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Abstract: In a previous article we proposed a new model for quantum gravity (QGR) and cosmology,
dubbed SU(∞)-QGR. One of the axioms of this model is that Hilbert spaces of the Universe and its
subsystems represent the SU(∞) symmetry group. In this framework, the classical spacetime is inter-
preted as being the parameter space characterizing states of the SU(∞) representing Hilbert spaces.
Using quantum uncertainty relations, it is shown that the parameter space—the spacetime—has a 3+1
dimensional Lorentzian geometry. Here, after a review of SU(∞)-QGR, including a demonstration
that its classical limit is Einstein gravity, we compare it with several QGR proposals, including:
string and M-theories, loop quantum gravity and related models, and QGR proposals inspired by
the holographic principle and quantum entanglement. The purpose is to find their common and
analogous features, even if they apparently seem to have different roles and interpretations. The
hope is that this exercise provides a better understanding of gravity as a universal quantum force
and clarifies the physical nature of the spacetime. We identify several common features among the
studied models: the importance of 2D structures; the algebraic decomposition to tensor products; the
special role of the SU(2) group in their formulation; the necessity of a quantum time as a relational
observable. We discuss how these features can be considered as analogous in different models. We
also show that they arise in SU(∞)-QGR without fine-tuning, additional assumptions, or restrictions.

Keywords: quantum gravity; quantum cosmology; symmetry

1. Introduction and Results

Several fundamental questions about gravity and spacetime are not still answered
by general relativity or by various attempts to find a consistent quantum description for
gravitational interaction. The most daunting of these issues is the dimension of spacetime,
which is usually considered to be the observed (3+1) without any explanation for its origin.
Moreover, general relativity and Einstein gravity do not specify the nature of spacetime,
except that it is curved in the presence of matter and energy. Most QGR models treat
spacetime as a physical entity, which despite being coupled to matter, has an independent
existence. Indeed, often quantization of gravitational interaction, which is necessary in
a Universe with quantum matter [1], is interpreted as an inevitability of a quantized
spacetime. There are, however, multiple pieces of evidence against this conclusion:

• It has been demonstrated [2] that Einstein’s equation can be obtained from the second
law of thermodynamics and the holographic principle—that is, the proportional-
ity of entropy inside a null (light-like) surface to its area rather than volume [3–6].
Holographic behavior has been also observed in many-body systems with negligible
gravity [7,8]. These observations confirm the conclusion of [2] that Einstein’s equation
should be considered an equation of state. This interpretation and universality of
gravitational interaction imply that what is perceived as space and its geometrical
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properties, such as distance and curvature, represent the state of its matter content.
Thus, it seems that spacetime and matter are inseparable aspects of the same physical
reality/entity.

• Even without the holographic principle, the fact that the energy–momentum tensor
of matter—the source of gravitational interaction—depends on the spacetime metric
means that spacetime and matter are more intertwined than, for instance, bosonic
gauge fields and their matter source in Yang–Mills models.

• In quantum field theory (QFT) spacetime or its dual energy–momentum mode space
(but not both at the same time) are used as indices to keep track of the continuum
of matter and radiation. The fact that in a quantum realm the classical vacuum—the
apparently empty space between particles—can be described as a sea of virtual—
off-shell—quantum states [9] means that we could completely neglect the physical
space—the perceived 3-dimensional space. This would be possible if we could identify,
tag, and order all real and virtual particles, for instance, by using the strength of their
mutual quantum entanglement [10–14] or interaction strength [15]. In this view, the
classical Einstein equation could be interpreted as an equation of state, which dynam-
ically modifies parameter (index) space according to variations of interactions and
entanglement between particles, and with respect to a relational quantum clock [16].

• It is useful to remind that in most QGR models the dimension of spacetime is consid-
ered as a parameter and little attempt is made to explain why it has the observed value.

In the last decade or so progress in quantum information theory has motivated the con-
struction of QGR models which are not based on the quantization of a classical theory. They
are sometimes called Quantum First models in the literature [17]. In addition, progress
in quantum information has highlighted the crucial role of the division of the Universe
in parts—subsystems—and thereby, the necessity for a proper mathematical definition
of what can be considered as a distinguishable quantum (sub)system. This concept has
special importance for gravity, because as far as we know from general relativity, it is
a universal force, coupling everything to the rest of the Universe. Indeed, we will see
later in this work that some QGR models struggle to find a naturally factorized—tensor
product—Hilbert space in which each factor can be considered as presenting the Hilbert
space of a subsystem. In QFTs without gravity, subsystems are particles /fields or their
collections. A priori, the same concept can be applied to QGR. However, in the strong
coupling limit of QGR spacetime/gravity and matter may be indistinguishable. There-
fore, it is necessary to have a physically and mathematically well defined description of
what may be called a distinguishable subsystem of the Universe. We also remind that
the tensor product of Hilbert spaces of subsystems is not only important for gravitational
interaction, but also for meaningful definition of locality, quantum clocks, quantum in-
formation flow and relative entropy, renormalization flow, and holographic properties
of states. None of these concepts would make sense without mathematical and physical
notion of distinguishable subsystems.

In [18,19] we proposed a model for a quantum Universe which can be placed in the
quantum first category. Here we call this model SU(∞)-QGR. It is briefly reviewed in
Section 2. SU(∞)-QGR is a fundamentally quantum model, in the sense that its axioms
come from quantum physics and its formulation is not a quantized version of a classical
model. It does not include in its foundation, neither explicitly nor implicitly, a background
spacetime or ingredients from Einstein general relativity, such as an entropy–area relation.
It is shown that both spacetime and Einstein’s equation emerge from quantum proper-
ties. The physical space is identified with the space of indices parameterizing Hilbert
and Fock spaces of the Universe and their subsystems. Einstein’s equation presents the
projection of relational evolution of subsystems on the parameter space—the only observ-
able when experiments do not have sufficient sensitivity to observe the quantum field of
gravitational interaction.

In other quantum first proposals usually a background spacetime is implicitly present
in their axioms. Examples of such models are those described in [12,15]. There is also
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implicit assumption of a physical space in models based on the holographic principle—a
hypothesis inspired by semi-classical general relativity [20,21], such as [13,14]. Indeed, it
is obvious that holography without a geometrical space is meaningless. By contrast, in
SU(∞)-QGR the classical physical space and time genuinely emerge from quantum struc-
ture of the model and the assumption that any physical entity must be inside the Universe.

Quantum first QGRs and other modern approaches to QGR at first sight seem very
different from each other. However, the history of science is full of cases where seemingly
different theories and interpretations were finally turned up to present the same physical
concept viewed from different perspectives. The best examples are Schrödinger’s wave
mechanics and Heisenberg’s matrix mechanics approaches to quantum mechanics, which
were later proved to be equivalent. For this reason, any new theory should look for what it
has in common with other relevant models, and what new concepts or interpretations it
is proposing. Such verification is particularly necessary for new QGR proposals, because
it has been under intensive investigation for close to a century. Moreover, given the fact
that at present none of the proposals is fully satisfactory or has observational support,
a better understanding of common aspects of different QGR candidates may provide a
direction and path to further developments, and eventually to the true model, unless all
the proposals are completely irrelevant.

In this work we compare SU(∞)-QGR with some of popular approaches to QGR,
namely: symplectic models, including loop quantum gravity (LQG) and related models;
string theory and its closely related matrix models (M-theory) and Anti-de Sitter–Conformal
Field Theory (AdS/CFT) duality—more generally gauge-gravity duality; and models based
on the holographic principle and quantum entanglement. Although our purpose is to find
similarities and analogous features of these models, this investigation also clarifies their
principle differences, which may be equally useful for further theoretical development,
and eventually for discriminating or constraining them by experiments and observations.

We do not consider more traditional approaches, such as canonical quantization [22–24]
(see, e.g., [25,26] for reviews) and the ADM 3+1 method [27]. After decades of research, it
is now clear that they do not lead to a consistent and renormalizable theory. Other models
omitted here are QGR models based on non-commutative spacetimes; models based on
the quantum history interpretation of quantum mechanics; and causal sets. These models
are based on postulates that fundamentally deviate from those of SU(∞)-QGR, and their
comparison with the latter is meaningless.

We begin by presenting a summary of the results of this work in Section 1.1. Its
purpose is to provide a quick overlook of comparison results. Therefore, if there are unclear
points, the reader should refer to Section 3 for more explanation. In Section 2, and its
subsections we briefly review SU(∞)-QGR and show that the common features of QGR
models arise naturally and without fine-tuning or additions of new assumptions to the
initial axioms. Details of comparisons between models are discussed in Section 3. For each
model we first briefly remind its main features. Then, we compare them with those of
SU(∞)-QGR. It is obvious that detailed and technical descriptions of models and their
variants, about which in some cases thousands of papers and numerous text books are
written, is out of the scope of the present work. The aim of short reminders here is to
introduce features and notation useful for comparisons with SU(∞)-QGR. Section 3.1
reviews several background independent QGR models, including the Ponzano–Regge
model and LQG. Quantum first models are reviewed and compared with SU(∞)-QGR in
Section 3.2. We compare string and M-theories, and gauge-gravity duality conjecture with
SU(∞)-QGR in Section 3.3. A short outline is given in Section 4.

1.1. Summary of Comparison Results

From comparison of the SU(∞)-QGR proposal with some of other approaches to QGR,
we recognized a series of similar aspects, symmetries, and structures, which despite their
different roles and interpretations in different models, can be considered as analogous and
common. Here we should emphasize that what we call similarity or analogy should



Symmetry 2022, 14, 58 4 of 34

not be interpreted as one-to-one correspondence. For instance, decomposition of SU(∞)
to SU(2) factors in SU(∞)-QGR is not the same operation as discretizing space to tetra-
hedra weighed by spins on their edges. Nonetheless, they have analogous mathematical
descriptions—in this case a spin network. If the QGR models reviewed in this work contain
at least some of the features and properties of the true theory, they should be, most probably,
reflected in these common or analogous characteristics.

The common features that we found in the models investigated in Section 3 are
summarized in the following subsections.

1.1.1. Presence of 2-Dimensional Spaces or Structures in the Construction of Models

In some QGR models 2D spaces are used to construct a quantized space. They are
either 2D boundaries of a symplectic representation of the 3D physical space, consisting of
connected tetrahedra with nonzero curvature at vertices, or 2D worldsheets/membranes
embedded in a multi-dimensional space. These structures are treated as fundamental
objects of the models—analogous to particles in QFTs without gravity—and despite signifi-
cant differences in their interpretation in different models, they have a crucial role in the
generation of what is perceived as spacetime and gravity. In these models, 2D structures
are usually postulated and considered as physical entities. In this respect, SU(∞)-QGR is
an exception, because diffeo-surfaces emerge from axioms and symmetries, and are consid-
ered as properties rather than being physical objects. Notice that the issue of what makes
an abstract entity a physical object is rather philosophical. In practice, in mathematical
formulations of physical phenomena, all entities are abstract but related to what can be
measured. Thus, in this sense they can be considered as physical.

The extended nature of 2D structures has a crucial role in making QGR models
renormalizable and in preventing singularities. In SU(∞)-QGR this property is reflected in
the fact that by definition a diffeo-surface cannot be shrunk to a point; otherwise, SU(∞)
symmetry would be represented trivially. Another rationale behind the emergence of 2D
structures in QGR models is the algebraic relation between diffeomorphism of 2D surfaces
(2D gravity), Virasoro algebra, and Kac–Moody algebra of 2D conformal transformations.
The fact that Virasoro algebra is a subalgebra of su(∞) algebra establishes their connection
with the symmetry of gravitational sector in SU(∞)-QGR.

1.1.2. Decomposition to an Algebraic Tensor Product

The Universe is a composite system, and by definition, the Hilbert space of composite
quantum systems is decomposed to a tensor product of the Hilbert spaces of their sub-
systems [28]. Therefore, it is normal that an algebraic tensor product structure emerges,
in one way or another, in the construction of QGR models. However, the most crucial
tensor product structures in background independent models, such as LQG and related
models, are spin-networks associated to the symplectic geometry and quantization of space.
Specifically, their Hilbert space consists of all embedding of spin-weighted graphs—spin
networks—generating the symplectic geometry states - the classical physical space can be
considered as being the outcome of measurements. For this reason, tensor products in spin
networks cannot be interpreted as division of space into separable subsystems. This aspect
is also shared by quantum first models based on the entanglement.

