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ABSTRACT

Photometric galaxy surveys probe the late-time Universe where the density field is highly non-Gaussian. A consequence is the emer-
gence of the super-sample covariance (SSC), a non-Gaussian covariance term that is sensitive to fluctuations on scales larger than the
survey window. In this work, we study the impact of the survey geometry on the SSC and, subsequently, on cosmological parameter
inference. We devise a fast SSC approximation that accounts for the survey geometry and compare its performance to the common
approximation of rescaling the results by the fraction of the sky covered by the survey, fSKY, dubbed ‘full-sky approximation’. To
gauge the impact of our new SSC recipe, that we call ‘partial-sky’, we perform Fisher forecasts on the parameters of the (w0,wa)-
CDM model in a 3 × 2 point analysis, varying the survey area, the geometry of the mask, and the galaxy distribution inside our
redshift bins. The differences in the marginalised forecast errors –with the full-sky approximation performing poorly for small survey
areas but excellently for stage-IV-like areas– are found to be absorbed by the marginalisation on galaxy bias nuisance parameters. For
large survey areas, the unmarginalised errors are underestimated by about 10% for all probes considered. This is a hint that, even for
stage-IV-like surveys, the partial-sky method introduced in this work will be necessary if tight priors are applied on these nuisance
parameters. We make the partial-sky method public with a new release of the public code PySSC.

Key words. large-scale structure of Universe

1. Introduction

The large-scale structure (LSS) of the Universe is an excel-
lent probe of cosmology, giving constraints, for example,
on dark matter, dark energy, and the large-scale behaviour
of gravity. Current galaxy surveys, such as the Kilo-
Degree Survey (KiDS, Heymans et al. 2021) and the Dark
Energy Survey (DES, DES Collaboration 2022), are starting
to provide cosmological constraints competitive with those
derived from the primordial cosmic microwave background
(CMB) and its weak lensing (Planck Collaboration VI 2020).
Additionally, the next generation of stage-IV surveys, like
the Vera C. Rubin Observatory Legacy Survey of Space
and Time (LSST, LSST Science Collaboration 2009), Euclid
(Laureijs et al. 2011), and the Dark Energy Spectroscopic Instru-
ment (DESI, DESI Collaboration 2016), will make it possible to
discriminate between dark energy and modified gravity models
with unprecedented precision and as a result their observations
will shed light on the origin of cosmic acceleration.

However, one key challenge when studying the late-time
LSS is its non-Gaussian distribution, which results from the
non-linear dynamics governing its time-evolution. This non-

Gaussianity has a variety of consequences: at the level of
the observables, information escapes the two-point correla-
tion function to leak into higher orders (e.g. Carron 2012;
Obreschkow et al. 2013); at the level of the likelihood, this lat-
ter becomes non-Gaussian although the impact on cosmologi-
cal parameters appears to be weak (Lin et al. 2020; Upham et al.
2021); and lastly at the level of the covariance, which is the
main focus of this article. Non-Gaussianity typically leads to
an enhanced covariance, as the tail of extreme events becomes
broader. For instance, the covariance of two-point functions
receives contributions from a positive trispectrum (e.g. Lacasa
2018; Wadekar & Scoccimarro 2020, for galaxy clustering).

One of the non-Gaussian contributions to the covari-
ance originates from long-wavelength super-sample modes,
which shift the mean matter density inside the survey and
coherently modulate all observables. This effect is often
called sample variance in galaxy cluster analyses and super-
sample covariance (SSC) when considering galaxy cluster-
ing and weak lensing. First discovered for cluster counts
(Hu & Kravtsov 2003), a vast amount of literature has been
devoted to the SSC in recent years (e.g. Takada & Hu 2013;
Takada & Spergel 2014; Takahashi et al. 2014; Li et al. 2018;
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Chan et al. 2018; Lacasa & Kunz 2017; Lacasa et al. 2018;
Barreira et al. 2018a,b), and it is well known to have a large
impact on constraints on the dark energy equation of state for
future surveys, be it for clusters (Hu & Kravtsov 2003), weak
lensing (Barreira et al. 2018a), or photometric galaxy clustering
Lacasa (2020).

Given the fact that the SSC originates from the observation
of a limited portion of the Universe, the angular mask of the sur-
vey, accounting for the unobserved regions of the sky (because
of bright stars or the high luminosity of the Galactic plane for
example), should be taken into account in the computation of
the SSC. While the effect of the mask has been extensively
studied for Gaussian covariance, especially for CMB analysis
(Hivon et al. 2002; Efstathiou 2004), there has been no detailed
study of whether or not it should be accounted for when includ-
ing the SSC for future surveys. This is the aim of the present
article.

In this work, we quantify and explore the impact of the SSC
on the performance of future survey missions, and aim to con-
strain cosmology – and, in particular, dark energy. To model
the SSC, we use the approximation presented in Lacasa & Grain
(2019), extend it to account for partial-sky coverage, and com-
pare it to the often-used flat-sky approximation. To forecast the
impact on the inference power of the survey, we build on the
Euclid forecast efforts of Euclid Collaboration (2020, hereafter
EC-B2020).

The article is organised as follows: in Sect. 2, we compare
three methods allowing to predict the SSC for full-sky, partial-
sky, and flat-sky surveys. In Sect. 3, we describe our galaxy
survey forecast methodology. In Sect. 4, we present the impact
of including the SSC on the statistical power of various survey
setups in terms of signal-to-noise and Fisher forecasts. We con-
clude in Sect. 5.

2. Method: SSC in full, partial, and flat sky

Let us consider two observables O1 and O2. These can be written
as the integral over the line of sight of their density, respectively
o1 and o2: Oi =

∫
dV oi, where dV = r2(z) dr

dz dz is the comov-
ing volume per steradian and r(z) the comoving distance. The
SSC for these observables is then given by the general formula
(Lacasa & Grain 2019):

CovSSC (O1,O2) =

"
dV1dV2

∂o1

∂δb
(z1)

∂o2

∂δb
(z2)σ2 (z1, z2) , (1)

where the quantity ∂o1/∂δb(z1) describes how o1 varies with
changes in the background density δb.

The (co)variance of the background density is defined as

σ2(z1, z2) = 〈δb(z1)δb(z2)〉

=

∫
d3k

(2π)3W̃ (k, z1)W̃∗ (k, z2) Pm(k|z12), (2)

where W̃ is the Fourier transform of the survey window func-
tion, whose expression will depend on whether we are looking at
full- or partial-sky coverage. Pm(k|z12) = D(z1)D(z2)Pm(k|z = 0)
is the matter power spectrum at redshifts z1 and z2.

