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Abstract. In the scenario of the Voice Privacy challenge, anonymization
is achieved by converting all utterances from a source speaker to match
the same target identity; this identity being randomly selected. In this
context, an attacker with maximum knowledge about the anonymiza-
tion system can not infer the target identity. This article proposed to
constrain the target selection to a specific identity, i.e., removing the ran-
dom selection of identity, to evaluate the extreme threat under a white-
box assessment (the attacker has complete knowledge about the system).
Targeting a unique identity also allows us to investigate whether some
target’s identities are better than others to anonymize a given speaker.

Keywords: Speaker anonymization · VoicePrivacy · Anonymization eval-
uation.

1 Introduction

In many applications, such as virtual assistants, speech signal is sent from the
user device to the service provider’s servers in which data is collected, processed,
and stored. Recent regulations, e.g., the General Data Protection Regulation
(GDPR) [10] in the EU, emphasize on privacy preservation and protection of
personal data. As speech data can reflect both biological and behavioral charac-
teristics of the speaker, it is qualified as personal data [8]. The research reported
in this article has been done using the Voice privacy Challenge framework [17],
which is one of the first attempts of the speech community to evaluate research
on this topic, by producing dedicated protocols, metrics, datasets and baselines.

Speaker anonymization is performed to suppress the personally identifiable
paralinguistic information from a speech utterance while maintaining the linguis-
tic content. This is also referred to as speaker anonymization[3] or de-identification
[5]. Recently, Fang et al. [3] proposed an x-vector-based speaker anonymization
system based on voice conversion where one of the hyper-parameters used to
transform the voice is a target pseudo-speaker identity. In order to choose the
anonymization system and hyper-parameters, for a given use case, we must eval-
uate and rank the performances of each anonymization method. In this first
edition of the Voice privacy Challenge, the quality of anonymization is assessed
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by using state-of-the-art speaker verification system together with an automatic
speech recognition system that is used to evaluate the preservation of the lin-
guistic content. In the context of privacy, a game-theoretic reasoning with two
agents is defined as follows: one who wishes to anonymize a user’s speech (the
service provider) and the other (the attacker) who will do everything possible to
”break” this anonymity. Introduced in [15], the notion of attacker’s knowledge
of the anonymization method was introduced, it defines three possible attack
scenarios: black-box, white-box, and grey-box. In all approaches, privacy is eval-
uated by comparing original speech (accessible to the attacker) and anonymous
speech published by a service provider. The goal of an effective anonymization
system is to allow the publication of speech whose identity is difficult to link to
a user’s identity, even if the attacker has some knowledge of the anonymization
mechanism. In the black-box attacker scenario, privacy is measured by compar-
ing clean, non-anonymized enrollment speech, and anonymized trial speech. In
this scenario, the attacker is not aware that speech has been anonymized. In
contrast, a white-box attacker is fully aware of the anonymization system and
hyper-parameters. Grey-box attackers cover the whole range of possible scenario
in-between black and white boxes, when the attacker has a partial knowledge of
the anonymization system.

The target pseudo-speaker identity used to anonymize the voices can be
generated following multiple strategies [15]. In the permanent strategy, used in
the VoicePrivacy challenge, all utterances from a speaker are converted using the
same target pseudo-speaker. The challenge defines a grey-box attacker that has
access to the anonymization toolkit, and thus is able to transform any utterance
from her enrollment dataset using the same system and target strategy. However,
for a given source speaker, the target pseudo-speaker used by the attacker differs
from the one used by the service provider due to the random pseudo-speaker
selection process included in the permanent strategy. In case the attacker knows
the pseudo-speaker, this grey-box scenario turns into a white-box scenario.

We modify the Voice Privacy Challenge scenario into a white-box assessment
by targeting a same speaker identity for all utterances from all speakers. This
target selection strategy allows us to evaluate the performance of the x-vector-
based anonymization system on its own, and generate a report that does not
assume that the attacker has knowledge deficiencies. Experiments are performed
with a large group of target speaker identity in order to investigate the effect of
this identity on the quality of the anonymization.

In the remaining of this article, we first describe the baseline system and voice
conversion method in Section 2. We then introduce our experimental protocol
in Section 3 and present our experimental results in Section 4. Eventually, we
draw our conclusions and propose future avenues in Section 5.