In string and matrix theories, tensor products emerge as decomposition to compacti-
fied and non-compactified fields or as special configurations of string condensate in the
form of D-branes (Moyal–Weyl solutions). This process can be interpreted as regarding
spacetime and particles/matter fields as separate subsystems. Of course one may consider
ensemble of strings, or more generally membranes or their presentation as large matrices
as subsystems. However, these structures live in a higher dimensional space. In pertur-
bative formulation, this space has to be flat, and it is not clear how strings/membranes
interactions can generate gravity. In non-perturbative M-theory and matrix formulation,
strings/membranes are frozen in a brane condensate in order to explain the observed
(3+1)D spacetime. Their quantum fluctuations are treated similar to fields in QFTs, in
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which particles (modes) are fundamental subsystems. In these models, the fundamental
D = 10 dimensional background space is static and unobservable.

1.1.3. SU(2) Group and Spin Network

SU(2) symmetry and/or its representations have a special role in most QGR models.
In particular, they intervene in the construction of quantized geometry, because SU(2) ∼=
SO(3) is the coordinate rotation symmetry of the physical space. Exceptions are string
theory and SU(∞)-QGR. Although SU(2) group and its representations are extensively
used in the formulation of SU(∞)-QGR, it remains a purely mathematical utility without
prior connection to the structure of classical spacetime.

1.1.4. A Hidden or Explicit SU(∞) Symmetry

In models based on the symplectic construction of space the number of cells—usually
tetrahedra—has to be considered to go to infinity to obtain a continuum at large distance
scales—low energies. As these cells are indistinguishable from each others, the Hilbert
space and dynamics of these models is invariant under SU(∞) group defined on R, rather
than C considered in SU(∞)-QGR.

String-gauge duality (M-theory) conjecture [29–31] identifies Yang–Mills models with
large number of colors Nc with the string states. For Nc → ∞, states of the Yang–Mills
theory represent SU(∞) symmetry. Indeed, in matrix model implementation of string-
gauge duality conjecture, the fundamental objects are N × N|N→∞ matrices. The SO(D)
symmetry of the fundamental D = 10 dimensional space according to string theory
can be interpreted as a special case of internal symmetry G in SU(∞)-QGR. However,
despite these similarities, interpretation of matrices in M-theory and SU(∞)-QGR are
very different. In addition, matrix models do not explore SU(∞) symmetry and only use
large matrices as representation of strings worldsheets or membranes in a special state
of the fundamental background spacetime. Indeed, a large random square matrix can
be interpreted as a symplectic presentation of a surface such that the column and row
indices tag vertices of the symplectic structure. By contrast, in SU(∞)-QGR no special
configuration is necessary to explain the observed (3+1)D spacetime. The tensor product
SU(∞) × G provides mathematical requirements for division to subsystems [28] and
grantees the existence of a perturbative expansion for both gravitational and matter sectors,
without any constraint on the finite rank internal symmetry G. On the other hand, as
SU(∞)× G ∼= SU(∞), the model has also a non-perturbative limit.

1.1.5. Emergence of Time and Evolution as Relative and Relational Phenomenon

A relational clock and its associated time parameter are necessary in many QGR
approaches, including SU(∞)-QGR, but not in string theory in which time, space, and
matter are treated in a same manner and are included in the foundation of the model.

The common properties summarized in this section demonstrate that despite their ap-
parent differences, QGR candidates have many shared aspects. In particular, these features
arise naturally and straightforwardly in SU(∞)-QGR. Nonetheless, this model is a new
proposal, and much more must be done and understood about it before it can be considered
as a genuine contender for a consistent and testable quantum gravity model. Specifically,
its explanation and predictions for phenomena in which QGR may be important such as
the puzzle of black hole information loss (see the Outline Section 4 for a longer list), and
its predictions for future experiments seeking the detection of decoherence by quantum
gravitational interactions should be investigated.

2. A Brief Review of SU(∞)-QGR

In this section, we briefly summarize axioms, structure, and constituents of SU(∞)-
QGR. Only mathematical formulations necessary for comparisons with other QGR models
are presented here.
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2.1. Axioms and Algebra

The SU(∞)-QGR is based on three well motivated assumptions:

1. Quantum mechanics is valid at all scales and applies to every entity, including the
Universe as a whole;

2. Every quantum system is described by its symmetries and its Hilbert space repre-
sents them;

3. The Universe has infinite number of independent degrees of freedom, that is, mutually
commuting observables.

In these axioms and through this article the Universe means the ensemble of every-
thing causally or through its quantum correlations observable. Independent quantum
observables correspond to mutually commuting hermitian operators applied to the Hilbert
space, and their subspace is homomorphic to the Cartan subspace of the symmetry group
of the quantum system [32].

These axioms might seem trivial and generic. Here we briefly argue that they are not:

Axiom 1 is not trivial because some QGR models extend or restrict quantum me-
chanics and/or QFT in order to accommodate QGR; see Section 3.2.1 for a brief
review of some of these models. As there is no spacetime in the above axioms, we
also remind that QFT is not a model by itself and does not necessarily need to be
defined in a spacetime. It is a formulation of quantum mechanics suitable for study-
ing many-body systems parameterized by continuous variables, such as a Lorentz
invariant spacetime.
Axiom 2 is added to the above list because in postulates of quantum mechanics,
as defined by Dirac [33] and von Neumann [34], the Hilbert space is an abstract
Banach space and no relation to symmetries is explicitly mentioned. Axioms of
quantum mechanics with symmetry as a foundational concept are described in [32].
Of course, in practice the Hilbert space is chosen such that it represents symmetries
of the quantum system. However, this is due to the fact that the choice of Hilbert
space is motivated by the configuration space of the classical limit and its symmetries.
If we want to construct a fundamentally quantum model without referring to a
corresponding classical system, we must specify how the Hilbert space should be
defined.
Axiom 3 defines the symmetry of the system—the Universe—which as explained
above is the basis for determining other properties of the system. Of course, QFTs by
definition have infinite number of observables/degrees of freedom, one or more at
each point of the spacetime. However, in SU(∞)-QGR there is no spacetime and the
model is constructed as an abstractly and is defined exclusively by its symmetry and
its representation by the Hilbert space. Therefore, this axiom is essential and far from
being trivial.

In the hindsight, the simplicity of these axioms is their advantage, and in the follow-
ing subsections we briefly review what can be concluded from these apparently generic
assumptions. Recalling that at present we do not have any observed evidence of quantum
gravity, sophisticated and designed axioms of some QGR models look rather imaginative,
and one wonders why nature should have selected them among many other possibilities.

2.2. Representation of the SU(∞) Group and Hilbert Space

Axiom 3 of the model means that the Hilbert space of the Universe HU is infinite
dimensional and represents SU(∞) symmetry group, that is:

B[Hu] ∼= SU(∞) (1)

where the sign ∼= means homomorphism and B[Hu] is the space of bounded linear opera-
tors acting onHU . Generators L̂lm, l > 0, |m| 6 l of B[Hu] satisfy the Lie algebra:

[L̂lm, L̂l′m′ ] = i f l′′m′′
lm,l′m′ L̂l′′m′′ (2)
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where structure coefficients f l′′m′′
lm,l′m′ can be determined using properties of spherical har-

monic functions; see, e.g., [35] for more details. The reason for this property is that SU(∞)
can be decomposed to tensor products of SU(2):

L̂lm = R ∑
iα=1, 2, 3,α=1,··· ,l

a(m)
i1,···il σi1 · · · σil , (l, m) | l = 0, · · · , ∞;−l 6 m 6 +l (3)

where σiα s are N → ∞ representations of Pauli matrices [35] and R is a normalization
constant. Coefficients a(m) are determined from expansion of spherical harmonic functions
with respect to spherical description of Cartesian coordinates [35].

The model is quantized using dual of its Hilbert spaceH∗U and its space of bounded
linear operators B[H∗U ]:

[L̂a, Ĵb] = −iδab h̄, Ĵa ∈ B[H∗U ], (4)

where h̄ is the Planck constant.
It is known that SU(∞) is homomorphic to the area preserving diffeomorphism of

compact 2D surfaces [35–39]. From now on we use the shorthand name diffeo-surface
for the surfaces whose area preserving diffeomorphism is homomorphic to SU(∞) of
interest. Diffeo-surfaces with different genus correspond to non-equivalent (non-isometric)
representations of SU(∞) [38,39]. These surfaces, and thereby B[HU ] ∼= SU(∞), are
parameterized by two angular parameters (θ, φ). On the other hand, su(∞) algebra is
homomorphic to Poisson bracket of spherical harmonic functions, which for h̄ = 1 and
dimensionless operators can be written as:

L̂lm = i
(

∂Ylm
∂ cos θ

∂

∂φ
− ∂Ylm

∂φ

∂

∂ cos θ

)
= i

√
|g(2)| εµν(∂µYlm)∂ν, µ, ν ∈ {θ, φ} (5)

L̂lmYl′m′ = −i{Ylm, Yl′m′} = −i f l”m”
lm,l′m′Yl”m” (6)

{f, g} ≡ ∂f

∂ cos θ

∂g

∂φ
− ∂f

∂φ

∂g

∂ cos θ
, ∀ f, g (7)

In this representation of B[HU ], vectors of the Hilbert spaceHU are complex functions
of the angular parameters (θ, φ). If L̂lm (or equivalently Ĵlm) operators are normalized
by a constant factor proportional to ih̄

cMP
, where MP is a mass scale—presumably Planck

mass—the right-hand side commutation relation (2) becomes zero for h̄→ 0 or MP → ∞
and the algebra of observables becomes Abelian, as in the classical mechanics. Thus, only
when h̄ 6= 0 and MP < ∞ the model presents a quantum system. This property establishes
an inherent relationship between gravity and quantumness, as suggested in [40].

SU(2) in SU(∞)-QGR

The symmetry group SU(2) ∼= SO(3) has a special place in many QGR models,
because it corresponds to the rotation symmetry of the physical space. Its importance
in SU(∞)-QGR is, however, for another reason: it is used for Cartan decomposition [41]
of SU(∞) and descriptions of its representations [35–39]. In particular, it allows one to
expand members of the SU(∞) group as linear functionals of spherical harmonic functions,
analogous to an infinite spin chain. In this way, generators of SU(∞) can be characterized
by spin quantum numbers (l, m). In analogy with the decomposition of Fourier modes
of fields in QFT, this representation is more suitable for applications such as constructing
states and solving field equations, than the abstract complex functions of two angular
parameters (θ, φ). Nonetheless, one can easily transform one representation to the other;
see, e.g., appendices in [18] for details of such transformation.

We should emphasize that despite the importance of SU(2) for SU(∞)-QGR, it is not
anything more than a mathematical tool. In fact, using the relation:

SU(N) ⊇ SU(N − K)⊗ SU(K) (8)
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the group SU(∞) can be decomposed to tensor products of any SU(K), K < ∞ by repeated
application of (8). Decomposition (3) corresponds to the case of K = 2. It is the smallest
non-Abelian special unitary group which can be used in the Cartan decomposition of
SU(∞).

2.3. Subsystems of the Universe

In [18], it is shown that the quantum Universe, as defined in the previous section, is
static and trivial. This is not a surprise, because there is no time parameter or subsystem
which plays the role of a quantum clock. On the other hand, according to a corollary
in a description of quantum mechanics in which symmetry is considered to be founda-
tional [32,42], this quantum system must inevitably be decomposable to subsystem. To this
end, the Hilbert space must be factorized such that subsystems satisfy conditions defined
in [28]. They include, among other things, factorization of the system’s symmetry group
and its representations. Using properties of SU(∞) [19], in particular its multiplication [39]:

(SU(∞))n ∼= SU(∞) ∀ n > 0 (9)

in [18,19], it is demonstrated that Hilbert spaces of subsystems have the general form of:

B[Hs] ∼= SU(∞)× G (10)

whereHs indicates the Hilbert space of a subsystem and G is a finite rank symmetry group.
The presence of internal symmetries in the Standard Model of particle physics is the main
motivation for the existence of G. Other motivations are discussed in [18]. Like any other
quantum system, observables of the subsystem defined by (10) are hermitian members of
B[Hs].

The Hilbert space of all subsystems is the tensor product of representations of the
symmetry of subsystems (10). Using (9), the Hilbert space of the ensemble of subsystems is:

B[
⊗

s
Hs] ∼=

(
SU(∞)× G

)N→∞
∼= SU(∞)× GN→∞ (11)

As GN→∞ ∼= SU(∞), (11) is consistent with (1). Moreover, (11) shows that SU(∞)
factor of the Hilbert space can be considered as common to all subsystems. Thus, it has a
role analogous to that of classical spacetime for all entities in the Universe.

