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Abstract:
Green roofs are a sustainable solution to manage water runoff from rain events in urban areas.
Modeling hydrological phenomenon of green roofs is challenging because of the difficulties to
characterize the soil parameters, inducing uncertainties on these parameters. Soil parameter
uncertainties spread in the model and need to be analysed to better understand the dynamics
of the water retention. For this purpose, the water retention capacity is represented by the
Van Genuchten - Mualem model and sensitivity analysis is performed. Different methods of
sensitivity analysis are considered to quantify effects of parameter uncertainties on the water
retention capacity. The results of this study highlight the most influential soil parameters of the
substrate on the water retention capacity.
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1. INTRODUCTION

In the last decade, soil imperviousness has been one of
the main urban issues. For strong rain events, runoff can
lead to the discharge of high volume of water. Green Roofs
(GR) are considered as a sustainable solution to contribute
to rain water management [Mentens et al. (2006)]. Among
all urban-water regulation systems, GR can be used to
store and delay the release of rainwater to sewers. The
GR performance can reduce storm-water runoff volume
intercepted by the roof from 30% to 86%. The peak flow
rate in water system can decrease from 22% to 93% and the
peak flow can be delayed by 0 to 30 min [Li and Badcock
Jr (2014)].
Typically, GR are structured in five layers: (i) the top
layer is the vegetation plants, (ii) the layer underneath
is the substrate, a growing medium, (iii) a geotextile is
inserted to prevent the leaching of the substrate in the
drainage layer, (iv) the drainage layer is employed to carry
the infiltrated rainwater to drain and (v) a waterproof
membrane protects the building concrete.
The outflow (Qout) of GR is mainly related to the Volu-
metric Water Content (VWC) inside the substrate which
depends on the physical properties of this type of soil.
Few models exist to describe the hydrological infiltration
throughout the substrate and are based on the Richards’s
equation [Richards (1931)]. This highly non linear partial
differential equation describes the water infiltration in un-
saturated porous media and makes it possible to determine
the water retention capacity of GR. The characterization
of the model parameters is difficult to handle because
soil models cannot reproduce the living process of a GR.
The soil parameters are considered uncertain and these
uncertainties affect simulation of both VWC and Qout.
Some studies have analysed parameter effects on water

retention capacity. Usually, they focus on one parameter
at a time and test different scenarios to evaluate the
corresponding water retention capacity, for example, one
type of plants at a time or one type of growing layer [Li
and Badcock Jr (2014)]. This approach is limited since
only a few scenarios among a wide range can be evaluated.
The use of Sensitivity Analysis (SA) methods make it
possible to analyse the model uncertainties. SA allows
to quantify the contribution of parameter uncertainties
on the output variation in order to better understand
the model dynamics and improve design process [Saltelli
et al. (2008)]. For instance, the studies can be focused
on influential parameters and non-influential parameters
can be fixed to a nominal value. Two types of SA can be
distinguished: local SA which studies low variations of one
parameter and is based on derivative and global SA which
studies global simultaneous variation of all the parameters
and makes it possible to study a larger interval including
interactions between parameters. Global Sensitivity Anal-
ysis (GSA) are based on variance decomposition of the
model output and are known as ANOVA (ANalysis Of
VAriance) methods [Saltelli et al. (2008)].
For GR models, SA has been mostly used to analyse the
thermal behavior in [Morau et al. (2014)] or the economic
sustainability index of GR in [Ulubeyli and Arslan (2017)].
For hydric aspects, a local SA has been used to explain the
qualitative impact of soil parameters on the water content
and the output flow rate of GR in [Bouzouidja (2014)].
The data and the model studied represent a specific test
bench. Moreover, only low variations of the parameters
are analysed to prioritize parameter effects. The use of
local SA limits the analysis on uncertainty interval and on
effects of interaction between parameters which cannot be
taken into account.
This paper focuses on GSA applied to a GR hydrological



model to assess the parameter effects on water retention
capacity. The analysed data come from a GR in real
conditions, in France, Europe. The objective of this study
is twofold. First, exploratory analyses of the model un-
certainties are carried out in order to better understand
the GR retention capacity dynamics. To achieve it, GSA
is performed on the VWC. Second, two methodologies
to carry out GSA are presented: a sequential approach
which provides parameter influence at each time instant
and a multivariate approach which allows to sum up the
influence dynamics to save computation time.
The paper is organized as follow. The GR hydrological
model is presented in Section 2. Section 3 provides the key
insights on GSA principles and methods used in this work.
The application results are presented and discussed in Sec-
tion 4. Finally, some conclusions are drawn in Section 5.