2 Anonymization Technique

The anonymization of speaker’s identity can be performed with various meth-
ods [1, 3, 7, 12, 15]. In this article, our contributions are based on the Baseline-1
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(referred to as the baseline in this article) of the VoicePrivacy challenge that
anonymizes speech using x-vectors and neural waveform models [3].

2.1 The Voice Conversion System
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Fig. 1. The speaker anonymization pipeline. Modules A, B, and C are parts of the
baseline model. Module D is an enhancement used to coherently alter the F0 values
with respect to the selected pseudo-speaker identity.

The baseline system introduced in [3] aims at separating speaker identity
and linguistic content from an input speech utterance. Assuming that those fea-
tures are disentangled, an anonymized speech waveform can be generated after
altering only the features that encode the speaker’s identity. The anonymization
system illustrated in Figure 1 can be decomposed into three groups of mod-
ules. Modules from the group A extract different features from the source signal:
the fundamental frequency, the phonetic features encoding articulation of speech
sounds (Phoneme Posterior-Grams (PPGs) [16]) and the speaker’s x-vector. The
module B derives a new pseudo-speaker identity. The x-vector from each source
input speaker is compared to a pool of external x-vectors to select the 200 fur-
thest vectors; 100 of them are randomly selected and averaged to create an
anonymized pseudo-speaker x-vector identity. Finally, the module C synthesizes
a speech waveform from the pseudo-speaker x-vector together with the original
PPGs features and F0.

As an enhancement to this baseline, [2] proposed to modify the F0 values
(cf. module D in Figure 1) using the F0 mean and variance statistics associated
with each of the x-vector of the pool.

2.2 Design Choices for Anonymization

In the evaluation plan of the VoicePrivacy Challenge, all utterances of a given
speaker should be converted to match a single target pseudo-speaker. This strat-
egy, described as permanent in [15], ensures that a one-to-one mapping exists
between the source speaker identity and the anonymized speaker identity. This
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requirement allows anonymized voices to be distinguishable from each other. This
one-to-one mapping does not apply in-between speech anonymized by the ser-
vice provider and speech anonymized by the attacker. Speech data anonymized
by the service provider corresponds to the trial dataset, and speech available
to the attacker corresponds to the enrollment dataset, see Section 3.1 for more
detail. Figure 2a shows how the permanent strategy converts enrollment and
trial speech to different anonymized pseudo-speakers.

To select the target pseudo-speaker identity, module B (from Figure 1) has
many hyper-parameters that affect the selection mechanism. According to [2, 13,
14], the best anonymization results are achieved by picking the pseudo-speaker
in a dense region of the x-vector space, randomly targeting male or female gen-
der pseudo-speaker, and modifying the F0 values of the input speech so that
it matches the F0 statistics of the real speakers used to generate the pseudo-
identity.

The VoicePrivacy challenge’s protocol assumes that attackers have access
to anonymized trial utterances and original enrollment utterances. During the
challenge, two sets of tests are performed following black-box and grey-box at-
tacker scenarios corresponding to situations where the enrollment utterances
are original or have been anonymized. In the latter scenario, the attacker has
partial knowledge of the system and is able to anonymize the enrollment ut-
terances using the same anonymization system and permanent target selection
strategy. The pseudo-speaker chosen for each of the enrollment speakers differs
from the pseudo-speaker chosen for the trial speakers as the attacker does not
have knowledge of the randomly selected speakers used to generate the pseudo-
speaker identity. As the voices of the same speakers once anonymized by the
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Fig. 2. Overview of target selection strategies. In the permanent strategy pseudo-
speakers are randomly selected, first for the trial dataset and then for the enrollment
dataset. While our constant strategy, always targets the same pseudo-speaker.
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service provider (trial) and the attacker (enrollment) are different from each
other, this leads to a rather good anonymization performance [17].

With the permanent target selection strategy used in the challenge, anonymized
voices remain distinguishable and all utterances from the same original speaker
are anonymized with the same pseudo-speaker. This process is referred to as
pseudonymization. Providing attackers the target’s identity of each speaker in
the permanent strategy evaluates the quality of the voice conversion system and
the preservation of the voice distinctiveness [9]. In this paper, we evaluate the
privacy of the anonymization technique with the best attacker, that is using the
constant selection strategy.