2.3.1. Parameter Space of Subsystems

In addition to the emergence of an internal symmetry, the division of this quantum
Universe induces a size or more precisely an area scale. Indeed, although the preserved area
of one diffeo-surface is irrelevant for its diffeomorphism as representation of SU(∞) group,
it becomes important when parameter spaces of multiple systems with this symmetry,
including the Universe as a whole, are compared. This is analogous to comparing finite
intervals on a line with each other. An infinite line alone is scale invariant. However,
lengths of finite intervals can be compared with each others. This operation induces a
length scale for the finite intervals, and thereby for the whole line. Therefore, after division
into subsystems, the parameter space of SU(∞) part of their Hilbert spaces will depend on
a third dimensionful parameter that we call r. It is measured with respect to a reference
subsystem. Diffeo-surfaces of subsystems can be considered to be embedded in this 3D
space. Notice that quantum state of a subsystem does not necessarily have a fixed r, and
can be a superposition of pointer states with fixed r.

Finally, to make the above setup dynamical, the relational dynamics and evolution à la
Page and Wootter [16] or similar methods—see, e.g., [43] for a review—can be introduced by
selecting one of the subsystems as a quantum clock. Variations of states of other subsystems
are compared with the variation of state of the clock and parameterized by a time parameter
t. We interpret this 4D parameter space, which is homomorphic to R(4) as the classical
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spacetime shared by all subsystems of the Universe. In addition, the Hilbert space of every
subsystem has a factor representing its internal symmetry G, as shown in Equation (10).
As SU(∞) and G are considered to be orthogonal, their parameter spaces and actions on
the states are separable. Specifically, G transformations are performed locally to states
|t, r, θ, φ; a〉, where index a represents G symmetry. These properties are similar to those of
a Yang–Mills gauge field defined on the classical spacetime. Thus, considering this analogy,
we identify the parameter space of the SU(∞) symmetry with the classical spacetime.

2.4. Relation to Classical Geometry and Einstein Equation

Using the Mandalestam–Tam uncertainty relation [44], a quantity proportional to the
quantum fidelity of two close states ρ and ρ1 = ρ + dρ of subsystems (except reference and
clock) can be defined [18]:

ds2 ≡ Q(ρ, Ĥ)dt2 = tr(
√

dρ
√

dρ
†
), Q(ρ, Ĥ) ≡ 1

2
|tr([√ρ, Ĥ]2)| (12)

where Ĥ is a Hamiltonian operator that generates the evolution of subsystems with respect
to a selected quantum clock and its associated time parameter t, in a time interval dt. Notice
that here we have assumed that internal symmetry states of ρ and ρ1 are the same. We
also remind that integrating out reference and clock subsystems makes the states of other
subsystem mixed, and they should be treated as open quantum systems [45].

The infinitesimal quantity ds is a scalar of both the Hilbert space of subsystems and
its parameter space. Due to the similarity of ds to affine separation in Riemann geometry
in the rest frame of subsystems, we can identify the two quantities up to an irrelevant
normalization constant. Then, in an arbitrary reference frame of the parameter space, ds
can be expanded as:

ds2 = gµνdxµdxν (13)

where xµ is a point in the parameter space and gµν is metric of the parameter space at xµ.
Using the Mandalestam–Tam inequality, in [18] it is proved that the signature of metric
gµν must be negative. Notice that the presence of a trace operator in the right-hand side of
(12) means that its left-hand side is independent of the reference frame of the parameter
space. This can be proved by expanding operators ρ and dρ in an arbitrary basis |t, r, θ, φ〉
of the Hilbert space and calculating the trace in (12)—tracing amounts to integration
over parameters (t, r, θ, φ). Thus, ds is independent of spacetime parametrization, and
coordinates xµ in (13) should be considered as representative or average parameters of the
quantum state ρ. In general relativity, integration over the affine displacement ds generates
the world line of the system in the spacetime. Quantum systems do not follow a path in the
classical phase space. Nonetheless, the world line generated by integration of ds defined in
(12) or (13) for quantum subsystems can be interpreted as a projection of the averaged path
of the state in the Hilbert space into its parameter space—the spacetime.

These properties of SU(∞)-QGR show that we have to find a pure quantum definition
for an extreme object such as a black hole, because its general relativity definition through
its metric is highly degenerate and does not define its quantum state. Moreover, spacetime
singularities of classical black holes may be irrelevant when they are considered as a many-
body quantum state. Equations (12) and (13) are obtained from uncertainty principle [18].
Thus, similar to quantum mechanics, the singularity of metric (13) can be interpreted as
an indistinguishability of states, or in other words infinite uncertainty. In any case, this
important topic needs more investigation once a proper quantum definition of a black hole
is found. For instance, this can be a quantum gravitational bounded state of the Lagrangian
functional (21) obtained in Section 2.5.2.

Notice that here t and r are considered as classical values. More generally, measure-
ments performed on the clock and on the subsystems relative to a reference to determine r
do not need to be projective. Such cases are intensively studied in the literature for general
quantum systems [43,45], and we leave their application to SU(∞)-QGR to future works.
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Lorentz Invariance of the Parameter Space

A remark about Lorentz invariance of the parameter space is in order. In (13) this
property is manifest. However, given the different origins of time, distance, and angular
coordinates in SU(∞)-QGR and their interpretation as classical spacetime, the question
arises of whether their R(3+1) space is Lorentz invariant. The answer to this question is
positive for the following reasons:

- Choices of a quantum clock and a reference subsystem for comparisons between diffeo-
surfaces are arbitrary. Changes in these choices amount to changing the corresponding
parameters.

- Division into subsystems is not rigid and may change with a change of clock and
reference subsystem such that they respect necessary conditions defined in [28]. Thus,
changing t and r in general lead to modification of SU(∞) parameters (θ, φ), and each
of the new parameters (t′, r′, θ′, φ′) would be a function of old parameters (t, r, θ, φ).

- By definition, the ensemble of subsystems must generate the static 2D Universe irre-
spective of how subsystems are defined and parameterized. This condition imposes
Lorentz and diffeomorphism invariance on the parameter space—the spacetime.

2.5. Evolution

In this section, we briefly review dynamics of the Universe as a whole and after its
division to subsystems. We begin by constructing a symmetry-invariant functional for the
whole Universe and then its modification when subsystems are taken into account.

2.5.1. The Whole Universe

According to the symmetry description of quantum mechanics foundations [32], the
Universe as a whole is static and in a sort of equilibrium state. Specifically, using properties
of SU(N) groups, a SU(∞)-invariant functional consisting of elements ofHU and B[HU ]
has the following form:

LU =
∫

d2Ω
[

1
2 ∑

a, b
L∗a(θ, φ)Lb(θ, φ)tr(L̂a L̂b) +

1
2 ∑

a

(
La(θ, φ)tr(L̂aρ) + C.C

)]
(14)

d2Ω ≡
√
|g(2)|d(cos θ)dφ (15)

where a = (l, m) or (θ′, φ′), as explained in [18]. C-number amplitudes La determine the
contribution of SU(∞) generators L̂a in the dynamics. We remind that integration over
angular coordinates of the diffeo-surface is part of the tracing operation, because in (5)
generators of the SU(∞) symmetry are defined independently at each point of the diffeo-
surface. Notice that the functional LU includes only the lowest order of invariant traces of
SU(∞). Higher order invariants trace over multiplication of several generators. However,
their values are not independent of those used in (14) and structure coefficients. Using only
the lowest order nonzero traces makes LU equivalent to the classical Lagrangian in QFT,
despite the fact that SU(∞)-QGR is not related to a classical model. In analogy with QFT, a
path integral can generate higher order terms.

By definition, the whole Universe is in a pure state, because there is nothing outside it,
which could have been possibly traced out. Therefore, its density matrix can be written as
ρ = |Ψ〉〈Ψ|. In [18], it is explicitly shown that, as expected, applying variational principle
with respect to amplitudes La and components of the density matrix ρ to LU leads to a
vacuum state as the equilibrium solution.

The action LU is a formal description. In particular, it does not clarify how ampli-
tudes Las and density operator ρ should change under application of SU(∞) group and
reparametrization of diffeo-surface to preserve LU . This subject is described in detail in [19].
As its results are crucial for the interpretation of the model as QGR and establishment of its
relation with classical gravity, here we review them in more details.
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We first remind that the surface element d2Ω in (14) is invariant under reparametriza-
tion of angular coordinates. Thus, each term in the integrand must be reparametrization
invariant. Moreover, for SU(N) groups tr(L̂a L̂b) = Caδab, where Ca is a constant. There-
fore, phases of amplitudes La in the first term of (14) are irrelevant. In addition, in the
second term ρ is hermitian, and without loss of generality generators L̂a can be chosen to
be hermitian too. Thus, phases of Las are irrelevant and Las can be considered to be real
fields defined on the 2D diffeo-surface.

Amplitudes La must be invariant under translation θ → θ + θ0, φ → φ + φ0 for
arbitrary constant shift of the coordinates at origin by θ0 and φ0, and rigid rotation of the
frame. This means that La must have a differential form with respect to coordinates (θ, φ).
Considering, in addition, the invariance under non-commutative SU(∞) symmetry, we
find that the first term in (14) should have the form of a 2D Yang–Mills Lagrangian for
SU(∞). Thus, LU can written as [18]:

LU =
∫

d2Ω
[

1
2

tr(FµνFµν) +
1
2

tr(��Dρ)

]
, µ, ν ∈ cos θ, φ (16)

Fµν ≡ Fa
µν L̂a ≡ [Dµ, Dν], Dµ = (∂µ − Γµ)1−∑

a
Aa

µ L̂a, (17)

Fa
µνFµν

a = L∗a La, ∀a. (18)

where Dµ is a 2D covariant and gauge preserving derivative with an appropriate 2D
connection Γµ (in Fµν the connection will be canceled). Exact expression of the differential
operator��D depends on the representation of 2D Euclidean group by the state |Ψ〉. For a
scalar-type state��D =

←−
D µ
−→
D µ and for a spinor-type state��D = iσ0σieµ

i
←→
D µ, where σi, i =

{1, 2} are two of the N → ∞-dimensional representation of Pauli matrices, and σ0 is the
third Pauli matrix; eµ

i ’s are zweibeins (analogous to vierbein in 2D). We remind that in
2D spaces the 2-form Fa

µν has only one independent nonzero component. Therefore, the
numbers of degrees of freedom in the two sides of (18) are the same. For the same reason,
the dual field F̃µν is the same as Fµν up to a sign.

In Yang–Mills models, the field strength Fµν is a gauge invariant measurable. More-
over, in (16) variation of Las and thereby Fµν can be compensated by a diffeomorphism
transformation of the compact 2D surface, i.e., the variation of gµν. On the other hand, up
to a global rescaling of the area of the diffeo-surface, this transformation can be considered
as the application of SU(∞) under which Fµν is invariant. As we discussed before, the area
of diffeo-surface of the whole Universe is not measurable. In this sense the first term in (16)
is topological and can be identified, up to an irrelevant normalization constant, with the
topological Euler characteristic class of the compact 2D diffeo-surface:∫

d2Ω tr(FµνFµν) ∝
∫

d2Ω R(2) = 4πχ(M) (19)

whereR(2) is the 2D Ricci scalar of the parameter space compact manifoldM—the diffeo-
surface. The Euler characteristic χ(M) = 2− G(M) of compact 2D Riemann surfaces
depends only on their genus G.

The topological nature of action (16), expressed in (19) as its relation with the Euler
characteristic, is not surprising, because a single indivisible quantum system is trivial [32].
In a geometrical view, if local details of the Universe are not distinguishable, only its
global—topological—properties may characterize its states. In the present model, the
relevant global property is the topology of the diffeo-surface, which determines non-
homomorphic representations of the SU(∞) symmetry [38,39] of the Universe. In other
words, the only possible difference between whole Universes is the representation of the
SU(∞) symmetry realized by their Hilbert spaces.

Equation (19) establishes the relation between SU(∞)-QGR and classical gravity.
Specifically, it shows that if quantum operators Fa

µν L̂a cannot be distinguished or observed,
their overall effects are observed as variations in the geometry of the parameter space. We
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can also interpret the right-hand side of (19) as the projection of dynamics of the quantum
Universe onto its parameter space.