2. HYDROLOGICAL MODELING

2.1 The governing equations

The governing equation of the infiltration is the one
dimensional form of the Richards’s equation [Richards
(1931)]:

∂θ(h)

∂t
=

∂

∂x
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∂h

∂x

)
− ∂K(θ)

∂x
(1)

where θ(h) is the volumetric water content in the soil
[m3·m−3] as a function of h which represents the pressure
head [m], K(θ) is the unsaturated hydraulic conductivity
[m·s−1], t is the time [s] and x is the depth [m].

The Van Genuchten-Mualem model (VGM) is consid-
ered to describe the hydraulic conductivity function [Van-
Genuchten (1980)]. The fundamental equations are:

θ(h) =
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where θr and θs are the residual and the saturated water
content [m3·m−3], α is a fitting parameter for pressure
head [m−1], Ks is the saturated hydraulic conductivity
[m·s−1], n is a dimensionless parameter defining pore size
distribution in the substrate and related to m with m =
1 − 1

n , l is the tortuosity and Se the effective saturation

[m3·m−3] given by:

Se =
θ(h)− θr
θs − θr

(4)

The upper boundary condition at the soil-atmosphere
interface is set as ”atmospheric boundary conditions with
run-off” and the lower boundary conditions is set as
”seepage face”.

2.2 Calibration

The VGM model is applied to each of the following
three layers of a GR represented in Figure 1: substrate,
geotextile and drainage layers.

0 cm

10 cm

15 cm

(i) Vegetation

(ii) Substrate

(iii) Geotextile

(iv) Drainage layer

(v) Waterproof membrane

Water content
measurement

Fig. 1. Profile view of the experimental site including di-
mensions, materials typically used in extensive green
roof and the volumetric water content sensor location
within the substrate.

Table 1. Nominal value and uncertainty inter-
val of ±10% for the substrate parameters

Uncertain Nominal Uncertainty interval
parameter Unit value Inferior Superior

θr m3·m−3 0.08 0.072 0.088
θs m3·m−3 0.43 0.387 0.473
α m−1 6.5 5.85 7.15
n - 1.58 1.422 1.738
Ks 10−3 m·s−1 2.167 1.95 2.38
l - 2.87 2.583 3.157

The model has one input – the rainfall – one output – the
water content VWC in the substrate – and six parameters
θs, θr, n,Ks, α and l. Their nominal value has been charac-
terized in a previous study [Bouzouidja (2014)]. However,
these parameters are affected by aging, soil compaction,
roots and plants development and their characterization
is challenging as discussed in [Solone et al. (2012)]. For
these reasons, the parameters are considered uncertain
and can be described as random variables defined by their
probability distribution. Since no value inside the uncer-
tainty interval is more probable than another, a uniform
distribution is defined around the nominal value of each
parameter (see Table 1).

2.3 Experimental GR and data strategy

The data have been collected on an in-situ experimental
GR installed in Tomblaine (4840’N 613’E, North-East of
France), under a Cfb climate according to the Köppen-
Geiger classification. The GR plot is placed at the top of
a 6 m in height flat-roof building and its surface is about
98 m2. The vegetation is a mix of species of sedum. The
substrate (10 cm height) is a man-made porous medium
composed of 80% pozzolana and 20% organic part.
A five months period has been chosen from July to
November 2011 which represents two periods (dry and
wet) and different hydrological phenomena. To compute
volumetric water content, the Richards’s equation for the
parameters given in Table 1 is solved using the Hydrus-
1D© software [Simunek et al. (2008)]. The rainfall (blue),
the measured VWC (black), the simulated VWC (red)
and the simulated outflow Qout (green) are displayed in
Figure 2.
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Fig. 2. Comparison between the numerical simulation (red)
and the measurement (black) of the volumetric water
content VWC. Rainfall is shown at the top (blue) and
water outflow Qout at the bottom (green)