We take O1 (resp. O2) to be the angular power spectrum
CAB

i j (`) cross-correlating two LSS tracers A and B (resp. C and
D), typically galaxy clustering and galaxy shear. Each spectrum
is measured for a redshift bin pair (respectively i j and k l) and
this can be expressed using the Limber approximation as

CAB
i j (`) =

∫
dV WA

i (z)WB
j (z)PAB (k` |z) , (3)

where PAB(k` |z) is the 3D power spectrum at k` ≡ (` +
1/2)/r(z) and WA

i (z) is the kernel of observable A corre-
sponding to the redshift bin i. Subsequently, from Eq. (3),
oAB = WA

i (z)WB
j (z)PAB (k` |z) (resp. oCD), and if we assume that

the derivatives ∂oi/∂δb vary slowly with redshift compared to
σ2(z1, z2), we can rewrite Eq. (1) as

CovSSC(CAB
i j (`),CCD

kl (`)) '
¯∂PAB

∂δb
(z1)

¯∂PCD

∂δb
(z2)

×

"
dV1 dV2 WA

i (z1)WB
j (z1)WC

k (z2)WD
l (z2)σ2 (z1, z2) . (4)

where we define

¯∂PAB

∂δb
(z) ≡

∫
dV WA

i (z)WB
j (z) ∂PAB/∂δb (k` |z)

IAB(i, j)
, (5)

with IAB(i, j) ≡
∫

dV WA
i (z)WB

j (z). Let RAB(k) be the effective
relative response of the considered power spectrum:

∂PAB

∂δb
(k) ≡ RAB(k) PAB(k). (6)

For the matter power spectrum, R is constant with redshift and
can be computed from perturbation theory or estimated from
simulations (Lacasa & Grain 2019). Then

¯∂PAB

∂δb
(z) × IAB(i, j) =

∫
dV WA

i (z)WB
j (z) ∂PAB/∂δb (k` |z)

=

∫
dV WA

i (z)WB
j (z) RAB(k`) PAB(k`, z)

≡ RAB
` CAB

i j (`). (7)

Finally, we define the matrix S A,B;C,D
i, j;k,l , which is the dimen-

sionless volume-averaged (co)variance of the background matter
density contrast, by

S A,B;C,D
i, j;k,l ≡

∫
dV1dV2

WA
i (z1) WB

j (z1)

IAB (i, j)
WC

k (z2) WD
l (z2)

ICD (k, l)
σ2 (z1, z2) ,

(8)

and the covariance simply rewrites as:

CovSSC

(
CAB

i j (`) ,CCD
kl

(
`′
))

≈ RAB
` CAB

i j (`) × RCD
`′ CCD

kl
(
`′
)
× S A,B;C,D

i, j;k,l . (9)

We note that, here the S matrix has four indices, as
it describes the covariance between all auto and cross-
C`. We denote it S i jkl, but for simplicity in the follow-
ing we consider only the covariance between auto-C`, i.e.
CovSSC

(
CAA

ii (`) ,CBB
j j (`′)

)
. In this case, the S matrix is denoted

S i j. We now derive the expression for this S matrix in different
survey cases: full sky coverage (Sect. 2.1), partial sky coverage
(Sect. 2.2) and flat sky approximation (Sect. 2.3).

2.1. Full-sky case

In the case of full sky coverage, the variance of the background
density field is simply (Lacasa & Rosenfeld 2016)

σ2(z1, z2) =
1

2π2

∫
k2dk Pm(k|z12) j0(kr1) j0(kr2), (10)
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where ri is the comoving distance to redshift zi and j0 is the
spherical Bessel function of the first kind and order zero. Given
that the angular matter power spectrum can be written as

Cm
z1,z2

(`) =
2
π

∫
k2dk Pm(k|z12) j`(kr1) j`(kr2), (11)

we can write σ2 as its monopole:

σ2 =
1

4π
Cm

z1,z2
(` = 0). (12)

By injecting this expression into Eq. (8), we can relate the S
matrix to a power spectrum

S A,B;C,D
i, j;k,l =

1
4π

CX,Y (` = 0), (13)

where

aX
`m =

∫
dV WA

i (z)WB
j (z) amatter

`m (z)∫
dV WA

i (z)WB
j (z)

, (14)

aY
`m =

∫
dV WC

k (z)WD
l (z) amatter

`m (z)∫
dV WC

k (z)WD
l (z)

, (15)

so that

CX,Y (` = 0) =

∫
dV1dV2 k2dk

WA
i (z1)WB

j (z1)

IAB(i j)
WC

k (z2)WD
l (z2)

ICD(k, l)
× Pm(k|z1, z2) j0(kr1) j0(kr2). (16)

The exquisite sensitivity of upcoming photometric surveys
will lead to a shot-noise small enough for the SSC to be an
important source of error on cosmological parameters. In partic-
ular, considering a full-sky SSC such as that outlined above will
no longer be sufficient and the SSC associated with the limited
size of the survey will need to be considered. Until now, authors
have chosen the simple option of rescaling the full-sky covari-
ance by a factor f −1

SKY –where fSKY ≡ ΩS /4π is the fraction of
the sky covered by the survey and ΩS its solid angle– in order to
account for partial-sky coverage in the SSC (Lacasa et al. 2018).
This latter is the first approximation we consider in the present
work. Numerically, we use the Python implementation PySSC
(Lacasa & Grain 2019)1

2.2. Partial-sky case

In this section, we derive the approach to SSC in the case of
partial sky coverage. The coverage is represented by the angular
survey window function or maskW(n̂), where n̂ is the sky direc-
tion. TypicallyW(n̂) = 0 for unobserved pixels andW(n̂) = 1
for observed ones, though a non-binary mask is also possible,
for example to represent the impact of inhomogeneous depth. In
this article, we assume that the mask is the same at all considered
redshifts. The covariance of the background mode is then given
by (Lacasa et al. 2018)

σ2 (z1, z2) =
1

Ω2
S

∑
`

(2` + 1) CW(`) Cm
z1,z2

(`) . (17)

As for the full-sky case, we can see the S i jkl matrix as a C(`)
of a non-physical field X, whose kernel is the product of the

1 Available at https://github.com/fabienlacasa/PySSC

kernels WAWB. However, in this case, multipoles other than the
monopole will contribute to the SSC:

S A,B;C,D
i, j;k,l =

1
Ω2

S

∑
`

(2` + 1)CX,Y (`)CW(`). (18)

It is interesting to note that, when considering the full-sky limit
of Eq. (18) ( fSKY → 1 and CW(` > 0) = 0), we retrieve the full-
sky matrix given in Eq. (13). Equation (18) is the second method
for SSC estimation that we consider in this work.