2.5.2. Evolution of Subsystems

When the Universe is divided into subsystems and a reference subsystem and a quan-
tum clock are selected, it is still possible to construct a SU(∞) invariant action functional
similar to (16), but it will depend on two additional parameters r and t. They reflect the
fact that SU(∞) symmetry is now respected not only by the whole Universe, but also by its
subsystems, which have acquired a new relative observable r, interpreted as the distance
from reference subsystem, and their relative evolution is measured by a clock parameter t.
In addition, a full action must include terms invariant under the internal symmetry group
of subsystems G. The formal description of this functional is [18]:

LUs =
1

4πL4
P

∫
d4x
√
−g

[
1
4

(
∑

l,m,l′ ,m′
tr(L∗lm(x)Ll′m′(x)L̂lm L̂l′m′) +

∑
l,m,a

tr(Llm(x)Ta(x)L̂lm ⊗ T̂a) + ∑
lm

Llm tr(L̂lm ⊗ 1G ρs(x)) +

∑
a,b

tr(T∗a (x)Tb(x)T̂aT̂b)

)
+

1
2 ∑

a
Ta tr(1SU(∞) ⊗ T̂a ρs(x))

]
. (20)

where Ta’s are generators of the finite rank internal symmetry G of subsystems, and
LP ≡

√
h̄GN/c2 is the Planck length. The functional LUs is normalization such that

amplitudes Llm and Ta are dimensionless. Moreover, we have used Cartesian frame
for coordinates of the 4D parameter space—the spacetime—and explicitly shown the
dimensionful coupling constant of SU(∞) symmetry. Following the same line of argument
given for (14) about the invariance of parameter space under coordinate transformations,
invariance under SU(∞) transformations, and a demonstration that the resulting action
has the form of a Yang–Mills model with SU(∞) symmetry, we conclude that (20) has the
form of a Yang–Mills model for SU(∞) × G symmetry in the R(3+1) curved parameter
space—spacetime—of the subsystems:

LUs =
∫

d4x
[

1
4

tr(FµνFµν) +
1
4

tr(GµνGµν) +
M
2

tr(��Dρs)

]
, µ, ν ∈ 0, 1, 2, 3 (21)

Fµν ≡ Flm
µν L̂lm ≡ [Dµ, Dν], Dµ = ∂µ − Γµ −∑

lm
Alm

µ L̂lm, Flm
µν Fµν

lm = L∗lmLlm. (22)

Gµν ≡ Ga
µνT̂a ≡ [D′µ, D′ν], D′µ = ∂µ − Γµ −∑

a
Ba

µT̂a, Ga
µνGµν

a = T∗a Ta. (23)

The dimensionful constantM ∝ Mn
P and its dimension depends on the representation

of the Lorentz group of the parameter space—spacetime—realized by subsystems states
ρs. The expression for��D would be similar to the examples given in Section 2.5.1 with an
additional field term for G symmetry. Equations (12) and (13) show how the metric of the
parameter space is related to quantum states of the subsystems obtained from action (23).

2.5.3. Classical Limit

When experiments are not sensitive to quantum field strength Fµν of the SU(∞)
symmetry, only its effect on the geometry of the (3+1)D parameter space—the spacetime—
described by (12) and (13) would be observable. Using (19), in Appendix A we show that
in the classical limit, the pure SU(∞) term in (21) can be approximated by the 4D Ricci
scalar R(4), whose integration over the 4D parameter space is no longer topological:

∫
d4x tr(FµνFµν)

classical
GGGGGGGGGGGGGA

limit
∝
∫

d4xR(4) (24)
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This last step finalizes our demonstration that in SU(∞)-QGR, Einstein’s equation
is a property of the parameter space characterizing the underneath quantum states of
the Universe and its subsystems - matter. It confirms that Einstein’s equation should be
considered as an equation of state [2] and its quantization, as well as the quantization of
spacetime, are meaningless. Moreover, as the quantum gravity interaction has the form of a
Yang–Mills model, its effect at high energies should resemble additional gauge interactions
on a curved spacetime. Therefore, it is also meaningless to talk about quantum corrections
to the Einstein equation. In any case, it is well established that any change in Einstein’s
equation can be considered either as a change in the geometry part or in the matter part.
They correspond to formulation in Jordan and Einstein frame, respectively.

We should remark that in the above formulation, it is assumed that multiple copies of
the quantum clock are available for estimating the average value of an observable used to
define the time parameter t. In other words, the clock is tomographically complete. This is
not a necessity, and time and/or relative distance may be quantified by non-projective mea-
surements. We leave the investigation of such general case to future works. Furthermore,
we do not discuss the origin of dark energy/cosmological constant in this framework here,
because it may depend on the quantum aspects of clock and reference, and the fact that
after their selection the Universe must be considered as an open quantum system.

2.5.4. Spin-1 Quantum Gravitational Interaction

A note is in order about the finding that in SU(∞)-QGR quantum gravity is a Yang–
Mills model. This means that its mediator quantum field is a vector—in the parameter
space—rather than the observed spin-2 graviton field of the classical Einstein gravity.
Nonetheless, the relation (24) shows that there is no contradiction between the two observa-
tions. This is analogous to the predictions of the early models for strong interaction before
discovery of the QCD model. Due to the strong coupling at low energies and confinement
of constituent partons, the observations seemed to show a nonlocal and geometrically
extended interaction analogous to a string. We now know that this phenomenological
interpretation is wrong, and the confusion is caused by non-perturbative nature of the
QCD interaction at energy scales lower than ΛQCD. In the same manner, the deformation
of spacetime, which in general relativity is interpreted as gravity, is generated by relative
variations of quantum states of all constituents of the Universe, and the local metric and
curvature of the parameter space—spacetime—present their average effect.

2.6. Summary of SU(∞)-QGR Model and Its Properties

We conclude this section by summarizing the SU(∞)-QGR model and what has been
found, so far, about QGR in this framework:

• Assuming that Hilbert spaces of the Universe and its subsystems represent SU(∞)
symmetry, we showed that the Hilbert space of the Universe as a whole can be
parameterized by two continuous parameters. When the Universe is divided into
subsystems presenting a finite rank symmetry group G, and a quantum reference
subsystem and a quantum clock are chosen, two additional parameters arise: a relative
distant and a relative time à la Page and Wootter or equivalent proposals.

• We interpreted the above 4D parameter space as the classical spacetime and demon-
strated that its signature must be negative—i.e., it has a Lorentzian metric. Moreover,
as the spacetime is a parameter space, its quantization is meaningless.

• The coordinate independent affine parameter of the spacetime is related to the varia-
tions in the quantum states of the subsystems.

• We defined two symmetry invariant functionals over the Hilbert space of the Universe
as a whole, and over those of its subsystems. They play the role of action functional
for the evolution of the Universe and its subsystems, respectively.

• The action for the subdivided Universe has the form of Yang–Mills gauge theories on
the parameter space for both SU(∞) and subsystem specific (internal) finite rank
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G symmetry. Thus, similar to other fundamental forces, at the quantum level the
mediator boson of gravity is spin-1.

• We showed that the action functional for the whole Universe is static. Moreover, its
purely SU(∞) Yang–Mills part is topological and proportional to the Euler constant.
Thereby, it is proportional to integral over the 2D Ricci scalar curvature. The constant
of the proportionality is not an observable.

• When the Universe is divided into subsystems, in the classical limit when the quantum
Yang–Mills vector field of the SU(∞) symmetry cannot be detected, the purely SU(∞)
Yang–Mills part of the action functional will be proportional to the 4D Ricci scalar
curvature. Therefore, the classical limit of SU(∞)-QGR is the Einstein gravity and the
observed spin-2 graviton is an effective classical field.

• This important prediction should be testable with future quantum experiments, for
instance, those seeking decoherence or entanglement initiated by quantum gravity.

3. Comparison with Other Quantum Gravity Proposals

In this section, we compare SU(∞)-QGR with LQG and related models, string theories
and related models, AdS/CFT conjecture, and several quantum first models. This list of
models and their citations are far from covering all the QGR proposals and literature about
them. In particular, because of fundamental differences between SU(∞)-QGR and models
such as non-commutative spacetimes, causal sets, and quantum gravity models based on
the quantum histories, they are not compared. Nonetheless, some of these proposals are
briefly mentioned because of their connections with models reviewed here.

For each model, we first remind its main assumptions and results, only for the purpose
of fixing notations necessary for comparison of the model with SU(∞)-QGR. We should
emphasize that for the sake of briefness, various new ideas and methods added to the
original construction of these models are not explored here. Given the fact that some of
these proposals have been intensively under investigation for decades, a detailed review
of them and comparisons with SU(∞)-QGR need a more extended investigation than
this article. Moreover, our goal here is finding common features of the models rather
than assessing their performance. For these reasons, only the most foundational aspects
and results of the models are considered and compared with those of SU(∞)-QGR. We
should also remind that SU(∞)-QGR is a recent and under development proposal and
its properties are not fully investigated. For this reason, its comparison with other QGR
models is limited to what is known about it. Notably, its application to various QGR related
phenomena is left to future works.

As we discussed in the Introduction, due to the close relation between gravity and
geometry of spacetime in the classical general relativity and Einstein gravity, finding a
quantum model for gravitational interaction has been usually considered to be equivalent
to quantization of spacetime as a physical entity. A notable difference between SU(∞)-
QGR and other QGR models is the absence of a quantized background or quantized
spacetime. This unique feature becomes fundamental when one tries to compare this
model with other QGR proposals. Indeed, a direct comparison cannot be made. Therefore,
the goal of this work is limited to investigating whether there are comparable or analogous
features in these models. For instance, the SU(2) group is present in the construction of
many QGR models, including SU(∞)-QGR. Our aim is to clarify the origins of these sorts
of similarities, and investigate whether they are superficial and unrelated, or despite their
apparent differences, they reflect deeper relations between models.

3.1. Background Independent Models

Following the failure of coordinate-dependent canonical quantization of the Einstein–
Hilbert equation [22,23,46] (see, e.g., [25] for a review) and ADM (3+1)D description of
Einstein’s equation and its quantization [27], in 1961 Tullio Regge proposed a discrete but
coordinate independent description of Einstein gravity [47]. This model is the basis of most
background independent QGR models. For this reason, we briefly review it here.
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3.1.1. Regge Discrete Geometry

According to this model, a curved two or higher dimensional space can be approxi-
mately considered as flat everywhere except on the triangulated 2D surfaces—two sim-
plexes. In particular, 3D or (2+1)D curved spaces can be approximated by sticking together
tetrahedra with Euclidean or Lorentzian geometry in their bulks. The deficit angle of a
vertex in the bulk of space is ε = 2π − ∑ f θ f , where θ f is the angle of triangle (face) f
attached to a vertex v; see, e.g., [48] for a review of Regge calculus. For vertices sitting on
the boundary of the symplectic surface, the deficit angle is ε = π −∑ f θ f . The discretized
gravity Regge action is:

SRegge = ∑
e

leεe (25)

where index e runs over all edges, le is length of the edge e, and εe is the deficit angle of the
vertex opposite to it. In Regge action, tetrahedra edges can take any positive real value.

3.1.2. Ponzano–Regge 3D QGR

In 1968, Ponzano and Regge proposed a 3D discretized quantum geometry model [49]
based on the Regge action SRegge. They showed that if in (25) les are chosen to be quantized
spin, that is le = je, je ∈ {0, 1/2, 1, 3/2, · · · } and je’s of each face satisfy triangle rule:

|j1 − j2| 6 j3 6 j1 + j2; (26)

their 6j symbol will be nonzero and approximately equal to the cosine of Regge action.
The partition function of the Ponzano–Regge QGR is constructed from multiplication

of the positive exponent of the cosine of Regge action for all tetrahedra, weighted, and
summed over all configurations of spins:

ZPR = lim
N→∞

∑
j6N

ΛN0(N) ∏
e∈S1

(−1)2je(2je + 1) ∏
t∈S3

(−1)
− ∑

e=1,···6
je
{

j1 j2 j3
j4 j5 j6

}
(27)

Ponzano–Regge discrete quantum gravity was the first evidence of a close relationship
between gravity in 3D space or (2+1)D spacetime and representations of SU(2) group.
This relationship was later confirmed by the introduction of Ashtekar variables [50] in the
framework of (3+1)D ADM formulation for quantization of gravity. In fact, as we explain
in the following sections, the concept of triangulation and assigning spins to edges of
triangles arises, in one way or another, in several other QGR models as well.

3.1.3. Ashtekar Variables and Loop Quantum Gravity

Loop quantum gravity (LQG) [51,52] can be considered as a continuum limit of sym-
plectic QGR models [53]. It uses ADM (3+1)D formalism with background-independent
Ashtekar variables [50]. They consist of a spin connection 2-form ωa

i (x), defined on the
product of a 3D Euclidean manifold and a SU(2) group manifold—more precisely a SU(2)
bundle on a 3D Euclidean manifold—and triads Ei

a, such that Ei
aEb

j = δi
jδ

b
a , where i = 1, 2, 3

is the coordinate index of the Euclidean space and a = 1, 2, 3 indicates generators of the
SU(2) symmetry group. They replace coordinates and metric as dynamical variables. In the
quantized model, their dual variables are, respectively, Ei

a and gauge field Aa
i = ωa

i + γKa
i ,

where Ka
i ≡ KijEja/

√
|h|, Kij is the extrinsic curvature tensor of the 3D space, h is determi-

nant of the metric of physical 3D space, and γ is the Immirzi constant [54].