3 Experimental Setup

In this evaluation, we want to provide a comprehensive assessment of the voice
conversion toolkit under a white-box scenario where the attacker has full knowl-
edge about the system. We change the game between the attacker and the ser-
vice provider to use the constant identity selection strategy defined in [15]. In
contrast to the anonymization performed in the VoicePrivacy challenge, the con-
stant strategy defines a single pseudo-speaker identity for all speakers in a given
dataset. We extend this property to all speakers of the trial and the enrollment
datasets so that all of them should have the same anonymized voice identity. We
expect good anonymization performance as the voices of all speakers should ap-
pear to be spoken by a single identity. This breaks the one-to-one requirement of
the challenge, speakers will not be distinguishable from each other. Still, we be-
lieve this assessment is complementary to the realistic attacker-based evaluation
of the challenge. Figure 2 shows the differences in the target selection strate-
gies between the VoicePrivacy strategy (permanent strategy), and the strategy
chosen for this study (our constant strategy). Experiments are performed with
different target speaker identities to provide averaged global results about the
voice conversion toolkit, and detailed analysis of the target identity effect on
multiple source speakers.

3.1 Dataset

All evaluation tasks for the experiments follow the conditions presented on
the publicly available VoicePrivacy challenge1. The triphone extractor has been
trained on the train-clean-100 and train-other-500 subsets of LibriSpeech. The
x-vector extractor has been trained on VoxCeleb-1,2. The speech synthesis sys-
tem has been trained on the train-clean-100 subset of LibriTTS. Finally, the
train-other-500 subset of LibriTTS has been used to create a pool of x-vector
and F0 statistics. The evaluation dataset is built from LibriSpeech test-clean.
Details about the number of speakers and utterances in the enrollment and trial
dataset are reported in Table 1.

1 https://github.com/Voice-Privacy-Challenge
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Table 1. Statistics of the evaluation dataset [17].

Subset Female Male Total

Librispeech
test-clean

Speakers in enrollment 16 13 29
Speakers in trials 20 20 40
Enrollment utterances 254 184 438
Trial utterances 734 762 1496

3.2 Utility and Privacy Metrics

To evaluate the performance of the system in both privacy (speaker’s conceal-
ing capability) and utility (content intelligibility) two systems and metrics are
used. To quantitatively evaluate the privacy, an x-vector-PLDA based Automatic
Speaker Verification (ASV) architecture provided by the challenge organizers is
used. The privacy protection is measured with the linkability metric: [4] intro-
duced two different measures that are calculated based on mated and non-mated
likelihood score distributions. In this case, mated scores are computed comparing
anonymized speech of the same user. Whereas non-mated scores are computed
comparing anonymized speech of different users. The local measure D↔ is the
local score-wise measure depending upon the likelihood ratio between the mated
and non-mated sample’s score. The global linkability measure Dsys

↔ is the average
value of D↔ over all mated scores. To obtain the linkability score for a given
speaker, the average is taken from all mated scores of this specific speaker. Work
in [6] advocate the use of Dsys

↔ as a robust privacy metric. The lower the Dsys
↔ , the

better the speakers are anonymized. As the Equal Error Rate (EER%) measure
is more often used in speaker verification, we present our result in terms of both
EER% and Dsys

↔ . The higher the EER%, the better the speakers are anonymized.

For the utility, the pre-trained Automatic Speech Recognition (ASR) system
provided by the challenge organizers is used to decode the anonymized speech
and compute the Word Error Rate (WER%). In this evaluation, the WER%

measure is used to evaluate how the content is kept intelligible. The lower the
WER% is, the more intelligible the anonymized speech is. Both ASR and ASV
systems are trained on LibriSpeech train-clean-360 using Kaldi [11].