Numerically, we have developed a Python implementation of
Eq. (18), building on PySSC. We have validated this partial-sky
implementation against a parallel implementation making use
of the AngPow (Campagne et al. 2018) public code for angular
power spectra. We present this validation in Appendix A, which
shows a ∼6% agreement in the computation of the S i j for surveys
larger than ∼2.5% of the sky, while reaching ∼10% for smaller
patches.

2.3. Flat-sky case

Another example of approximation used in the literature to sim-
plify the computationally expensive estimation of the SSC is
the flat-sky approximation. For a top-hat kernel of width δr in
the flat-sky case, the S i, j matrix can indeed be simplified to
(Hu & Kravtsov 2003; Lima & Hu 2007)

S i, j =
1

2π2

∫
k⊥dk⊥4

J1 (k⊥θS r1)
k⊥θS r1

J1 (k⊥θS r2)
k⊥θS r2

×

∫
dk‖ j0

(
k‖δr1

2

)
j0

(
k‖δr2

2

)
cos

[
k‖ (r1 − r2)

]
Pm (k | z12) , (19)

for a cylindrical window function of radius θS delineating a sur-
vey solid angle ΩS = 2π(1 − cos θS ) ' πθ2

S . The wave-vector
k = (k‖, k⊥) is split into its components parallel and perpen-
dicular to the line of sight. Here, J1 is the Bessel function of
the first kind and order one. The power spectrum Pm(k | z12) is
evaluated at the centre of the respective redshift bins, following
Hu & Kravtsov (2003), Lima & Hu (2007).

This approximation, which is very efficient computationally,
is the third and final approximation considered in this work. We
use it as a point of comparison only, as it is limited to the case of
top-hat kernels.

2.4. Method comparison

In this section, we compare the S i j matrices obtained using the
three different methods outlined above; the result of this compar-
ison was used to choose a method on which to focus our interest
for the remainder of the study.

We consider the S i j matrices obtained for arbitrary top-hat
kernels with the full-sky computation (Eq. (13)) rescaled by
f −1
SKY, the partial-sky computation (Eq. (18)), and with the flat-

sky approximation (Eq. (19)) for circular masks of areas ranging
from 1 deg2 to 15 000 deg2, as well as for ten non-overlapping
redshift bins ranging from z = 0.2 to z = 2.0. The choice of
top-hat kernels of width ∆z = 0.1 is arbitrary as this example is
intended for illustration purposes only. Overall, we find on one
hand that the flat-sky approximation gives a S i j matrix close to
the true partial-sky computation for surveys with an area smaller
than 5 deg2 only. On the other hand, we find that the full-sky
approximation, after rescaling, gives satisfying results for areas
over 15 000 deg2.
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Fig. 1. Diagonal terms of the S i j matrices obtained for surveys with an
area of 1 deg2 (plain lines) and 15 000 deg2 (dashed lines). The colours
correspond to the three different methods considered in this article: full
sky in blue, partial sky in orange and flat sky in green. The lower panel
shows the ratio to the partial-sky case.

In Fig. 1, we compare the diagonal terms of the S i j matri-
ces obtained for the 1 deg2 and 15 000 deg2 mask for the three
treatments of the mask. We find that the flat-sky approxima-
tion performs better at higher redshift, with a relative difference
below 10% for z > 1.5. For lower redshifts, the S ii is underes-
timated by as much as 20% when using the flat-sky approxima-
tion, which corroborates the results of Lacasa et al. (2018). In
particular, this approximation completely ignores cross-redshift
bin correlations, which nevertheless exist when using the other
two approaches. For survey masks larger than 5 deg2, the flat-sky
approximation underestimates the S i j by as much as a factor two
and by five orders of magnitude in the case of a wide 15 000 deg2

mask, as can be seen in Fig. 1. This approximation should there-
fore not be considered in those cases. Conversely, the full-sky
approach performs well for very wide survey masks. In this case,
the full-sky approximation overestimates the diagonal of the S i j
by up to 1.5 for low redshifts (z < 0.5) but by less than 10% for
z > 1.

Figure 2 shows the S i j correlation matrices (i.e. divided by
their diagonal elements) obtained for a circular survey mask of
15 000 deg2. We can see that for non-overlapping redshift bins,
the SSC results in anti-correlations, which decrease for distant
bins. Such anti-correlations were already noted in the litera-
ture (Hu & Kravtsov 2003; Lacasa et al. 2018) and come from
the fact that the matter correlation function becomes negative at
large separations.

Therefore, we see that both approximations struggle to
recover low-redshift correlations stemming from partial-sky
SSC but can perform well for redshifts z > 1, where the cor-
relations are weaker. Here, we only considered non-overlapping
redshift bins, but we also compared the two matrices computed
for overlapping bins. In that case, the correlation between the
bins that overlap becomes positive and the structure of the matrix
is more complex. This renders the interpretation of the impact of
the partial-sky recipe on the SSC less evident if we only com-

pare the S i j matrices. For a more complete interpretation, we
see in Sect. 4 how the differences between full sky and par-
tial sky directly impact cosmological parameter inference. We
do not consider the flat-sky approximation further because we
are interested in large cosmological surveys, with wide survey
areas. Instead, we compare results between the partial-sky com-
putation, the full-sky approximation, and the Gaussian case in
order to highlight contributions from the SSC to results.

3. Method: galaxy surveys forecast

In order to forecast the variation in constraining power of galaxy
surveys depending on the covariance considered, we follow
for the most part the forecast recipe presented in EC-B2020.
We consider a Fisher matrix formalism and make use of the
CosmoSIS2 public code (Zuntz et al. 2015). In this section, we
review the main aspects of the forecast and refer the reader to
EC-B2020 for the remaining details.

3.1. Data

In these forecasts, we examine the constraining power of three
cosmological probes: weak lensing (WL), photometric galaxy
clustering (GCph), and their cross-correlation terms (XC), also
known as galaxy-galaxy lensing. We refer to the full combina-
tion as GCph + WL + XC. We consider the tomographically
binned projected angular power spectra as observables, Ci j(`),
where i, j label redshift pairs of tomographic bins. The angu-
lar spectra are presented in Eq. (3) using the Limber approx-
imation. We use the same formalism for WL, GCph, and the
XC terms. The main difference between the different probes
appears through the different kernels used in the projection from
the power spectrum of matter perturbations Pm to the spherical
harmonic-space observable. Following EC-B2020, when com-
puting the observables, we use the Limber and flat-sky approxi-
mations (Kitching et al. 2017; Kilbinger et al. 2017; Taylor et al.
2018), and we ignore reduced shear and magnification effects
(Deshpande et al. 2020).