Over the first 185 hours of simulation, large variations
appear due to the initialization step of the software and
are not taken into account for the result analysis. On the
following hours of simulation, different hydrological phe-
nomena can be observed. During a rain event, the VWC
reaches its saturation value (θs = 0.43 m3·m−3) and de-
creases when water comes down to the drainage layer (not
shown). This hydrological process is quite well captured by
the VGM model. When rainfall stops, the VWC decreases
with a linear shape until the next rain event. Some events
are not exactly reproduced by simulation. This is caused
by the parameter uncertainty as discussed in Section 2.2
and also to more complex phenomena, difficult to model
such as vegetation evolution [Emilsson (2008); Berretta
et al. (2014)].

The aim of the study is to use GSA to determine the
influence of the uncertain parameters on the VWC. In the
next section, GSA theory is recalled and several methods
are presented.

3. GLOBAL SENSITIVITY ANALYSIS METHODS

Global sensitivity analysis makes it possible to quantify
uncertain parameter effect on the output model.

Consider a discrete model (t = 1, 2, ...T ),

Y (ω, t) = G(X(ω), t) (5)

where X = [X1, ..., Xi, ..., Xk]T gathers the k model un-
certain parameters with Xi ∈ R, Y ∈ R the output, G the
model function which is known and ω ∈ Ω where Ω is the
space of random events of a probabilistic space. ω is used to
indicate the randomness of the parameter and the output.
In the following, in order to simplify the notations the
stochastic variable ω is omitted. The random parameters
Xi, i = 1, ..., k, are assumed independent and defined by
their marginal distribution.

3.1 Sequential sensitivity analysis

Concepts of global sensitivity analysis recalled in this sec-
tion are detailed in [Saltelli et al. (2008)]. To measure the

effect of the parameter uncertainty on Y (t) at each time
instant, the first-order sensitivity index Si(t) is defined as:

Si(t) =
V ar[E[Y (t)|Xi]]

V ar[Y (t)]
(6)

where E[Y (t)|Xi] is the expectation of the output Y (t)
given Xi, V ar[.] is the variance operator. Si(t) is between 0
and 1. Close to 0, Si(t) indicates non-influential parameter
Xi and on the contrary, if Si(t) is close to 1, the parameter
Xi is influential.
To measure the effect of the parameter Xi and all its
interactions, the total sensitivity index STi

(t) is defined
as:

STi
(t) =

∑
l#i

Sl(t) (7)

where l#i include all the index involving Xi.

The computation of Si(t) and STi
(t) are complicated be-

cause of the variance integral. Some methods exist to
estimate these indices. Very often, it is computed using
Monte Carlo simulations [Saltelli et al. (2008)], but for
computationally demanding models, this can become in-
tractable. An alternative consists in expanding the model
into orthogonal polynomials known as Polynomial Chaos
(PC) [Crestaux et al. (2009)], which is less expensive. The
sensitivity indices are then obtained in a straightforward
way from the algebraic expression of the polynomial ex-
pansion coefficients. In this paper, sensitivity indices will
be estimated using Polynomials Chaos Expansion (PCE),
detailed in the next section.

3.2 Estimation based on polynomial chaos expansion

As explained in [Haro-Sandoval et al. (2012)], the homo-
geneous chaos expansion can be used to approximate any
function in the Hilbert space of square-integrable func-
tions. Therefore, the model output Y can be decomposed
as follows:

Y (t) =

+∞∑
j=0

aj(t)ψj(X1, ..., Xk) (8)

where the multivariate polynomial ψj of degree j is defined
by the tensor product of the corresponding one-dimen-
sional polynomials φαj

i
(Xi):

ψj(X1, ..., Xk) =

k∏
i=1

φαj
i
(Xi) (9)

where αji is the PC degree following αj =
∑k
i=1 α

j
i ≤ p.