3.3 Evaluation Methodology

In this experiment, we run the anonymization and evaluation on 40 real target
speaker’s identities that cover as best as possible the speaker space. Thus, to
select the target speakers, we identify 20 female and 20 male clusters of x-vectors
in the anonymization pool (LibriTTS train-other-500 ) using K-Means. We then
pick the speaker x-vector that is the closest to the centroid of each cluster. The
assessment of the anonymization performances will be done for each of those
40 target speaker identities. Real speaker identities are used instead of pseudo-
speaker identities derived from multiples speakers.
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To evaluate the performances of the anonymization system, we perform the
following procedure for the 40 selected target speaker identities. First, we convert
all utterances of Librispeech test-clean (data corresponding to enrollment and
trial) and Librispeech train-360 to the selected target speaker. Then, we train
the ASV model on the anonymized Librispeech train-360 dataset. Lastly, we
evaluate the privacy performances for each of the speakers of Librispeech test-
clean using the specially trained ASV model. As a result, we obtain one score
for each trial speaker of Librispeech test-clean and target identities (that is a
total of 29 × 40 scores). To evaluate the quality of the conversion process in
terms of utility (linked to speech recognition performance), we use a pre-trained
ASR model released for the VoicePrivacy Challenge. To study the effectiveness
of the F0 anonymization (module D of Figure 1), we perform the anonymization
process, and the associated evaluation, with and without the F0 transformation
enabled.

4 Experimental Results

4.1 Global Results

Table 2 compares the anonymization performance on a global scale. The first
line presents the linkability when no anonymization is performed (i.e., on origi-
nal speech data), clean speech encapsulates the speaker’s information to a high
degree (Dsys

↔ scores > 0.90). The second and third lines display the linkability
when using the voice anonymization system without and with the F0 transfor-
mation.

Table 2. Linkability (Dsys
↔ ) and EER% scores for original and anonymized speech.

For the anonymized data, the mean and standard deviation values are calculated over
the 40 experiments (i.e., one for each target speaker). Results on anonymized data are
given without and with F0 transformation.

Female speakers Male speakers

Dsys
↔ EER% Dsys

↔ EER%

Original 0.90 7.66 0.96 1.11
Anon. without F0 0.72± 0.01 12.1± 0.6 0.77± 0.01 9.5± 0.6
Anon. with F0 0.74± 0.01 11.6± 0.6 0.75± 0.01 10.6± 0.8

In contrast with the original speech results, the anonymized results come
from 40 ASV tests, each using a different speaker identity. The mean and stan-
dard deviation values are calculated from the 40 evaluations. From the linkability
score difference between original and Anon. lines of table 2 we can conclude that
speakers are less linkable to their true identity after applying the x-vector base
anonymization system. From the original data to the anonymized speech, linka-
bility scores drop by at least 17%, meaning the anonymization system has some
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effectiveness. The comparison between the last two lines shows that modifying
the F0 values does not help to remove speaker information from the speech signal,
as shown by the standard deviation values. This means that the transformation
applied was not strong enough to actually remove extra speaker information or
that the ASV system is quite robust against such modification. The rather low
standard deviation values across all scores show that there is no large variation
when changing target speaker identity, this indicates that a given target speaker
isn’t more suited than another to anonymize the whole dataset. As there are
not large scores differences between voice conversion without or with F0 val-
ues transformation, the following sections will only analyze the results of the
anonymization system that includes the F0 linear transformation.

4.2 Detailed Analysis

Results on a single test speaker (speaker 5105)

Fig. 3. Linkability scores (Dsys
↔ ) obtained using the ASV retrained on anonymized data

for each of the 40 target speakers (colored solid line) and on original speech (dotted
black circle). Each axis corresponds to a target speaker. The anonymization system
lowered the linkability scores, meaning better privacy is achieved.

We conducted a detailed analysis to check whether a specific target identity
is more suited to anonymize one or more speakers of our test dataset. Figure
3 illustrate the visualization used for this study in the case of a single source
speaker. The linkability Dsys

↔ scores are computed for speech anonymized with
40 different x-vectors and F0 statistics.