For the redshift distribution of galaxies, we follow EC-
B2020 in considering ten tomographic redshift bins with the
same number of galaxies in each bin. We assume a true underly-
ing redshift distribution given by

ntrue(z) ∝
(

z
z0

)2

exp

− (
z
z0

)3/2 , (20)

where z0 = 0.9/
√

2. We then compute the photometric redshift
distributions in each one of the bins by convolving the true dis-
tribution with a sum of two Gaussian distributions. One for the
main dispersion of photometric redshift estimates and another
one for the outliers. More specifically, the redshift distribution
in the tomographic bin i is given by

ni(z) =

∫ z+
i

z−i
dzpntrue(z)pph(zp|z)∫ zmax

zmin
dz

∫ z+
i

z−i
dzpntrue(z)pph(zp|z)

, (21)

where (z−i , z
+
i ) are the edges of the ith tomographic bin and set to

the following values for the ten equally populated bins:

zi = {0.0010, 0.42, 0.56, 0.68, 0.79,
0.90, 1.02, 1.15, 1.32, 1.58, 2.50}. (22)

2 Available at https://bitbucket.org/joezuntz/cosmosis/
wiki/Home
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Fig. 2. S i j correlation matrices obtained for a 15 000 deg2 circular mask, and arbitrary, non-overlapping top-hat kernels for the full-sky computation
of Eq. (13) (left) and the partial-sky computation of Eq. (18) (right).
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n(
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[h
/M
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]3

Fig. 3. Normalised galaxy number density distribution in the ten pho-
tometric redshift bins. The black line is the sum of all the redshift bins.

We follow EC-B2020 in parameterising the probability dis-
tribution function pph(zp|z) as

pph(zp|z) =
1 − fout

√
2πσb(1 + z)

exp

−1
2

[
z − cbzp − zb

σb(1 + z)

]2


+
fout

√
2πσo(1 + z)

exp

−1
2

[
z − cozp − zo

σo(1 + z)

]2
 . (23)

For the outliers, we set the multiplicative bias to co = 1 and
the additive bias to zo = 0.1. For the remainder of the galaxies,
we consider a multiplicative bias cb = 1 and an additive bias
zb = 0. The uncertainty on the redshifts is assumed to be σb =
σo = 0.05. We consider a default fraction of outliers fout = 0.1.
We further assume a galaxy number density of thirty galaxies per
arcmin2. We show in Fig. 3 the normalised galaxy distribution
considered in this analysis.

The WL power spectra contain contributions from cosmic
shear and the intrinsic alignment of galaxies. We assume these
intrinsic alignments are caused by a change in galaxy elliptici-
ties that is linear in the density field. In this case, we can express
the density–intrinsic and intrinsic–intrinsic three-dimensional
power spectra, PmI and PII , as a linear function of the density
power spectrum, with PmI = −A(z)Pm, and PII = [−A(z)]2Pm.
We follow EC-B2020 in parameterising A as

A(z) =
AIACIAΩmFIA(z)

D(z)
, (24)

where CIA = 0.0134 is a normalisation constant, D(z) is the
growth factor, and AIA controls the amplitude of the IA con-
tribution. We further model the redshift dependence as

FIA = (1 + z)ηIA

[
〈L〉(z)
L∗(z)

]βIA

, (25)

where 〈L〉(z)/L∗(z) is the ratio between the mean source lumi-
nosity and the characteristic scale of the luminosity function
(Hirata et al. 2007; Bridle & King 2007). Following EC-B2020,
we consider the following fiducial values for the intrinsic align-
ment nuisance parameters: {AIA, ηIA, βIA} = {1.72,−0.41, 2.17}.

With respect to GCph, one of the primary sources of uncer-
tainty is the relation between the galaxy distribution and the
underlying matter distribution, that is the galaxy bias. We con-
sider a linear galaxy bias where the galaxy distribution δg is pro-
portional to the matter distribution δm,

δg(z) = b(z)δm(z), (26)

and the galaxy bias b only depends on redshift. We note that a
linear galaxy bias is sufficiently accurate to analyse large scales
(DES Collaboration 2022), while non-linear galaxy bias models
are needed for the very small scales (see e.g. Sánchez et al. 2017;
Desjacques et al. 2018). For simplicity, and in order not to mix
the impact of the SSC with a non-linear galaxy bias modelling,
we use the linear galaxy bias approximation in the following.

More specifically, and according to the approach used in EC-
B2020, we consider a linear galaxy bias with a constant ampli-
tude in each true redshift bin, that is

b(zi ≤ z < zi+1) = bi, (27)

where zi and zi+1 stand for the boundaries of the ith redshift bin
in true redshift. We choose a fiducial for the ten galaxy bias nui-
sance parameters given by bi =

√
1 + z̄i, where z̄i is the mean

redshift value of each redshift bin in true redshift.
For the full analysis, taking into account the correlations

between GCph and WL, we consider both a Gaussian covariance
alone and its combination with the SSC. The Gaussian covari-
ance, accounting for all correlations between angular scales, red-
shift combinations, and different observables, can be expressed
as:

CovG

[
CAB

i j (`),CCD
kl (`′)

]
=

δK
``′

(2` + 1) fSKY∆`

{[
CAC

ik (`) + NAC
ik (`)

] [
CBD

jl (`′) + NBD
jl (`′)

]
+

[
CAD

il (`) + NAD
il (`)

] [
CBC

jk (`′) + NBC
jk (`′)

]}
, (28)
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where A, B,C, and D stand for WL and GCph, i, j, k, and l run
over all tomographic bins, δK

``′ represents the Kronecker delta of
` and `′, and ∆` stands for the width of the multipole bins. We
assume that ∆` is large enough so that the fSKY approximation is
valid, as shown by Hivon et al. (2002). The noise terms NAB

i j (`)
are given by σ2

εδ
K
i j/n̄i for WL, where the variance of observed

ellipticities is σ2
ε , and δK

i j/n̄i for GCph. We assume that the Pois-
son errors on WL and GCph are uncorrelated, yielding a null
noise for XC.

We consider in the following the optimistic scenario pre-
sented in EC-B2020 concerning the multipole cuts used in the
analysis. That is, we include all multipoles ranging from ` = 10
to ` = 5000 for WL and all multipoles ranging from ` = 10
to ` = 3000 for GCph and the XC terms. We note that we con-
sider this optimistic case where we enter deep into the non-linear
regime to study the impact of the SSC, where it is most relevant.