Different types of PC φαj
i
(Xi) exist according to the pa-

rameter distribution. When the random variable distribu-
tion is uniform (Xi ∼ U(a; b)), Legendre PC are chosen.

In practice, the PC expansion is truncated up to a finite
degree p and the number of coefficients in the expansion
equals:

M + 1 =
(k + p)!

k!p!
(10)

The optimal degree p could be selected by incrementing
its value until a target accuracy, for instance the deter-
mination coefficient R2, is reached. The deterministic PC
coefficients (i.e. the aj(t)’s in (8)) are the unknowns and
several approaches have been proposed to compute them



[Berveiller et al. (2006); Crestaux et al. (2009); Rahman
(2011)].

From the determination of the aj(t) coefficients, the first-
order sensitivity index (6) which quantifies the effect of Xi

on Y (t) can be estimated by:

Si(t) =

∑
l∈Ii a

2
l (t)E[ψ2

l (Xi)]∑M
j=1 a

2
j (t)E[ψ2

j (X1, ..., Xk)]
(11)

where Ii represents all polynomial index ψj which only
depends on Xi.
The total sensitivity index of Xi (7) can be estimated by:

STi
(t) =

∑
l∈I#i

a2l (t)E[ψ2
l (Xi)]∑M

j=1 a
2
j (t)E[ψ2

j (X1, ..., Xk)]
(12)

where I#i represents all polynomial index ψj which de-
pends on Xi and all its interactions.

Summary of the sequential GSA approach

The different steps of the sequential GSA approach are:

(1) Determination of uncertain parameters and their dis-
tribution functions by domain experts

(2) Generation of N parameter samples following the pre-
scribed distribution functions using specific sampling
method

(3) Generation of the output Y (ω, t) (5) corresponding
to the N parameter combinations (dim. N × T )

(4) PC decomposition of Y (ω, t) for each instant (col-
umn) according to (8)

(5) Computation of sensitivity indices of the parameters
for each instant of the PC decomposition of Y (ω, t)
according to (11) and (12) (dim. k × T )

The benefit of the sequential approach is to reveal the
sensitivity index dynamics. However, the computation
pf T indices is time consuming and leads to a huge
amount of information difficult to interpret. Moreover,
the sequential approach does not take into account the
time correlation between two instants, thereby creating
redundancy between indices.

3.3 Multivariate sensitivity analysis

To reduce the number of indices, different methods exist as
multivariate GSA based on Principal Component Analysis
(PCA) [Lamboni et al. (2011)]. Output time correlations
are analysed by PCA and allow the definition of an
adapted basis of projection. PCA is an optimal method
of dimension reduction which minimizes data loss [Jolliffe
and Cadima (2016)]. Output data are projected in the new
basis and then each component.

Denote Cov[Y ] the T×T covariance matrix of Y (ω, t) over
time. Its expansion based on eigenvalues is:

Cov[Y ] =
1

N
Y ′cYc =

T∑
q=1

λqvqv
′
q (13)

where Yc is the matrix obtained by centering each column
of Y (t), λq ∈ R, q = 1, ..., T the eigenvalues of Cov[Y ]
(λ1 ≥ ... ≥ λq ≥ ... ≥ λT ), v1, ..., vq, ..., vT a set of nor-
malised and mutually orthogonal eigenvectors associated
to the eigenvalue λq. The adapted basis corresponds to Q
vectors vq satisfying Q� T with maximum of inertia I.

I = trace(Cov[Y ]) =

T∑
q=1

λq (14)

For a given random scenario ωn, the model output Y (ωn, t)
can be approximated with the following expansion:

Y (ωn, t) ≈ Y (t) +

Q∑
q=1

hq(ωn)vq(t) (15)

where Y (t) is the statistical mean of Y (ω, t) over the
uncertainty domain Ω. The projection of Y (ωn, t) in the
new basis defined by the eigenvectors vq corresponds
to the principal components hq(ωn). It is defined by
hq(ωn) = Yc(ωn, t)vq(t). According to (15), the output
variability is contained in hq(ωn) with decreasing impor-
tance when q increases.
Output projected data correspond to a N ×Q matrix and
each column corresponds to a principal component hq.
Sensitivity indices are computed according to (11) and (12)
for each principal component hq.