3.1.4. SU(2) Symmetry, Degeneracies, and Observables in LQG

Although a metric, and thereby coordinates, are apparently present in the definition
of Ashtekar variables, they do not affect geometry of space and its quantization. The
reason is that space curvature is described by the SO(3) ∼= SU(2) transformation of a rigid
frame, rather than a deformation of the metric. Specifically, the rigid frame rotates when
it is transported across the curved space manifold. On the other hand, the freedom of
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the choice of rigid frame at each point of the 3D manifold means that its SO(3) ∼= SU(2)
symmetry is a gauge symmetry. Thus, Aa

i and Ei
a include more degrees of freedom than gµν

in the (3+1)D classical gravity. This is evident from counting the number of components of
these fields.

To eliminate degeneracies, observables of LQG and the spin network (or foam) [55–57]—
its discretized version—are quantized topological quantities generated by Wilson loops [58].
This is why the model is called Loop QGR, and one of its most remarkable predictions is
the quantization of area [58]. This feature establishes the relation between LQG formulation
using continuous Ashtekar variables, a spin network as its approximation, and the symplectic
geometry of Ponzano–Regge: Quantized surfaces have non-trivial SU(2) holonomy, and
triangulated 3D space à la Regge becomes a manageable approximation, including essential
properties of a quantized curved space with a meaningful continuum limit.

3.1.5. Analogies between the Foundations of LQG and Related Models and SU(∞)-QGR

In SU(∞)-QGR, conserved areas of diffeo-surfaces and their comparisons induce
an area (length) scale in the model, without necessity of quantizing the physical space.
Moreover, Ea

i fields are analogous to amplitudes Ll,m in SU(∞)-QGR. In fact, in [19] we
show that in order to be invariant under coordinate transformations of the parameter space,
these amplitudes must be differential operators in the parameter space. Indices (l, m) are
analogous to the internal SU(2) symmetry of triads. However, in contrast to Ashtekar
variables, their values are obtained from ensembles of representations of SU(2) factors in
the decomposition of SU(∞) in Equation (3). This property is similar to Ponzano–Regge
and spin networks, where edges of tetrahedra are weighed by spins. However, in SU(∞)-
QGR, both l and m quantum numbers of SU(2) representations are involved in the action
of the model, and they are not constrained. The reason is that in contrast to LQG and
Ponzano–Regge models, in SU(∞)-QGR the Hilbert space does not represent a real space
geometry.

3.1.6. Hilbert Spaces of LQG and Related Models

6j symbols consist of summations of weighted multiplications of four Wigner 3j sym-
bols. In turn, 3j symbols are proportional to the Clebsch–Gordan coefficients
〈j1, m1; j2, m2|j3, m3〉, where j1, j2, j3 respect the triangle condition (26). Therefore, each
term in the partition function of the Ponzano–Regge model (27) is proportional to the
projection of an N-spin to a one-spin state constrained by the triangle relation (26) between
adjacent spin states.

Considering the expansion (3) of SU(∞) group, it is clear that the Ponzano–Regge
partition function ZPR includes special configurations of a quantum system, whose Hilbert
space represents SU(∞) symmetry, namely, states that can be arranged as tetrahedra in
a 3D space. This observation can be extended to other models based on a symplectic
representation of space, such as LQG, spin network, and Group Field Theories (GFT).
Indeed, reference [59] describes the explicit construction of the Hilbert space of a single
tetrahedron in LQG/spin network by associating SU(2) operators to edges of the tetrahe-
dron. The state of a unit cell of space—sometimes called an atom of space—is generated
by application of these operators to a vacuum state, such that the projection (amplitude)
of the total spin of the tetrahedron is equal to its associated 6j symbol. This procedure
can be extended to ensemble of N → ∞ tetrahedra content of space, which can be also
considered as spin-weighted graphs [60]. Thus, we conclude that state generator operators,
and thereby Hilbert spaces of discrete QGR (DQGR) models such as Ponzano–Regge and
LQG models, which we collectively call HDQGR, are subspaces of the Hilbert space of a
quantum system with SU(∞) symmetry, such as SU(∞)-QGR.

3.1.7. Kinematical and Physical Hilbert Spaces and Reality Conditions

It is useful to remind that the fundamental representation of SU(2), as well as 3j and 6j
symbols are in general defined on the field of complex numbers C. By contrast, a partition
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function or path integral over geometries of the physical space or spacetime, which should
approach Einstein gravity in the limit of h̄→ 0, must have a real value [60,61]. Moreover,
due to the degeneracies discussed in Section 3.1.4, the Hilbert spacesHDQGR of LQG and
related models are not physical, but kinematical [60]. The Hilbert space of physical states
Hphys containing quantized background independent geometries is a subspace ofHDQGR;
that is,HDQGR ⊃ Hphys. However, it is in general difficult to constructHphys explicitly [60].
In addition, demonstration of diffeomorphism and Lorentz invariance of the physical states
is not straightforward, and one might expect violations of Lorentz invariance in QGR
models with discretized space [62]. Indeed, the diffeomorphism invariance of DQGR is
explicitly shown only for special cases [63,64].

Even DQGR/LQG models that preserve the Lorentz invariance dispersion relation
of gravitational waves [65] and electromagnetic radiation [66] may deviate from general
relativity. However, both of these deviations are stringently constrained [67–69]. Moreover,
the Immirzi parameter may affect the interactions of fermions [70], and thereby induces
a fifth force-type effect on matter. This effect is also constrained by various tests of
gravity [71].

Complexities analogous to nonphysical states in the formulation of LQG and related
models do not arise in SU(∞)-QGR, because parameters defining its Hilbert space, namely,
(t, r, θ, φ), are real. Moreover, by construction, their redefinitions—in other words, diffeo-
morphism of the parameter space—corresponds to changing the Hilbert space’s basis by
application of a unitary transformation. On the other hand, such unitary operators are
members of SU(∞) symmetry group of the subdivided quantum Universe and preserve
the action (21). We also notice that although SU(2) symmetry is used in the construction of
the Ponzano–Regge model, LQG, spin networks, GFT, and SU(∞)-QGR, in practice all of
them, except SU(∞)-QGR, use only the Casimir operator of SU(2). The reason is that the
SU(2) symmetry in background-independent models is related to the rotation symmetry
of the physical space. On the other hand, eigen states m of the azimuthal projection of
a spin induce a preferred direction—a frame—which background-independent models
want to avoid. Therefore, these models effectively use only the Casimir operator, which is
frame independent.

3.1.8. Time and Matter in LQG

Similar to SU(∞)-QGR, in LQG and related models time must be considered as a
relational observable. One way of making the model dynamic is to consider time as the
classical affine parameter of histories [72,73] or path integrals in the quantized physical
space [74]. Although in such setups Lorentz and diffeomorphism invariance is not trivial,
it may be achievable [63,64,74].

Describing time by histories needs a historian—a reference subsystem with respect
to which histories are defined. However, construction of background independent QGR
models does not clarify how to satisfy necessary conditions for division of a quantum
system [28]. In fact, kinematical Hilbert space HDQGR seems to be inseparable [60]. Specifi-
cally, the division of Hilbert space to orthogonal blocks of subsystems needs an additional
symmetry. The SU(2) symmetry in these models cannot used for this purpose, because it
is inherently related to the construction of space and gravitational interaction. We might
consider tetrahedra as the most fundamental atomic subsystems [75]. However, to discrim-
inate one tetrahedron as a reference, there must be a selection criterion—another symmetry
and its observables (charges). This issue is directly related to the fact that LQG and related
models do not consider matter fields—a symmetry orthogonal to space—in their founda-
tions. Although a time parameter and matter fields can be easily added to the Lagrangian of
gravity sector, described with respect to Ashtekar variables and their duals (see, e.g., [76]),
the foundational issue of time definition in LQG and related models is not fully solved.
Attempts to solve this problem, for instance, through quantization of phase space [77–79],
indeed include matter and/or symmetries orthogonal to the diffeomorphism symmetry.



Symmetry 2022, 14, 58 18 of 34

3.1.9. The Non-Perturbative Characteristic of LQG and Related Models

The origin of subsystem definition issue in background independent models is their
non-perturbative approach to QGR. Division into subsystems needs a criterion for breaking
the Hilbert space or its parameter space into distinguishable sectors. Such an operation
implies the possibility of a perturbative description of the system at some scale. However,
in LQG and related models, in the absence of matter there is no natural covariant rule
for a quantum gravitational perturbative expansion. This observation clarifies why there
is no inherent way to include matter in these models. In fact, division into subsystems,
emergence of a quantum clock, inclusion of matter in the foundation of the model, and
the existence of both perturbative and non-perturbative regimes are related concepts. In
SU(∞)-QGR they are naturally implemented in the construction of the model through
special properties of the SU(∞) symmetry.

3.1.10. Outline of Comparison between Background Independent Models and
SU(∞)-QGR

In conclusion, although SU(2) symmetry plays an essential role in the construction
of background independent models and SU(∞)-QGR, its roles and raisons d’être in
these models are very different. Notably, in LQG, GFT, and other symplectic QGR models
it is strictly related to the assumption of a physical 3D quantum space. Nonetheless,
spin network realization of LQG can be considered as a subspace of the Hilbert space of
SU(∞)-QGR.

Both background independent models and SU(∞)-QGR rely on the definition of a
relative time or histories, which need division of the Universe into subsystems. In SU(∞)-
QGR, this concept is built in the construction of the model. It provides the necessary
ingredients for assignment of a quantum subsystem as a clock and inclusion of matter
fields in the model.

3.2. Quantum Approaches to QGR

Inherently quantum approaches—called Quantum First by some authors [15]—are
relatively recent arrivals into the jungle of QGR proposals, and SU(∞)-QGR can be clas-
sified in this group. For this reason it is crucial to investigate its similarities with and
differences from other models in this category.

A shared characteristic of quantum first models is the absence of a classical spacetime
as a foundational concept in their axioms—or at least this is the claim. Consequently, it
has to emerge down the road from more primary properties and structures of an abstract
quantum system. It is useful to remind that the concept of an emergent spacetime is
not limited to these models. The possibility that spacetime may not be a fundamental
entity is also considered by other QGR candidates as well; see e.g., [80–82]. Specifically,
it is suggested that a quantum Lorentz invariant spacetime orthogonal to internal gauge
symmetries may emerge in QGR models based on the extension of the Poincaré group and
gauge symmetries [80,83,84]. The idea of spacetime emergence is also explored by models
in which, in one way or another, thermodynamics and quantum gravity are unified [85–87].
These models seem to have little common aspects with SU(∞)-QGR, and we do not discuss
them further here.

In the absence of any hint about the quantum nature of gravity, for instance, its Hilbert
space, and its relationships with classical gravity and other interactions, quantum first
models usually use priors inspired from semi-classical gravity, in particular from properties
of semi-classical physics of black holes. Based on these priors, two categories of quantum
first models other than SU(∞)-QGR can be distinguished:

- Models that consider locality and causality as indispensable for QGR: some of these
models require modifications of standard quantum mechanics;

- Models inspired by black hole entropy and its relationship with the Yang–Mills and
AdS/CFT duality.
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3.2.1. Modified Quantum Mechanics and Locality

Locality is considered to be crucial for describing black holes, their thermodynam-
ics [3,20], and its puzzles [21,88]. More generally, causality and observed finite speed of
information propagation in both classical general relativity and QFT imply some degree
of locality in any interaction, including QGR. For these reasons, locality and its close rela-
tionship with the definition of subsystems as localized entities in the Universe have been
the motivation of authors of [15,89,90] for proposing a generalized quantum mechanics.
Specifically, a history description of quantum mechanics [91,92] is generalized in [89] to
define coarse-grained histories as a bundle of fine-grained histories (path integrals).
They replace the Hilbert space of quantum mechanics, which in a QGR framework corre-
sponds to a spacelike surface during an infinitesimal time interval, defined with respect to
a reference clock. In addition, in this modified quantum mechanics, projection operators
to eigen states of position are time-dependent, and during each time interval they project
states to a different set of histories. In turn, sets of histories present subspaces of the bundle.
Presumably, in this model not only the state of a system, but also its whole Hilbert space,
changes with time.

Inspired by generalized quantum mechanics, [90] proposes an alternative way to
implement locality in what is called universal quantum mechanics. In analogy with the
bundle space of [89], it extends the space of physical states to provide additional labeling,
such as in and out states in curved spacetimes [93]. In addition, these labels can be
interpreted as time or labels of states in a multiverse, as needed. Physical states can be
considered as local in this extended state space.