3.2. Cosmological models

When studying the impact of a partial-sky approach in the SSC,
we consider a spatially flat Universe with cold dark matter and
dark energy. We use the standard CPL parameterisation for
the dark energy equation of state (Chevallier & Polarski 2001;
Linder 2005):

w(z) = w0 + wa
z

1 + z
. (29)

In addition to the w0 and wa parameters describing dark
energy, the cosmological model is described by the total mat-
ter density today, Ωm, the dimensionless Hubble constant, h,
the baryon density today, Ωb, the slope of the primordial power
spectrum, ns, and the root-mean-square (RMS) of matter fluctua-
tions on spheres of 8 h−1 Mpc radius, σ8. We further assume dark
energy to be a minimally coupled scalar field with sound speed
equal to the speed of light and no anisotropic stress. We there-
fore neglect dark energy fluctuations and use the parametrised
post-Friedmann (PPF) framework (Hu & Sawicki 2007), which
allows the dark energy equation of state to cross w(z) = −1 with-
out developing instabilities in the perturbation sector.

We consider the following set as fiducial values for our cos-
mological parameters:

p = {Ωm, Ωb, w0, wa, h, ns, σ8, }

= {0.32, 0.05, −1.0, 0.0, 0.67, 0.96, 0.816}, (30)

and we fix the sum of neutrino masses to
∑

mν = 0.06 eV, with
one massive neutrino and two massless neutrinos.

3.3. Derived forecast quantities

To gauge the impact of the SSC computation on the forecast sta-
tistical power of the survey, we use two metrics. First, the signal-
to-noise ratio (S/N) of the angular power spectrum of a given
probe, which quantifies the strength of detection of the angular
power spectrum in a model-independent way:

(S/N)2 =
∑
i, j,k,l

∑
`,`′

CAB
i j (`)Cov

[
CAB

i j (`),CCD
kl (`′)

]−1
CCD

kl (`′), (31)

where Cov is the (total) covariance matrix of the power spec-
trum, consisting of the sum of the Gaussian and SSC contribu-
tions: Cov = CovG + CovSSC.

To quantify the impact on cosmological constraints, we use
a second metric, the Fisher matrix:

Fα,β =
∑
i, j,k,l

∑
`,`′

∂CAB
i j (`)

∂θα
Cov

[
CAB

i j (`),CCD
kl (`′)

]−1 CCD
kl (`′)
∂θβ

, (32)

where θα and θβ are two model parameters, such as the two
parameters of the dark energy equation of state. From the Fisher
matrix we can derive several quantities to quantify the con-
straints on cosmological parameters :

– The marginalised error on a given parameter θα is given by

σα =

√(
F−1)

α,α. (33)

This expression implies that all the other parameters are
marginalised over, meaning that their variation is taken into
account when estimating the error.

– Instead, one could consider the unmarginalised error

σU
α =

√
1/Fα,α, (34)

which is like effectively fixing the other parameters to their
fiducial values. We see in the following that this distinction is
important to understand how the difference in S/N between
full-sky and partial-sky translates to the Fisher forecast.

– By considering the marginalised Fisher submatrix, Fw0,wa , of
the Dark Energy parameter plane (w0,wa), we can define the
Dark Energy Figure of Merit as

FoMw0,wa =
√

det(Fw0,wa ). (35)

This quantity is proportional to the inverse of the area delim-
ited by the 2σ contour in the marginalised two-parameter
plane.

Finally, it is interesting to note that the S/N is a particular
case of the Fisher metric for a scaling parameter A defined as
C(`; A) = A × C(`)fid, where C(`)fid is the angular power spec-
trum computed in the fiducial cosmology.

4. Results: impact on the statistical power

In this section, we compute the S/N and Fisher matrix, for the
Gaussian and total (Gaussian + SSC) covariance. We focus on
varying the survey masks (and fSKY) for the partial-sky (and full-
sky) computation of the SSC in order to assess the impact of
survey geometry on parameter inference. First, we vary the size
of the survey, and then we consider different mask geometries
for a fixed survey area before finally studying the dependence of
the SSC computations on the survey n(z). In order to simplify
the notation, we denote the full-sky and partial-sky computation
as fsky and psky, respectively.

4.1. Survey area

In this section, we study the impact of the SSC and its imple-
mentation through the fsky and psky recipes with respect to the
survey area. For the psky computation we consider a circular
mask with a fSKY corresponding to an area ranging from 5 to
15 000 deg2. We also gauge the importance of the SSC by com-
paring it to the Gaussian-only covariance.

First, we look at how the S/N of the angular power spectrum
of the probes considered in this article, that is, WL, GCph, and
GCph+WL+XC, evolves with the size of the survey. As stated in
section 2, for overlapping redshift bins, the structure of the S i jkl
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Fig. 4. Top: S/N of the angular power spectrum as a function of
the survey area for WL (short dashes), GCph (long dashes), and
GCph+WL+XC (plain line). The fSKY approximation is shown in blue,
the partial sky computation which accounts for the mask is shown in
red, and the Gaussian case is shown in green. Bottom: relative differ-
ence in percent between the blue and the red lines.

matrix is more complex, and so to interpret the impact of fsky
and psky on our observables, it is better to compare their S/N.
We show the results of this comparison in Fig. 4, for the psky
derivation, the fsky approximation, and the Gaussian covariance
case. We see that all probes are significantly affected by the SSC
regardless of the size of the survey. However, the relative dif-
ference between fsky and psky depends on the probe considered
and the survey area. For WL, and for a small survey of 5 deg2,
the fsky approximation underestimates the S/N with respect to
that of the more accurate psky computation by less than 10%.
For larger surveys, fsky systematically overestimates the S/N,
with a maximum of 20% for a 100 deg2 survey and a mini-
mum of 5% for a 15 000 deg2 survey. For GCph+WL+XC, the
behaviour of the S/N is similar to the GCph-only case, because
the GCph dominates the signal with respect to WL. For these
two probes, fsky leads to an overestimate of the S/N regardless
of the survey area. The relative difference is maximum –with a
60% overestimation– for small surveys between 5 and 100 deg2

and reaches a minimum of ∼7% for 15 000 deg2, close to the WL
case.

To understand how these results translate in terms of param-
eter constraints, we perform a Fisher forecast analysis follow-
ing Sect. 3. Table 1 gathers the values of the Dark Energy FoM
for all probes, considering the Gaussian covariance and the total
Gaussian+SSC covariance in fsky and psky for survey areas of
5 and 15 000 deg2. As expected from the S/N, the SSC has a
large impact on the Dark Energy FoM, especially for WL and
GCph+WL+XC, for which it is reduced by half for both small
and large survey areas. For small survey areas, the fsky approxi-
mation underestimates the FoM, especially for auto-correlations
of probes, which are the most impacted by the SSC. However, for
the largest survey areas, the difference between fsky and psky is
almost negligible.

