack, coverage with
attack factors, the ratio of coverage versus cost, and it also
indicates if multiples protection prevents the same attack.

One result provided by our tool is the list of uncovered
attacks. This latter is useful for the evaluation of our tool as
it could be compared to vulnerability disclosure.

Currently, uncovered attacks are: Brute-force; Interrupt
based; Forward to gadget/payload (Payload or gadget starting
with a landing pad); Data-oriented Programming; Rowham-
mer; Fault attacks; Control Flow Bending. It is important to
note that this example architecture still protects against 75%
of the attacks known by the tool. When we apply a weight for
each attack to highlight the most widespread ones the weighted
result is 78.8% coverage.

Even if Intel-CET-based system is not released, authors in
[10] have tried to extrapolate the security that may be provided
by this future architecture. Their conclusion is similar to ours
and, Intel CET will soon confirm the prediction provided by
our tool.

VI. DISCUSSION & PERSPECTIVES

The tool provided as well as the methodology introduced
may be enhanced with several mechanisms. First of all, each
attack severity factor but also coverage may be updated with
database harvesting as well as community inputs. A linked
improvement is a way to share, add, correct, and dispute the
default content of the database. Currently, anyone can update
the content but changes are local and cannot be shared. Tracing
daily or weekly attack evolution will make new features
possible like alerts linked to attack trends or security level
for any architecture.

Many improvements to make the proposed tool easier to
use are needed for large-scale adoption. Also, we believe

that the solver may be improved to suggest replacement or
addition to the user-chosen system, as the 100% coverage is
not suitable for all uses. Another important enhancement will
be to add a mechanism that will grant a user to choose an
existing product or device and the tool will choose the related
protection accordingly.

In the future, we may imagine the presented approach
and tool included in a framework for security. New highly
configurable and open-source architectures (even on hardware
as RISC-V Rocketchip [11]) combined with efficient tools
made for continuous integration [12], may make it possible.

Thus any custom system designed with the assistance of our
tool may be generated on a server-linked simulator or FPGA.
A bundle of tests may be run on it to verify the accuracy of the
predicted security performance but also the costs. Every result
will be propagated into the database to increase its accuracy.

VII. CONCLUSION

This paper presents a new approach to help the architec-
ture exploration of digital devices considering memory-related
threats. The architecture is described as an accumulation of
security techniques to evaluate global security against memory
attacks. The developed tools associated with the method can
provide a first overview of the threats being thwarted by the
architecture under evaluation. If such a tool does not intend to
provide a fine-tuned evaluation the first-order analysis helps
the architects to better forecast the security of the system,
drastically reducing the architecture choices. This automated
approach finally aims at reducing the amount of different
architectures that will need to be more fine-grained analyzed
by security experts before a final release.

REFERENCES

[1] MITRE - CWE, “CWE Top 25 Most Dangerous Software Errors.” https:
//cwe.mitre.org/top25/archive/2019/2019 cwe top25.html, 2019.

[2] L. Szekeres, M. Payer, Tao Wei, and D. Song, “SoK: Eternal War
in Memory,” (Berkeley, CA), pp. 48–62, IEEE, May 2013. http:
//ieeexplore.ieee.org/document/6547101/.

[3] L. Davi, M. Hanreich, D. Paul, A.-R. Sadeghi, P. Koeberl, D. Sullivan,
O. Arias, and Y. Jin, “HAFIX: Hardware-Assisted Flow Integrity eX-
tension,” pp. 1–6, June 2015. http://doi.org/10.1145/2744769.2744847.

[4] R. de Clercq and I. Verbauwhede, “A survey of Hardware-based Control
Flow Integrity (CFI),” arXiv:1706.07257 [cs], July 2017. http://arxiv.
org/abs/1706.07257.

[5] L. Gressl, A. Rech, C. Steger, A. Sinnhofer, and R. Weissnegger,
“A Design Exploration Framework for Secure IoT-Systems,” (Dublin,
Ireland), pp. 1–8, IEEE, June 2020. https://ieeexplore.ieee.org/document/
9139631/.

[6] E. Kang, E. Jackson, and W. Schulte, “An Approach for Effective
Design Space Exploration,” Lecture Notes in Computer Science, (Berlin,
Heidelberg), pp. 33–54, Springer, 2011.

[7] A. D. Pimentel, “Exploring Exploration: A Tutorial Introduction to
Embedded Systems Design Space Exploration,” IEEE Design Test,
vol. 34, pp. 77–90, Feb. 2017.

[8] C. Chekuri, K. Quanrud, and Z. Zhang, “On Approximating Partial Set
Cover and Generalizations,” arXiv:1907.04413 [cs], July 2019. http:
//arxiv.org/abs/1907.04413.

[9] A. Tereshkin, “Evil maid goes after PGP whole disk encryption,” SIN
’10, (Taganrog, Rostov-on-Don, Russian Federation), p. 2, Association
for Computing Machinery, Sept. 2010. https://doi.org/10.1145/1854099.
1854103.

[10] PaX Team, “On the Effectiveness of Intel’s CET Against Code Reuse
Attacks.” https://grsecurity.net/effectiveness of intel cet against code
reuse attacks, June 2016.

[11] Berkeley Architecture Research, “Chipyard’s documentation.” https://
chipyard.readthedocs.io/en/latest/index.html, 2019.

[12] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage, costs,
and benefits of continuous integration in open-source projects,” ASE
2016, (New York, NY, USA), pp. 426–437, Association for Computing
Machinery, Aug. 2016. https://doi.org/10.1145/2970276.2970358.