Summary of the PCA-based GSA approach

The different steps of the multivariate GSA approach are:

(1) Steps (1), (2) and (3) are the same as for the sequen-
tial approach

(4) Decomposition of the covariance matrix of Y (ω, t)
with an eigenvector vq (dim. T × 1) associated to each
T eigenvalues λq, according to (13)

(5) Selection of the Q eigenvectors associated to the high-
est eigenvalues λq which represented the maximum of
inertia I (new basis dim. T ×Q)

(6) Projection of Y (ω, t) in the new basis to obtain the
principal components h (dim. N ×Q)

(7) PC decomposition for each principal component h
according to (8)

(8) Computation of sensitivity indices (11) and (12) of
the parameters for each principal component h (dim.
k ×Q)

The advantage of PCA decomposition is to reduce the in-
dex number from T to Q and each index reveals a trend of
sensitivity dynamics. Correlations between principal com-
ponent and each instant of the output can be computed
to interpret the meaning of each principal component.

4. RESULTS AND DISCUSSIONS

4.1 Sequential GSA applied to the GR model

Sequential SA is applied to the VGM model (1), (2) and
(3) for the 5 months period, presented in Section 2.3.
It represents a simulation time of T = 3455 hours for a
computational time of 15 seconds.

Step 1: As detailed in Section 2, there are k = 6 uncertain
parameters – θs, θr, n, Ks, α and l – defined by a uniform
distribution given in Table 1.
Step 2: Several sampling methods have been tested with
different sample size. The comparison reveals Sobol se-
quence and Latin Hypercube efficiency compared to Monte
Carlo. In the following, the output will be computed with
N = 500 samples generated using Sobol sequence. There-
fore, a 500× 6 matrix is generated following a uniform
distribution using substrate uncertainty interval (Table 1).
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Fig. 3. First-order sensitivity indices for sequential SA
applied to quantify substrate parameter effects on
VWC of the VGM model (at the bottom). Rainfall
is shown at the top (blue).

Step 3: The volumetric water content is obtained by
using Hydrus-1D© for each parameter combination. It
requires 2h to compute N = 500 output evaluations. Next,
the output are processed with Matlab© to obtain a
500× 3455 output matrix.
Step 4: The output matrix is decomposed for each
instant according (8). Sequential method requires the iden-
tification of (M + 1)× T coefficients. The choice of the
development degree p also influences the computation time
as explained in Section 3.2. Increasing p directly increases
the computation time without improving the index quality.
Tests on different values of p showed that p = 3 gives the
best compromise.
Step 5: The sensitivity indices are computed according
to (11) and (12) at each instant.

Despite its large computation time, the sequential GSA
approach allows to obtain sensitivity index dynamics over
time and to point out influence evolution. Sequential sensi-
tivity indices for substrate SA are represented in Figure 3.
It is worth noting that first-order indices are equal to
total indices Si = STi

. Such equality shows that higher-
order indices are null which means there is no influence of
interaction between parameters.
As a result, sensitivity indices over time have revealed
three influential parameters: Sθs the saturated water con-
tent index (orange), Sn the porosity index (purple) and
Sα the pressure head fitting parameter index (yellow).
Sθs index follows the water content dynamics i.e its in-
fluence rises when it rains and decreases when soil dries.
Between 97 % and 88 % of water content variation are
explained by θs variations. On the contrary, Sn index
inversly follows VWC and between 1 % and 8.2 % of
VWC variation are explained by n. Moreover, Sα is a
quasi-constant value around 0.24. The other parameters
represent less than 0.1 % of the influence.
For further work, the parameters θr, Ks and l can be
fixed to their nominal value. Moreover, to optimise the GR
water retention, the most important parameter on which
to focus is the saturated water content θs.
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Fig. 4. First-order sensitivity indices for the two principal
components of multivariate SA applied to quantify
substrate parameter effects on VWC of the VGM
model (bottom plots). Correlation between output
data and principal components (red - middle plots).
Rainfall events are shown on the top (blue).