To further understand these results, we present in Fig. 5 the
marginalised and unmarginalised constraints on all cosmological
parameters and survey areas of between 5 deg2 and 15 000 deg2.
In this figure, we consider the Gaussian+SSC covariance using

the psky derivation or the fsky approximation for different
probes. In the unmarginalised case, the error bars resulting from
using the fsky approximation or the psky computation follow the
same evolution with the survey area as the S/N. That is, for all
probes, when the fsky approximation leads to an overestimated
S/N, it also results in underestimated error bars on cosmologi-
cal parameters, and vice versa. Interestingly, when marginalising
on all the varied parameters, that is cosmological and nuisance
parameters, these results change. For GCph (see Fig 5a), the
difference between fsky and psky is largely reduced, giving a
relative difference of between 1 and −2% for all cosmological
parameters and survey areas. For WL (Fig 5b), the marginal-
isation has the opposite effect and the error is overestimated
with fsky, especially for the smallest surveys, going up to 50%
increase for Ωm, 35% for σ8, and 20% for w0, in the case of a
5 deg2 survey. The relative difference is below 10% for surveys
larger than 100 deg2, and is close to zero for the largest areas.
For GCph+WL+XC, Fig 5c, the situation is the same as for WL,
with a smaller amplitude of the relative difference for Ωm, σ8,
and w0, except for wa which shows a small underestimation of
its error of ∼−2% on intermediate survey areas. An interesting
point to note is that the most impacted cosmological parame-
ters are the ones related to the amplitude of the power spectrum,
namely Ωm, σ8, w0, and wa. This result is expected because the
effect of the SSC appears on the amplitude of the power spec-
trum through the change in the background density δb.

Overall, we see that, for the marginalised constraints, the
complete treatment of the mask in the derivation of the SSC is
not necessary for large areas representative of upcoming stage-
IV cosmological surveys. However, marginalising has an impor-
tant effect on the impact of the SSC. Despite the fact that the
S/Ns resulting from the fsky or psky computations largely differ,
for GCph, the difference is seemingly absorbed in the nuisance
parameters through marginalisation. In contrast, with WL, when
marginalising, the difference is transferred to the cosmological
parameters.

To confirm this interpretation, we look at the forecasted
errors on all nuisance parameters, that is, the ten constant galaxy
biases bi and the three intrinsic alignment parameters AIA, ηIA
and βIA, when accounting for the SSC with fsky or psky. The
results are shown in Fig. 6 for GCph+WL+XC. The galaxy
biases show different constraints depending on the SSC recipe,
with a maximum negative relative difference of between −2 and
−5% for all bi, except for b2 which goes down to −10%. On the
other hand, the errors on the intrinsic alignment parameters do
not change whichever recipe is used.

This is due to the fact that the simple model we use for the
galaxy bias is just an amplitude factor on the power spectrum.
Thus, through the marginalisation, the bi nuisance parameters
absorb the effect of SSC, which also modulates the amplitude
of the power spectrum through the variation of the background
density δb. The difference of SSC between fsky and psky is then
mostly transferred to the linear galaxy bias, while the IA param-
eters are insensitive to SSC. We observe the same behaviour for
GCph and WL alone. Interestingly, Wadekar et al. (2020) find a
similar effect of the marginalisation when accounting for the full
non-Gaussian covariance in a spectroscopic GC analysis.

The above results can be summarised in two important
points. First, the S/N is a misleading metric when used to quan-
tify the impact of a correct psky treatment of the SSC. Second,
even if the difference in terms of marginalised cosmological con-
straints is close to zero between the fsky and psky approaches for
large survey areas, for unmarginalised constraints the difference
can be of the order of 10%.
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Table 1. Dark Energy Figure of Merit for all three probes when considering the Gaussian covariance or the full Gaussian+SSC covariance in fsky
and psky.

Probe Survey area [deg2] Gaussian Gaussian + fsky SSC Gaussian + psky SSC fsky/psky− 1 [%]

WL 5 0.014 0.009 0.012 −30.87
15 000 43.120 26.329 26.335 −0.02

GCph 5 0.035 0.029 0.029 −1.56
15 000 103.714 88.636 88.455 0.20

GCph+WL+XC 5 0.346 0.150 0.166 −9.58
15 000 1038.132 454.590 460.510 1.30

Notes. We show the results for the lowest and largest survey area.
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Fig. 5. Forecast errors on cosmological parameters for the Gaus-
sian+SSC covariance, using circular masks of different areas for GCph
(a), WL (b), and GCph+WL+XC (c). For the three panels, we show
the relative difference in % between fsky and psky for each cosmo-
logical parameter. The plain lines correspond to the constraints when
marginalising on all parameters (cosmological and nuisance) and the
dashed lines when there is no marginalisation.
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Fig. 6. Marginalised errors on nuisance parameters using circular masks
of different areas for GCph+WL+XC. We show the relative difference
as a percentage between fsky and psky for each nuisance parameter.
The nuisance parameters associated to WL are shown in dashed lines
and the ones associated with GCph in plain lines.

As the difference can be absorbed by the nuisance parame-
ters, accounting for the full geometry of the mask when com-
puting the SSC will be essential when tight priors on nuisance
parameters are included in the analysis.

4.2. Survey geometry

In this section, we study the impact of the two different SSC
recipes with respect to the geometry of the survey. We consider
a survey with an area of 15 000 deg2 and three different geome-
tries: A single circular patch (such as the ones used in Sect. 4.1)
dubbed ‘1 pole’, two separated circular patches referred to as ‘2
poles’, and a survey with a geometry close to future stage-IV sur-
veys such as Euclid, where the Galactic and zodiacal plans have
been removed. These three masks are represented in a Mollweide
view in Fig. 7.

We perform a Fisher forecast in the same setting as described
in Sect. 3 for the three masks considered. In Fig 8, we present
the resulting marginalised and unmarginalised constraints in the
psky and fsky cases for GCph+WL+XC. For the marginalised
constraints (Fig 8a), as we already saw in the previous section,
the relative difference between fsky and psky is close to zero for
the simplest mask geometry. A more complex mask geometry
leads to larger discrepancies between the two approaches, which
nevertheless remain smaller than or close to 1% for all cosmo-
logical parameters. In the unmarginalised case (Fig 8b), we can
see the same effect as was discussed in the previous section:
the relative difference is larger when we do not marginalise.
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Fig. 7. Mollweide view of the three masks considered in Sect. 4.2. They all have an area of 15 000 deg2, corresponding to fSKY = 0.364. The
yellow area is the observable region.
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Fig. 8. Forecast errors on cosmological parameters for different
mask geometry and a 15 000 deg2 survey, for GCph+WL+XC, when
marginalising (a) or not (b). Top: relative error as a percentage for each
cosmological parameter. The filled coloured bars represent the con-
straints obtained with the psky derivation, using a circular mask (blue), a
mask divided into two circles (orange), or a stage-IV-like mask (green).
The hatched empty bars are the ones obtained in the fsky approxima-
tion. Bottom: relative difference between the fsky and the psky standard
deviation for each mask geometry.