These models and other QGR proposals based on the quantum histories (see, e.g., [94,95]
and references therein) have few common features with SU(∞)-QGR, which is strictly based
on the highly tested standard quantum mechanics. The reason for having reviewed them here
is their roles in the development of further models with some similarities with SU(∞)-QGR,
which we will review in the following subsections.

3.2.2. QGR from Locality and Causality

The localization of quantum mechanics in [89] does not specify an explicit implemen-
tation procedure. Nonetheless, motivated by this model, [15,17,96,97] propose a road-map
for realization of this concept in what they call local quantum field theories (LQFT). In
these QFT models, observables convoy quantum information only locally. Here we call the
corresponding QGR proposal LQFT-QGR.

In quantum systems with infinite degrees of freedom, such as in QFTs, the spacetime
sector of the Hilbert space cannot be factorized to disconnected (untangled) subspaces
without violating causality. Such quantum systems are said to have type III operator
algebra in the classification of [98,99]. For this reason, in LQFT-QGR the division into
subsystems is performed algebraically. Specifically, it is assumed that for any region of
spacetime U there is an extension Ue. Observables Â and ¯̂A are defined such that they have
nonzero support, respectively, on U and Ūe, where Ūe is the complementary space of Ue.
Under these conditions, Â and ¯̂A are assumed to be disentangled in a specific vacuum, i.e.,
there is a vacuum state |0〉 such that:

〈Ue|Â ¯̂A|Ue〉 = 〈0|Â|0〉〈0| ¯̂A|0〉 (28)

The vacua |Ue〉 and |0〉 are related by a Bogoliubov transformation. This definition
is considered to provide a sort of localization without factorization of the Hilbert space.
However, it is evident that this algebraic structure is not in general diffeomorphism in-
variant, and observable operators {Â} and { ¯̂A}must satisfy specific conditions to retain
their invariance and physical meaning [97]. Seeking such operators, [96,97] found that
in analogy with gauge invariant Wilson loops in Yang–Mills theories, diffeomorphism
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invariant operators ΦΓ ∈ {Â} are nonlocal structures, which depend only on the spacetime
connection [96]. Specifically:

ΦΓ(x) = φ(xµ + Vµ
Γ ) (29)

where Γ is a path running from point x of the spacetime to infinity, and Vµ
Γ is the integral

of an expression depending on the metric of spacetime along the path Γ. An explicit
expression for Vµ

Γ is obtained for the weak coupling limit of semi-classical gravity in [97].

3.2.3. Comparison of LQFT-QGR with SU(∞)-QGR

In LQFT-QGR two essential concepts for QGR, namely, division of the Universe into
subsystems and carriers of quantum information are considered to be the same. In this
respect, the model is similar to SU(∞)-QGR; that is, carriers of information are matter and
radiation fields having internal symmetries, which are orthogonal to the diffeomorphism
symmetry—a necessary criteria for the division of the Universe into subsystems. However,
the two models are conceptually very different. In LQFT-QGR, subsystems are somehow lo-
calized in spacetime. By contrast, in SU(∞)-QGR spacetime is not a quantizable entity and
no locality condition is imposed on subsystems (particles). In fact, in SU(∞)-QGR locality
and causality are not postulated. As we discussed in Section 2.4, they arise from quantum
uncertainties. Moreover, the relation between the Riemannian metric and evolution of
quantum state of the content of the Universe in (13), shows that in agreement with the
quantum mechanical observations, in QGR locality is in general an approximation.

LQFT-QGR and SU(∞)-QGR share the absence of a classical dynamics in their foun-
dation. Moreover, both models are types of QFT on curved spacetimes, which play the
role of a parameter space. Their difference is in the definition of observable fields: LQFT-
QGR constrains field operators to realize special algebraic structures and a sort of locality,
whereas in SU(∞)-QGR both gravity and matter sectors are quantum fields similar to
QFTs without gravity. In addition, in SU(∞)-QGR spacetime genuinely emerges, whereas
in LQFT-QGR it is implicitly postulated and is present in the foundations of the model.
Although in contrast to many other QGR proposals, in LQFT-QGR spacetime per se is
not quantized, the model offers no explanation for its origin, dimension, properties of the
metric, and its fundamental relationship with quantum fields.

Type III Algebra in LQFT-QGR and SU(∞)-QGR

Operators indexed or parameterized by Rn cannot be divided into subsets associated
with limited regions of the indices, if the whole algebra has to be invariant under diffeo-
morphism [98,99]. That is why a symmetry orthogonal to diffeomorphism is necessary for
tagging and fulfilling conditions necessary for defining quantum subsystems [28].

As QFTs, both LQFT-QGR and SU(∞)-QGR are type III quantum systems. In SU(∞)-
QGR, the inseparability of continuous operators is reflected in the common SU(∞) symme-
try of all subsystems, including the Universe as a whole, and the need for a factorized finite
rank internal symmetry. By contrast, LQFT-QGR considers strict locality as a founda-
tional concept and tries to use nontrivial topological structures as a replacement for internal
symmetries in order to tag and identify subsystems. So far, quantum field solutions with
such property are obtained only in the weak coupling regime of semi-classical gravity [97],
and at present there is no evidence that such algebraic structures can exist in the general
setup of QFTs.

Although topological structures are observed in condensed matter, they are extremely
fragile. By contrast, symmetry breaking or emergence, as requested in SU(∞)-QGR, is
widespread in nature. We also notice that topological structures proposed by LQFT-QGR
are different from those used in LQG as observables. In LQG, Wilson loops do exist because
of axioms and construction of the model. By contrast, to a large extent the existence of
localized operators in LQFT-QGR are conjectured. In particular, the model explored in [97]
for such structures is semi-classical and includes the perturbative Einstein equation, which
is non-renormalizable. Therefore, the model cannot be considered as a genuine QGR.
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3.2.4. QGR and Emergent Spacetime from Entropy and Holography

Another set of conjectures used for getting insight into QGR without considering
an underlying classical dynamics are the holographic principle [3–5] and gauge-gravity
duality conjecture [31,100], especially in the form of AdS/CFT duality; see Section 3.3.3 for
more details. Notice that this conjecture should not be confused with models that try to
quantize gravity by extending the gauge group of the Standard Model, such that it includes
Lorentz and Poincaré symmetries [80,83,84].

Motivation for the holography conjecture [3–5] is the proportionality of semi-classical
black hole entropy to the area of its horizon, rather than to its volume [20,21]. According
to holography conjecture, there is an upper limit on the amount of quantum information
contained inside the bulk of a region of spacetime with a lightlike boundary [3]. It is
proportional to the area of its boundary and is maximal for black holes [20,21]. This
conjecture is not limited to gravitational systems, and similar behavior is observed in
other many-body quantum systems, if a suitable null (lightlike) boundary surface can be
defined [6]. In particular, the entanglement entropy of some low dimensional many-body
quantum systems at critical point, that is, when the system is scale invariant and behaves
conformally, is calculable analytically, and the results show that they follow the holographic
principle [4,7,8].

AdS/CFT duality conjecture [29,101] posits that the quantum properties of the bound-
ary of a spacetime region in the limit that it can be approximated by a conformal QFT can
be related to the geometry, and thereby to QGR in the bulk, if at classical limit the bulk has
an AdS geometry.

Inspired by these conjectures, [12] considers two quantum systems with a quantum
CFT living on their common boundary. Then, it establishes an analogy between the
reduction of entanglement entropy and exchanged quantum information between the
two systems, when their boundary is shrunk, and the reduction of their gravitational
interaction, when the distance between their centers of mass is increased. To understand
this analogy, imagine squeezing a rubber bar in the middle. More the bar is squeezed, more
the material is pushed to the two ends. Moreover, the surface connecting the two sides
becomes smaller until the bridge breaks and the two parts get separated. Of course, this
analogy is very far from being a QGR model. Nonetheless, it has motivated the construction
of QGR models using entanglement entropy as the origin of what is classically perceived
as geometrical distance.

3.2.5. Entanglement-Based Models (EBM) of Quantum Gravity

A more systematic approach to the construction of a spacetime from the entropy–area
law is proposed in [13,14], where spacetime metric and geometry emerge from tensor
decomposition of the Hilbert space of the Universe into entangled subspaces. This model
is based on several axioms; see [14] for the complete list. They include:

1. A preferred tensor decomposition of the Hilbert space H [of the Universe], where
each factorHi presents the Hilbert space of a point or a small space around a point
of space:

H =
⊗

i
Hi (30)

2. There is what is called redundancy constrained (RC) states for each subset of the
Hilbert spaces B ⊂ H, considered to be a subspace of the physical space. Its entropy
is defined as:

S(B) ≡ 1
2 ∑

i∈B,j∈B̄
I(i : j) (31)

I(i : j) ≡ S(i) + S(j)− S(i ∪ j) (32)
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where I(i : j) is the mutual information of subsystems i and j. This construction
replaces the area law axiom considered in [12,13].

3. It is assumed that the system is in an entanglement equilibrium state, when sub-
systems are in RC states. Under small perturbations the entropy of B is assumed to
be conserved. This means that the total entropy is conserved. Moreover, when states
deviate from RC, their entropy can be decomposed to the entropy of a fiducial RC
state and a subleading component, interpreted as an effective field theory. The two
components cancel each other to preserve the total entropy.

It is clear that axiom 1 is constructed such that the Hilbert spaceH presents physical
space. Thus, we conclude that similar to LQFT-QGR, in this model the space does not
really emerge, but its existence is postulated. Moreover, we notice that the definition of
subsystems is loose and does not explicitly respect necessary conditions [28]. It is why
axiom 1 explicitly states that factorization is static and somehow is preferred. However,
the model does not specify what are the criteria for its selection.

Axiom 3 replaces the action and variation principle that in classical mechanics and
QFT models lead to dynamics and field equations, respectively. In addition, according to
this axiom, RC states can be considered as a background around which a perturbation is
performed. Indeed, the model does not consider highly non-RC states and studies only the
case of weak gravity interaction [14].

The structure described by above axioms can be considered as an information graph,
whose vertices are factors of the Hilbert space, and its edges are weighted by mutual
information I(i : j) of subsystems corresponding to factors of the Hilbert space. This graph
is analogous to discrete geometry in the Ponzano–Regge model, spin network, and LQG.

To complete the geometrical interpretation, the area of information graph or its sub-
graphs must be related to entanglement information. In [12,13], this connection is estab-
lished by assuming the holographic principle. However, when RC structure is assumed [14],
according to one of the axioms of the model (axiom 3 in [14]), the area associated with a
subspace B of the space is:

A(B, B̄) =
GN
2

I(B : B̄) (33)

where GN is the Newton constant (for h̄ = 1 and c = 1) and B̄ is the complementary of B.
Although the area A associated with a subspace of the Hilbert space is not the boundary
of a bulk space, the inspiration from the holographic principle is evident. This axiom and
Radon transform are used to describe the area as a function of the entropy of factors Ĥi∀i
of the Hilbert space and to define a background metric. Perturbations of this metric is
interpreted as the perturbation of the quantum state of the physical space.

Additionally, variations in the entanglement graph geometry are used as a clock with
which a Hamiltonian and an operator analogous to energy–momentum can be associated.
The latter can be considered as an effective field theory generating subleading entropy
of states, which are perturbatively deviated from RC states. Finally, by comparing this
formulation with general relativity and by using Radon transform, reference [14] argues
that Einstein’s equation can be concluded.

3.2.6. Comparison of EBM with SU(∞)-QGR

We found that EBM is more similar to SU(∞)-QGR—in spirit rather than construction—
than other models. Here we briefly highlight their common features.

Factorization of the Hilbert Space and Division to Subsystems

The importance of the division of Hilbert space into factors presenting subsystems
is crucial in both models. Many QGR proposals do not consider this issue explicitly or
struggle to conclude it from their axioms. However, as remarked earlier, in EBM the division
is considered to be rigid and preferred. This is in strict opposition to the approach of
SU(∞)-QGR. The reason behind the special factorization is again the absence of a concrete
criterion to discriminate between factors-subsystems.
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We notice that the issue of how to divide the Universe and its Hilbert space to quan-
tum subsystems generally arises in the quantum approach to QGR usually due to the
foundational requirements [28,32] for such operation. In other proposals difficulties related
to this task have various reasons and model makers use different schemes to deal with
this crucial matter. For instance, they introduce topological structures—as in LQG and
LQFT-QGR; or simply consider a fixed decomposition without addressing its origin, as
in EBM.