Sequential sensitivity analysis gives sensitivity indices
trends over time. To sum up this trends, the multivariate
approach is applied.

4.2 Multivariate GSA applied to the GR hydrological
model

Multivariate analysis is applied to the N × T output
matrix (500 × 3455). The first steps are the same as in
the sequential procedure described in Section 4.1.

Step 4: The covariance of the output matrix is de-
composed using (13). From this decomposition, the most
informative eigenvectors are selected to create a new basis.
Step 5: Two vectors (Q = 2) are selected by analysing
inertia (14). The first one represents 99.65% of data in-
formation and the second one represents 0.35%. These
vectors composed an 3455× 2 adapted basis to project
output data.
Step 6: The VWC output matrix (dim. 500× 3455) is
projected on the 3455× 2 adapted basis. The projected
data correspond to a new matrix of size 500× 2. The
columns of the projected data correspond to the principal
components (PC1 and PC2).
Step 7: Each principal component is decomposed accord-
ing (8).
Step 8: Two sensitivity indices are computed from each
principal component using (11) and (12) and are sufficient
to sum up the dynamics of the parameter influences.

The results of the multivariate GSA for the variation of
substrate parameters are represented in Figure 4.
The PC1 correlation plot of Figure 4 shows an intense
linear link between most of instants and the first com-
ponent. During saturation periods (VWC close to 40%),
correlations are equal to 1 and slightly decrease towards
0.99 during drying periods. The corresponding first-order
sensitivity indices (bottom left) show that the most influ-
ential parameter is the saturated water content θs explain-
ing 94.78% of VWC variations. The porosity parameter n



explains 2.66% of the VWC variations and the pressure
head fitting parameter α explains 2.42%. All other param-
eters are considered non-influential because they affect less
than 1% of the output variation. The PC2 correlation plot
of Figure 4 shows an oscillation between 0.13 and −0.06 of
the linear correlations and completes information provided
by PC1 during drying periods. The corresponding first-
order indices (bottom right) show a loss of θs influence
which explains 3.61% of output variations and an increase
of n sensitivity index influence explaining 91.11% of the
output variations. The influence of the parameter α ex-
plains 2.42% of VWC variation. Other parameters are non-
influential. To interpret these results, they must be taken
into account in their entirety. Saturated water content θs is
the most influential parameter in particular during rainfall
event when VWC is at its maximum. However, θs influence
decreases during drying periods and n influence increases.
The influence of α is constant whatever the rainfall events
and the other parameters are non-influential.

All these results are consistent with the sequential ones
presented in Section 4.1. It is worth noting that the
sequential analysis requires the computation of T = 3455
indices, which is done in 13 seconds. The PCA based
approach requires the computation of only two indices,
which takes 6 seconds of simulation, to represent the same
influences, underlining the advantage of this approach.

5. CONCLUSION

In this paper, the effects of the soil parameter uncertainties
on the water retention capacity have been investigated for
a green roof in real conditions. Sequential and multivariate
GSA have been carried out to study the behavior of the
parameter influences with respect to time. Similar results
are obtained with these two approaches but multivariate
GSA significantly reduces the indices number to compute.
It has been shown that the saturated water content is
the most influential parameter, followed by the pore size
distribution and the pressure head fitting parameter. No
matter the season, the influence of the saturated water
content follows the dynamics of the water content, and
its influence rises when it rains and decreases when the
soil dries. On the contrary, the influence of the porosity
parameter decreases when it rains and rises when soil dries.
These results highlight the importance of the saturated
water content parameter to optimise the GR water reten-
tion. Sensitivity analysis can be seen as a helpful tool to
better understand the green roof behavior. In the future,
it would be interesting to study the influence of the soil
parameter of the drainage on the outflow of the green roof.
This could help to choose the most appropriate substrate
and drainage to minimize the outflow to the sewer system
during rainfall events.
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