Additionally, regarding the impact of the geometry, we observe
the same trend as in the marginalised constraints: a difference
increases with the complexity of the mask. For the most com-
plex stage-IV mask, the fsky approximation underestimates the
error by almost 10% for w0, wa, and 15% for σ8, in contrast to a
5% difference observed with the 1 pole mask. Similar results are
obtained with GCph and WL alone.

Therefore, for large, stage-IV-like survey areas, the
marginalised errors do not depend strongly on the mask geome-
try. However, as discussed in Sect. 4.1, this result will not hold
when adding tight priors on nuisance parameters, which is equiv-
alent to the unmarginalised errors case.
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Fig. 9. Normalised galaxy number density distribution in the ten photo-
metric redshift bins in the ‘tight’ case. The black line is the sum of all
the redshift bins.

4.3. Survey galaxy distribution

In this section, we study the impact of the two different SSC
recipes, comparing the forecasts obtained for different galaxy
distributions n(z). Indeed, as the S i jkl matrix is computed from
integrals of the kernels over z, it depends on the input n(z). We
use the forecast results from the previous sections and compare
them to constraints obtained when changing some of the param-
eters of the assumed galaxy distribution (see Eqs. (20), (21) and
(23)). We consider the same n(z) as above and a new n(z) with
‘tighter’ redshift bins. The new n(z), dubbed ‘tight’, is shown in
Fig. 9, whereas the original n(z), dubbed ‘wide’, can be seen in
Fig. 3. In addition, we also consider a third n(z), which is similar
to the wide one but with a different outlier fraction fout = 0.25,
while it was 0.1 in the previous section. Indeed, the fraction of
outlier redshifts is one of the most important issues to handle
for photometric surveys. The wide n(z) with fout = 0.25 is not
shown as it is visually very similar to the case with fout = 0.1,
but the interested reader can find a table in Appendix B with the
values of the different parameters used to compute the three n(z)
considered in this section. Here, we use the 1 pole, 15 000 deg2

mask introduced in Sect. 4.2 and visible in the left panel of Fig. 7
in all three cases.

We perform a Fisher forecast in the same setting as described
in Sect. 4.1 for the three n(z) considered. Figure 10 presents
the resulting marginalised and unmarginalised constraints in the
psky and fsky cases for GCph+WL+XC. Looking at the top pan-
els of Figs. 10a,b, we see that for all parameters, the relative
error is larger when using the wide n(z). This can be related
to the amount of overlap in the different n(z) functions: for
equal galaxy number densities, less overlap means less corre-
lation between redshifts, and in turn more independent informa-
tion in each bin. In addition, we see in Sect. 2 that for the pairs
of bins that do not overlap, the SSC produces anti-correlations,
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Fig. 10. Forecast errors on cosmological parameters for three n(z): with
wide redshift bins and an outlier fraction of fout = 0.1 or fmout = 0.25
and with tight redshift bins. The results are shown for GCph+WL+XC,
when marginalising (a) or not (b). We suppose a circular 15 000 deg2

survey in the three cases. Top: relative error as a percentage for each cos-
mological parameter. The filled coloured bars represent the constraints
obtained with the psky derivation using the wide n(z) with fout = 0.1
(blue) or fout = 0.25 (orange) and the tight n(z) (green). The hatched
empty bars are the ones obtained in the fsky approximation. Bottom:
relative difference between the fsky and the psky standard deviation for
each galaxy distribution.

which tends to increase the S/N compared to positive correla-
tions. Increasing the outlier fraction to fout = 0.25 does not seem
to have a large impact on the constraints.

For the marginalised constraints (Fig. 8a), the difference
between fsky and psky is less than 1% regardless of the n(z)
considered. Given the low relative difference, we do not find
trends specific to a particular galaxy distribution. The relative
difference can be larger for the wide or the tight case depending
on the parameter considered. We find the same result for WL
and GCph individually. However, for the unmarginalised con-
straints (Fig 10b), the difference between the two SSC recipes is
slightly larger in the wide case than in the tight case. This could
be explained by the larger error bars obtained with the former.

5. Conclusion

Many works have shown that the SSC can have a large impact
on cosmological constraints coming from a variety of stan-
dard cosmological probes (Hu & Kravtsov 2003; Barreira et al.
2018a; Lacasa 2020). Most studies focused on describing the
SSC using the approximation of flat-sky (Krause et al. 2017;
Krause & Eifler 2017) or full-sky (Lacasa & Rosenfeld 2016;

Lacasa & Grain 2019). A few more recent studies (Lacasa et al.
2018; Barreira et al. 2018a; Friedrich et al. 2021) investigated
the more realistic case of a survey mask. In the present
study, we extended the fast SSC approximation introduced
in Lacasa & Grain (2019) to an accurate partial-sky treatment
of the mask. This new SSC recipe retains the advantage of
Lacasa & Grain (2019): it is fast to compute, mostly model-
independent, and the code will be made available publicly when
this article is published. Here, we use it to investigate the impact
of the mask geometry on the SSC, and, in turn, on cosmological
parameter inference for future surveys.

Comparing the standard flat-sky and full-sky approxima-
tions to our new, more accurate partial-sky computation, we find
first of all that the flat-sky approximation only provides a sat-
isfying estimate of SSC-induced correlations between redshift
bins for survey areas smaller than 5 deg2, and specifically for
z > 1 (Sect. 2.4). On the other hand, the full-sky approach
can recover the partial-sky SSC for wide surveys larger than
15 000 deg2 with 10% precision, and, as expected, performs bet-
ter at higher redshifts. Following these first results, we chose
to focus our analysis (Sect. 4) on the full-sky and partial-sky
methods to explore the impact of survey geometry on cosmo-
logical constraints. We considered the main photometric probes
of the upcoming stage-IV surveys, the so-called 3x2pts analysis,
composed of photometric galaxy clustering, weak lensing, and
their cross-correlation (also called galaxy–galaxy lensing). We
performed Fisher forecasts following the methodology of EC-
B2020; see Sect. 3.