SU(∞)-QGR assumes an orthogonal finite rank symmetry—presumably from sym-
metry breaking or emerging—to fulfill the general conditions for division of a quantum
system into subsystems, according to [28]. Although the nature and origin of this symme-
try are not specified in the construction of SU(∞)-QGR, properties of SU(∞) symmetry,
notably Equations (8) and (9), facilitate the interpretation of the Universe as a many-body
quantum system, in which based on our knowledge from condensed matter, a symmetry
of the form (10) can arise relatively easily. More importantly, in SU(∞)-QGR the finite rank
symmetry is associated with matter. In this way, matter and space become intertwined and
inseparable. This is not the case in EBM, LQFT-QGR, or LQG and related models.

Geometry and Classical Gravity

Another common aspect of EBM and SU(∞)-QGR is the explicit dependence of the
space geometry on the quantum state—through entanglement entropy in EBM and through
fidelity in SU(∞)-QGR. However, emergence, construction, and physical meaning of the
space in the two models are very different. In EBM of [13,14], factors of the Hilbert space
are considered to present points or regions of the physical space, and the information graph
is interpreted as a symplectic geometry, which in the continuum limit can be considered as
a quantized space. Therefore, although the existence of a physical space is not explicitly
mentioned in the axioms of EBM, it is implicitly behind the factorization of the Hilbert
space. By contrast, in SU(∞)-QGR, what is perceived as the physical space genuinely
emerges as the parameter space of SU(∞) representations.

A consequence of these differences is that SU(∞)-QGR has an explicit explanation for
the dimension of spacetime, whereas in EBM, it is an unspecified stochastic parameter. In
fact, the information graph can be embedded in any space with dimension d > 2. Notice
that the relation between area of a subgraph (subsystem) and its entanglement entropy
with its complementary in (33) do not restrict the graph to be planar—not even locally.
A priori, every vertex—that is every factorized subsystem of the Hilbert space—can be
entangled with all other subsystems. In [13], it is assumed that the number of subsystems
entangled with a vertex—corresponding to the number of edges attached to it—is limited.
Nonetheless, their number can be large and rules for the construction of graphs do not
constrain their mutual angle. Thus, in contrast to Ponzano–Regge and LQG, in which
spins assigned to edges of the symplectic space must satisfy triangle constraint at each
vertex, the information graph in EBM can be embedded in a multi-dimensional space.
For these reasons, d is considered as a stochastic parameter determined from averaging
over geometries of many information graphs [13]. However, the spacetime dimension is a
fundamental quantity, which affects many observables in particle physics and cosmology
at all energy scales. To date, no evidence of an extra/infra or stochastic dimension has been
detected.

In SU(∞)-QGR the relationship between affine parameter, metric, and quantum
fidelity in equation (12) naturally relates ensemble of parameters (not just distance or area)
to quantum states of the subsystems. In both EBM and SU(∞)-QGR, Einstein’s equation
remains classical and is obtained from relationship between quantities with underlying
quantum origin.

Analogy between Distance and Entanglement

In both models, an area quantity emerges and it is crucial for their interpretation as
QGR. In SU(∞)-QGR it emerges from a comparison of the preserved areas of diffeo-surfaces
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of subsystems with an arbitrary reference subsystem. In EBM it is postulated in (33), where
a dimensionful area/distance parameter is mandatory. Although the way a scale emerges
in these models is very different, in both cases it is related to the division of the Universe
into subsystems. Indeed, in EBM entanglement and its associated entropy are meaningful
only when multiple quantum systems are present. In SU(∞)-QGR division to subsystems
is necessary to make the conserved area of diffeo-surfaces relevant and measurable.

In addition to differences in the manner that a dimensionful scale arises in these mod-
els, there is another important difference. In SU(∞)-QGR the area is related to geometry of
the compact parameter space of representations of SU(∞) symmetry of subsystems. Thus,
it is a well defined and unique measurable for each subsystem relative to a reference. By
contrast, quantification of entanglement and relative quantum information is not unique
and various definitions, e.g., von Neumann or Rényi entropy can be used, and each of
them has its own merit and applications. EBM models of [12–14] do not specify which
one of these entropies should be used or what is rationale for preferring one to others, or
whether different definitions should be interpreted as different choices of coordinates.

3.3. String Theory, M-Theory, and AdS/CFT Duality in Three or More Dimensions

String theory and related models are without any doubt the most intensively studied
QGR proposals. Although some of quantum first models are inspired by (super)string
theories and AdS/CFT duality conjecture, string theories are not, properly speaking,
quantum first. Their perturbative formulation is a quantized 2D sigma model, originally
proposed for describing strong nuclear interaction [102]. Non-perturbative formulation of
string models, also called M-theory, and its realization as a matrix model, has the form of a
(super) Yang–Mills QFT.

In recent decades, new approaches to string theories are extensively studied in the
literature, and various concepts and structures are added to their initial construction. Their
list includes: D-branes states [103]; string condensation and its relation with p- and D-brane
solutions [103–106], which are important for the conjectured non-perturbative formulation
of string models, also called the M-theory; additionally, AdS/CFT duality [29,107], which
is the simplest case of gauge-gravity conjecture [30,31,108] and is closely related to M-
theory and matrix models. Nonetheless, the basic structure of (super)string theories and
their properties continue to be considered as foundational and established knowledge
for development of these more advanced theories. In particular, M-theory uses the 10D
or (9+1)D Euclidean or Minkowski spacetimes, respectively, which is the fundamental
dimension of spacetime in perturbative superstring theories. Similarly, the first evidence
of AdS/CFT correspondence was discovered for D3 brane models in a 10D compactified
AdS5 × S5 background spacetime [109]. Thus, due to the importance of perturbative
formulation of string models, in this section we first briefly remind their findings and how
they compare with SU(∞)-QGR. Then, we review and compare M-theory and its matrix
realization, and AdS/CFT conjecture.

3.3.1. Perturbative String Theories and Their Comparison with SU(∞)-QGR

As extended literature and textbooks on string theory related subjects such as [102,110]
is available, we do not review these models in detail and only remind their most important
properties used for comparison with SU(∞)-QGR wherever they are necessary.

2D Surfaces in String Theory and SU(∞)-QGR

Overlooking all the complexities of string and superstring theories, they can be sum-
marized as 2D quantum gravity of a conformal quantum sigma model. Here quantum
gravity means summation over all possible geometries of their 2D worldsheet—more
generally a membrane. In this view of string theories, their most evident common feature
with SU(∞)-QGR is the crucial role of 2D surfaces and their diffeomorphism. As we will
see in more detail in Section 3.3.2, even in non-perturbative approaches such as M-theory
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and p- and D-brane models, the 2D surfaces do not lose their crucial role and are implicitly
present and represented by large matrices.

On the other hand, roles, properties, and interpretation of 2D surfaces in these theories
and in SU(∞)-QGR are profoundly different. In string theories, 2D worldsheets of strings,
or more generally, membranes, are quantized, and the summation of their geometries
is interpreted as the path integral of 2D quantum gravity. By contrast, diffeo-surfaces
in SU(∞)-QGR are not independent physical entities, neither are they quantized. They
are associated to quantum states of the Universe and its content—subsystems—in the
same way that in QFT a charge or spin is associated to a particle, but it is not the particle.
Deformations of diffeo-surfaces do not correspond to different (quantum)-gravitational
states, but rather represent members of the symmetry group of shared by all quantum
subsystems, including the whole Universe. Another crucial difference between these model
is the fundamental role of subsystems and environment in the foundation of SU(∞)-QGR,
whereas in string theories they are not explicitly involved in its formulation.

String Sigma Model

In a sting sigma model, both bosonic and fermionic quantum fields live on the 2D
worldsheets [102,110]. In superstring models they are interpreted as coordinates of an
n−dimensional quantum spacetime and their supersymmetric counterparts, respectively.
One can equally interpret the worldsheet of a string as a 2D extended membrane embedded
or emerged in an n−dimensional spacetime. Additionally, string theories are in general 2D
Conformal Field Theories (CFT). This means that they are invariant under rescaling of both
worldsheet 2D coordinates and local rescaling of the fields. This double conformality is a
necessary condition for eliminating central charge and anomalies, which arise when these
models are quantized [110]. Cancellation of these unwanted elements limits the spacetime
(target space) dimension to n = 26 for bosonic strings or to n = 10 in superstring models.
More generally, the sigma model can be any CFT with Kac–Moody algebra having the
same number of degrees of freedom as bosonic and supersymmetric models. As mentioned
earlier, the value of fundamental—rather than observed—spacetime dimension obtained
from sigma model formulation of superstrings is taken for granted in further developments
of these models. Interestingly, an n = 1 model is also a consistent quantum model [102].
The single (super)field in such model cannot be interpreted as a background spacetime,
but this case is studied as a decoupled sector in matrix formulation of string theory [100].

In the framework of SU(∞)-QGR, the string setup—without quantization of 2D
worldsheet/membrane—can be considered as a special state for a quantum system with
SU(∞) symmetry. The sigma model of strings—without constraints arising from conformal
symmetry and quantization—can be interpreted as special states for subsystems with an
internal symmetry G. Quantization of such a state in the framework of (super)string theory
restricts the internal symmetry G to groups allowed by the cancellation of anomalies. For
instance, G may be identified with: a 10D sigma model of superstring models and/or its
SO(32) or E8 internal symmetry; symmetries of the corresponding low energy N = 4
supergravity in 11D; or symmetries of compactified coordinates or quantum fluctuations
of D-brane solutions in M-theory. The origin of these similarities can be traced back to
the Virasoro algebra of string fluctuations, which is a subalgebra of surface-preserving
diffeomorphism (SDiff) of a torus i.e., SDi f f (T2) algebra and the fact that the latter is a
representation of SU(∞) group [37,111,112].

One of the main advantages of string theory to canonical QGR is its renormalizabilty
and the absence of UV singularity, owing to the extended nature of strings. Although
renormalization of SU(∞)-QGR is not yet studied in detail, from its Yang–Mills action
we expect that it should be renormalizable. Moreover, UV singularity should not arise,
because the distance between subsystems can be related to the relative area of their diffeo-
surfaces. The latter by definition cannot shrink to a point, equivalent to zero distance;
otherwise, SU(∞) would be represented trivially. This feature should play the role of a
built-in ultraviolet cut-off without introducing any fixed scale.
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Curved Spacetime and Gravity in String Theory

In the sigma model formulation of string theories, quantization is consistent only
when the geometry of the field (target) space—interpreted as fundamental spacetime—is
flat. This means that only metric perturbations around this Minkowski background are
quantum mechanically meaningful. The issue of a curved target (field) spacetime in string
theory does not have an analogy in SU(∞)-QGR. Nonetheless, solutions proposed to
overcome this problem and their role in non-perturbative formulation of string theory in
the framework of M-theory can be compared with SU(∞)-QGR.

One way of studying perturbative strings in curved spacetimes is introducing a string
gas. In particular, This approach is used for the purpose of describing cosmological per-
turbations in the framework of string theory [113]. However, the inherently intertwined
nature of spacetime and strings may make it impossible to consider their evolution sepa-
rately. There are, nonetheless, exceptions. AdS/CFT duality conjecture, discussed in more
detail in Section 3.3.3, is proved for AdS3 space, and is considered as to be the evidence of
consistency of perturbative string theory, at least in some curved background spaces.

Another way to overcome the issue of curved target space is considering special
configurations/solutions for the dynamics of strings in the target space. These solutions
usually include localization of perturbative string modes. For instance, the extremity of an
open string can be restricted to move on a p < D dimensional subspace of the target space,
called a p-brane or more general solutions in the form of D-branes [103]. The induced
geometry on p/D-branes can be curved. In this framework, the observed (3+1) dimensional
spacetime can be a brane in D-dimensional fundamental target space. In the same manner,
D-branes can be formed from condensation of closed strings, but they may be unstable [104–
106]. D0 branes are another class of interesting configurations of Yang–Mills gauge fields
in the target space. They correspond to coordinate independent configurations, which may
change with time [100] or be static [114]. These models are studied in the framework of
gauge-gravity duality conjecture [100] and M-theory and have more common aspects with
SU(∞)-QGR than perturbative string models. For this reason we review them in more
details in the next subsection.

3.3.2. M-Theory and Matrix Theories

M-theory and matrix models are developed as candidates for the non-perturbative
formulation of string theory; see, e.g., [115–117] for reviews. Using various concepts,
including large N expansion of perturbative QFTs [118] and holography principle, it
is conjectured that non-perturbative type II string theories can be described as U(N)
supersymmetric Yang–Mills theories and present quantum states of type IIA strings in D0
background [100,119].