White-box Assessment of Speaker Anonymization 9

The black-dot circle indicates the linkability of the speaker on clean origi-
nal speech signal (note that the original speech does not depend on the target
speakers, hence the circle). And, for each of the 40 target speakers, the linka-
bility is presented by the colored solid line. After transforming the speech with
40 target speakers, we can observe that none of the 40 targets are significantly
better to anonymize this speaker’s voice. The variation between the anonymized
linkability scores is more likely due to the difference between the ASV model
training rather than a better target choice. This observation also applies to the
29 other speakers of our test dataset. It is also noteworthy that, out of the 40
target identities, 20 of them induce cross-gender voice conversion. Results for
same-gender and cross-gender voice anonymization were found similar.

Statistics from N = 15 speakers Statistics from N = 14 speakers

Fig. 4. Mean and standard deviation Dsys
↔ scores obtained for N speakers using re-

trained ASVs on anonymized data for each of the 40 target speakers (mean and stan-
dard deviation corresponding to the colored solid line and light area) and on original
speech (dotted black circle and grey area). Each axis corresponds to a target speaker.

Figure 4 shows the linkability Dsys
↔ scores of two groups to illustrate the

common anonymization behavior: one for which the anonymization system did
not remove speaker information, and the other for which the anonymization
did remove some speaker information. For the poorly anonymized speakers, we
observe that the distributions of linkability scores on anonymized speech (colored
area) completely overlaps the distribution of linkability scores on original speech
(grey area). The anonymization system did not remove any speaker information
for half of our test speakers. On the other hand, for the well anonymized speakers,
the anonymized speech and original speech scores distributions diverge. The
difference is distinct, speaker information was removed by the anonymization
system for the other half of our test speakers.
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4.3 Utility Results

Across all experiments, we evaluated the utility for each 40 target identities.
We performed the intelligibility test with the pre-trained ASR system of the
VoiecPrivacy challenge. Figure 5 shows the utility scores after anonymization
considering each of the 40 target identities. On original clean speech signal, the
ASR systems score 4.15 WER%. When using the same model (trained on clean
data) the overall WER% on the anonymized data reaches 7.30 WER% (aver-
age value over the 40 experiments). Retraining the ASR system on anonymized
speech improves the WER% significantly [17]. The very high utility loss yielded
when using speaker 2487 is due to a generalization issue of the anonymization
system (with happens with and without the F0 modification), in this case, non-
intelligible speech was generated at the beginning of some segments. We con-
ducted an additional test using 100 randomly selected target speaker identities,
and were able to find 3 target speaker x-vectors that have the same behav-
ior, with the worse case having a score of 59.37 WER%. Informal listening test
reported that the original speech that produced the faulty x-vector contained
singing segments. Further analysis needs to be conducted.

Fig. 5. WER% scores obtained by the VoicePrivacy ASR evaluation systems for each
of the 40 speakers and on original speech (dotted black line).

5 Conclusion

In this work, we evaluated and analyzed the x-vector-based speaker anonymiza-
tion system proposed in [3] and F0 extension proposed in [2] under a white-box
attack scenario approach and a constant target selection strategy. To assess the
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long-term performance of the voice conversion system and the impact of each
of the hyper-parameters (i.e. the x-vector target identity, the F0 linear transfor-
mation, and the random gender selection), the use of a constant target selection
strategy is beneficial. This target selection strategy allows the attacker to have
complete knowledge about the system, under those circumstances models and
hyper-parameters design choices can be compared as the best attacker will be
used to evaluate the anonymization performance.

The experiments done in [2, 14] showed that black and grey-box attackers can
easily be fooled when enrollment speech and trial speech are anonymized in a dif-
ferent manner, i.e. by selecting the x-vector in different regions, applying the F0
linear transformation and random gender selection. On the contrary, we observed
that neither the x-vector target, F0 transformation, or cross-gender conversion
actually help to remove the speaker information from the speech signal. We
showed that regardless of the hyper-parameters used, privacy protection stays
the same. The detailed analysis showed that a given set of hyper-parameters does
not help the anonymization system to better anonymize a given source speaker.
Furthermore, we concluded that the anonymization system performance depends
on the speaker to anonymize, half of our test speakers did not have their privacy
improved.

We raise caution on the privacy evaluation procedure, as we’ve shown that
system performance varies depending on the attacker’s knowledge and ASV sys-
tem used. In future work, we plan to evaluate the source of the speaker infor-
mation leakage that occurs through the phonetic features (PPGs).
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