First, in Sect. 4.1, we consider a simple circular geometry for
the mask and vary its area. Starting from a naive S/N compari-
son, we see that accounting for the SSC greatly reduces the S/N
for all probes compared to the Gaussian covariance-only case.
This result holds for the full-sky approximation, despite it over-
estimating the S/N, especially for small survey areas. Moving
to parameter inference, we confirm that accounting for the SSC
reduces the Dark Energy FoM for WL and GCph+WL+XC by
half. Regarding the comparison between full-sky and partial-sky
SSC, interpretation of the impact on cosmological constraints is
more challenging. The unmarginalised errors are in agreement
with the S/N: the full-sky approximation leads to underestima-
tion of the error bars (because of overestimation of the S/N).
After marginalisation, the difference in the errors induced by the
two approximations is reduced, except for WL alone. That is
because the large difference observed in the S/N is absorbed by
the galaxy biases of GCph, while the intrinsic alignment param-
eters of WL are insensitive to the change in the SSC recipe.
Overall, for both marginalised and unmarginalised constraints,
the fsky approximation performs better as we increase the sur-
vey area, with a relative difference in cosmological errors of less
than 10 % with psky for a 15 000 deg2 survey.

Comparing surveys of areas of 15 000 deg2 but with differ-
ent footprints, we find that the more complex the mask geom-
etry, the larger the difference between full-sky and partial-sky
(see Sect. 4.2). For the marginalised constraints this difference
is negligible as it is always below 1%. However, the differ-
ence cannot be neglected for unmarginalised errors, as for some
parameters, including wa, it ranges from 5% for the simplest
mask to 10% for the most complex one. Finally, in Sect. 4.3,
we compare constraints obtained with a circular 15 000 deg2

mask with those obtained with the same mask but with a differ-
ent galaxy number density distribution n(z). For a n(z) that has
less overlap between redshift bins, the difference between full-
sky and partial-sky in the unmarginalised constraints is found to
decrease. That is because, for the same galaxy number density,
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an n(z) with less overlap between redshift bins leads to smaller
error bars. However, the difference is small and the changes in
the n(z) we consider does not have a significant impact on the
difference between full-sky and partial-sky for all probes.

Overall, these results show that, for wide surveys, such as
the future stage-IV surveys and in particular Euclid, a complete
treatment of the angular mask geometry when estimating the
SSC is not crucial, and the full-sky approximation is sufficient.
However, as also reported in Wadekar et al. (2020), marginal-
isation over the nuisance parameters can absorb the effect of
non-Gaussian covariance, and if tight priors are applied to these
parameters, the effect of the mask may no longer be negligible.
As the partial-sky method we present in this article is made pub-
lic3, it can be used for further analysis to accurately account for
the SSC in any cosmological survey.
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Appendix A: Partial-sky code validation

In this Appendix we validate the outputs of the partial-sky
code PySSC.Sij_partsky1 allowing the computation of the S i j
matrix (in the case of a single observable; see Sect. 2.2) for a
sample of different masks and radial window function configura-
tions. We compare these results with the corresponding numer-
ical predictions of the AngPow4 (Campagne et al. 2017, 2018)
public software.

As pointed out in Eq. (18), the S i jkl matrix can be seen as
the evaluation of the auto- and cross-angular power spectrum
between observables and redshift bins (only redshift bins for the
S i j matrix). AngPow is specifically designed to compute the inte-
gral Eq. (16) for arbitrary multipoles `, as long as the input radial
window function is transformed such that W(z) → W2(z) for a
similar result between the two methods (see the AngPow integral
in Campagne et al. 2017).

For this exercise, we choose several mask settings account-
ing for different SSC contribution levels, including circular
angular patches of respectively [1, 5, 55, 100, 500, 1000,
10 000] deg2 (corresponding to a fraction of the sky fSKY =
[0, 002, 0.01, 0.13, 0.24, 1.21, 2.49, 24.35]×10−2) and a stage-IV
mask (as featured in Fig. 7) equivalent to a full-sky survey with-
out the Galactic plane and the zodiacal (15 000 deg2 or equiv-
alently fSKY = 0.364). For each of these masks, we use sev-
eral arbitrary Gaussian radial window functions centred at red-
shifts z = [0.5, 0.75, 1, 1.25, 1.5] with a variance of 0.01, allow-
ing them to overlap.

Both codes are run in the context of a linear ΛCDM cos-
mology (h = 0.67 , Ωb = 0.05, Ωcdm = 0.27, ns = 0.96,
As = 2.1265.10−9) with an input power spectrum computed at
z = 0 using the CLASS code5 (Blas et al. 2011) in the range
k ∈ [10−5, 3×10−1]h/Mpc. The required maximum ` in the com-
putation of the C` for a convergence of the variance within 5%
is computed by the PySSC.find_lmax function for both codes.
Here `max = [243, 218, 115, 90, 51, 36, 11] for the respective cir-
cular patches and `max = 20 for the stage-IV one. Moreover,
the mask spectrum C`(M) (see Eq. 18) is numerically computed
using the healpix code6(Zonca et al. 2019; Górski et al. 2005).

More specifically, the Angpow settings that we use are a
trapezoidal radial quadrature with associated radial_order
parameter set at 350 to maximize the accuracy, while perform-
ing an exact computation of the C` (no Limber approximation).
Moreover, in order to freely modify the used radial window
function and verify the condition W(z) → W2(z), we use the
input option userfile. The other computational parameters are
left as default. On the PySSC setting side, we compute the wave
mode integration using the precision parameter precision =
12.

In Fig. A.1, we compare the different S i j output matrices
predicted by the two methods in the context of the eight angu-
lar masks previously introduced. A compatibility of better than
∼ 6% accuracy can be seen between the two C` computational
methods for all masks larger than 1000 deg2 (> 2.5% of the sky),
while keeping a better than ∼ 10% accuracy for smaller patches.
We finally note that for each tested geometry, the deviation is
damped for increasing redshifts.

4 gitlab.in2p3.fr/campagne/AngPow
5 class-code.net
6 healpix.sourceforge.net
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Fig. A.1. Top panel: Absolute value of the S i j matrix elements in the
case of a stage-IV angular mask, as predicted by PySSC in black solid
line and AngPow in red dashed lines. The elements are ordered column
by column of the lower half of the matrices, including the diagonal (i×i).
The corresponding x-coordinates, i × j, label the redshift bins that are
cross-correlated. Panels 2 to 9: Relative deviations (in percent) between
the two methods for decreasing survey area. The grey area depicts the
5% discrepancy.

Appendix B: Galaxy distribution parameters

In this Appendix, we show the values of the parameters of
Eqs. (20), (21), and (23) that we used to compute the three n(z)
considered in Sect. 4.3.

Table B.1. Values of the parameters describing the photometric redshift
distributions.

n(z) cb zb σb c0 z0 σ0 fout

Wide, fout = 0.1 1.0 0.0 0.05 1.0 0.1 0.05 0.1
Wide, fout = 0.25 1.0 0.0 0.05 1.0 0.1 0.05 0.25
Tight, fout = 0.1 1.0 0.0 0.02 1.0 0.1 0.02 0.1
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