The BFSS [100] matrix model—called also D1+0 brane—is a 10D super Yang Mills
model, obtained from compactification of one dimension of the 11D supergravity effective
field theory of string theory at low energies. It is reduced to 1+0 dimension by assuming
that all the fields in the model are independent of nine spatial coordinates. The dependence
on the last coordinate is removed in what is called D0 brane or IKKT matrix model [114]. It
is demonstrated that IKKT corresponds to a high temperature—slow variation—limit of
BFSS when the Euclidean time is treated as the inverse of temperature [120].

The action of IKKT model is defined as:

SIKKT [X] =
1
g2 Tr

(
1
4
[Xa, Xb][Xc, Xd]ηacηbd −

i
2

ψ̄α(Cσa
αβ[Aa, ψβ]

)
(34)

where Xa, a = 0, · · · , 9 and ψα, α = 1, · · · , 16 are hermitian N × N matrices representing
SO(D = 10) (Euclidean) or SO(D− 1, 1) (Minkowski); ηab is the metric of a flat Minkowski
or Euclidean 10D space; σas are 16× 16 Pauli matrices for D=10 space; and C is charge
conjugate operator of the same dimensionality. The action SIKKT [X] is similar to that of a
type IIB superstring in Schild gauge [121].
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It is assumed that N → ∞ such that Ng2 ≡ ḡ2 < ∞. Therefore, Xa and ψα are,
respectively, bosonic and fermionic N → ∞ dimensional representations of non-Abelian
SO(D) (or SO(D-1,1)). Although the original motivation for this model has been the
string theory, it can be studied without referring to the latter, and is also studied in
D 6= 10 [117,120].

Using the variation principle, one can obtain field equations for Xa and ψα. In
particular, considering only bosonic Yang–Mills sector, the field equation for Xa is:

[Xa, [Xb, Xc]]ηac = 0 (35)

Given the finite rank of the Yang–Mills symmetry group of the model and the large
dimensionality of its representation by Xa, Equation (35) has many solutions. Aside from
trivial commuting matrices, solutions having the form:

[Yµ, Yν] = iθµν
1, µ, ν = 0, · · · 2n− 1, 2n 6 D (36)

where θµν is an anti-hermitian constant matrix θνµ = −θ∗µν, provide reductions of the
space dimensions and a quantized non-commutative geometry [122] for these branes.
Specifically, in case of the Moyal–Weyl solution, the background 10D space is static with
Yµ = Ȳµ, µ = 0, · · · 2n− 1 and Yi = 0, i = 2n, · · · , D− 1. To define quantum fluctuations,
Ya matrices are decomposed as:

Ya = Ȳa + (Aµ, 0) + (0, φi) (37)

Although Aµ can be considered as a U(1) gauge group, it actually belongs to the
gravity sector and cannot be identified as U(1) symmetry of the Standard Model. Matter
fields in matrix models can arise, such as in string theory by compactifying D− 2n fields.
See, e.g., [115] for a review. For Moyal–Weyl-type solutions considering k coinciding branes,
see, e.g., [103,117,123] for a review. Assuming quantum superposition of fluctuations of k
branes as defined in (37), they are locally invariant under SU(k) symmetry. Thus, in this
approach Aµ and φi can be expanded as:

Aµ = −θµν Ab
µ(Ȳ)T

b, φi = φi
b(Ȳ)T

b (38)

where Tbs are generators of adjoint representation of SU(k). As indicated earlier, due to
the fundamental non-commutation nature of Ya, this construction cannot accommodate a
U(1) symmetry. In the same manner, fermion fields can be constructed, but they would
be in adjoint representation of SU(k), because in 10D fundamental space they are super-
symmetric partners of coordinates Xa, and cannot be identified with matter. For n = 2,
this setup leads to a quantum non-commutative R4

θ ⊂ RD space identified as the physical
spacetime.

In contrast to Randall–Sundrum-type brane models, in matrix theories, quantum
fluctuations of geometry and matter do not propagate to the 10D bulk. Therefore, matrix
theories, and more generally models based on the condensation of string modes to branes,
are not dependent on the 10D background geometry. This solves the problem of string
formulation in curved spaces discussed in Section 3.3.1. However, in matrix models,
only fluctuations of background (target) 10D space are observable. Therefore, the role of
unobservable static (in some models) of the 10D fundamental background/target space is
not clear. Moreover, D-branes may decay [104–106] and the stability of overall setup is not
certain. In any case, these field/string solutions are special configurations, many of them
are plausible [124], and it is not clear why nature should prefer the one corresponding to
our Universe.

Finally, the low energy effective action of matrix models is a modified version of
Einstein Equation [117,125,126], which is stringently constrained, specifically with gravita-
tional waves [127].



Symmetry 2022, 14, 58 28 of 34

Comparison of Matrix Models with SU(∞)-QGR

There are many similarities between matrix models and SU(∞)-QGR, but also significant
differences. In both models the fundamental objects are N → ∞ matrices. Matrix models
are pure (super)Yang–Mills models, and Xa and ψi in (34) are N × N matrices in the adjoint
representation of an internal finite rank symmetry. By contrast, SU(∞)-QGR is constructed
from a Hilbert space and includes both square and column matrices as primary entities, in
adjoint and fundamental representations of both SU(∞) and internal symmetries.

In matrix theory, the large dimension of matrices are inspired by the large color
and loop number limit of QFT [118], conjectured to present a strong coupling regime.
In SU(∞)-QGR, the motivation is rather cosmological and based on the observed large
number of degrees of freedom in the Universe. These apparently different motivations
converge to each other, because for a perturbative estimation of observables, for instance
an S-matrix, up to a given degree of precision, one has to take into account more loops,
virtual particles, and their degrees of freedom for stronger couplings. The assumption of
SU(∞)-QGR that every subsystem of the Universe represents infinite degrees of freedom
is an explicit realization of the above concept.

SU(∞)-QGR uses the above axiom as a foundation for constructing other aspects of
the model. Moreover, based on the observed spontaneous breaking and emergence of
symmetries in many-body systems—see e.g., [128,129]—it defines subsystems according
to the well established criteria in quantum information theory [28]. The formulation of
the model, especially in what concerns the universal quantum gravitational interaction,
is completely independent of internal symmetries of subsystems (particles or fields),
which are not constrained by the model. In fact, considering that when all constituents
interact with each other, the symmetry is G → SU(∞), one expects that many other smaller
rank symmetries should have a nonzero probability arise in intermediate states, where the
number of effectively coupled or entangled subsystems is finite but large.

By contrast, in matrix models, the large dimensionality of matrices remains a back-
ground concept and does not directly intervene in the construction of symmetries and
dynamics. The latter are to a large extent inspired by or concluded from superstring
theory. Indeed, large matrices in these models present a membrane or worldsheet of a
string [35,111,112]. Despite the fact that matrix models can be considered as stand-alone,
and what they consider as fundamental spacetime can have other dimension than 10 of
superstring models (see, e.g., [120]), BFSS and IKKT models and their variants are mostly
constructed and studied in 10D Euclidean or Minkowski space. In any case, even without
referring to string theory, the presence of extra-dimensions in matrix models is inevitable
for the introduction of matter and other interactions than gravity. They are considered to be
the quantum fluctuations of a D0 condensate [117] (and references therein) or compactified
dimensions [115] (and references therein). However, similar to many QGR proposals and
in contrast to SU(∞)-QGR, matrix models do not provide any explanation for the observed
dimension of spacetime.

In summary, both M-theory (matrix models) and SU(∞)-QGR emphasize the impor-
tance of SU(∞) in a quantum description of gravity. However, they diverge on many
details. In particular, in matrix models, SU(∞) symmetry is not explored. The manner in
which internal symmetries arise and are constrained in these models are different. Finally,
the large dimension of fundamental spacetime—the target space—in M-theory does not
have an analogue in SU(∞)-QGR.

3.3.3. Anti-de Sitter–Conformal Field Theory (AdS-CFT) Duality

According to AdS-CFT duality conjecture [29], and more generally gauge-gravity
duality [30,31] in M-theory, there is a one to one correspondence between quantum states
of a suitable quantum CFT living on the boundary of a region of the spacetime and
supergravity (string theory) in its AdS bulk.

This conjecture is closely related to the holographic principle, but there is not yet
a general proof for it, except in (2+1)D spaces [101]. Specifically, consider a conformal
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field theory on the (1+1)D space R × S1 boundary of an AdS3 spacetime. Define two
complementary subsystems A and B divided along the R axis of the bulk (see Figure 1
of [101]). The Hilbert space of the quantum CFT is factorized to ĤA⊗ ĤB, and entanglement
entropy between A and B is defined as S(A) ≡ −tr(ρA ln ρA), where ρA is the density
matrix of A when the state of B is traced out. Notice that the geometrical division to A and
B, and factorization of their Hilbert space is in general valid only in a given frame because,
as we discussed in Section 3.2.2, QFTs are type III and cannot be restricted to an arbitrary
region of spacetime without violating Lorentz invariance.

It is proved [101] that the static entanglement entropy between the two subsystems at
a constant time t is proportional to the length of the geodesic (null) curve passing inside the
AdS3 and joining the 2-point cross-section on the constant t, S1 boundary. More generally,
for an AdSd+2 spacetime, the entanglement entropy is conjectured to be:

S(A) =
Area ofγA

4Gd+2
N

(39)

where γA is the d−dimensional minimal (geodesic) boundary surface and GN is the Newton
constant. Additionally, it is shown that S(A)→ 0 only when the size of the system goes
to infinity [7,8]. This case corresponds to when the two subsystems are infinitely separate
from each other.

We notice that the definition of subsystems in [29,101] is geometric. This is an impor-
tant point, because as we discussed in Section 3.2.3, QFTs have type III algebra and Lorentz
invariant quantum subsystems cannot be defined by division of their support spacetime.
Thus, A and B are not, properly speaking, subsystems and are not diffeomorphism invari-
ant. It is not clear whether and how this issue affects the AdS/CFT duality conjecture,
especially in higher dimensional spaces for which a proof is not available.

For d = 2, the AdS ∼= R× R× Sd geometry is homomorphic from the simplest ge-
ometry of parameter space in SU(∞)-QGR after division of the Universe into subsystems.
For this case, relation with a CFT on the boundary in the framework of SU(∞)-QGR can
be understood as the following: For the whole Universe or an approximately isolated
subsystem, the size of the diffeo-surface of its SU(∞) symmetry is approximately irrele-
vant for its observables. This property can be interpreted as an approximate conformal
symmetry—that is, scaling invariance of the parameter space of the system and its pull-
back into the Hilbert space. Considering an external quantum clock, at a given time the
parameter space of such an isolated subsystem is approximately 2D, and its quantum
dynamics is approximately a 2D CFT. Its operators generate a Virasoro algebra, which is
a subalgebra of SDi f f (T(2)) ∼= SU(∞) [37,111,112]. Invariance by scaling means that any
arbitrary diffeomorphism is equivalent to a surface preserving one.

4. Outline

The comparison of several popular QGR models with SU(∞)-QGR in this work found
a number of common or analogous features between them. The results of this exercise,
summarized in Section 1.1, highlight the origins of these properties and shows that they
either arise in SU(∞)-QGR from its axioms or can be concluded from them. Giving simple
axioms of SU(∞)-QGR and systematic and natural emergence of common features in this
model, it may help to clarify some of puzzling properties of other QGR proposals.

As SU(∞)-QGR is a new model, its comparison with other QGR candidates presented
here is limited to their construction, rather than predictions for various physical phenomena,
in which QGR may be involved. Future works should concentrate on the applications of
this model. Examples of problems to be studied are:

Hawking radiation;

Information loss paradox of black holes;

Particle physics at Planck scale;

Spacetime singularities;
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Topology of parameter space of the model identified as the classical spacetime and whether
it can be changed dynamically.

Regarding particle physics, as mentioned in Section 2.5.2, in the framework of SU(∞)-
QGR we should expect more unbroken gauge symmetries G at high energies. Therefore, a
crucial task is to determine how internal symmetries vary with energy scale Λ. Particle
physics experiments show that G|Λ∼1TeV = SU(3) × SU(2) × U(1), i.e., the Standard
Model symmetry. However, a signature of interactions at higher energies may be smeared
by the physics at lower energies [130]. Nonetheless, if many-body high energy states
behave similar to their low energy analogues, their analogy may help to find the best
criteria for detecting signatures of phase transitions due to symmetry transition at high
energies in (astro-)particle physics experiments or cosmological observations.

In addition to gauge symmetries, C, P, and CP violations responsible for many aspects
of low energy particle physics, in particular, matter–antimatter asymmetry, may have
gravitational origins. However, we should remind that in the 2D parameter space of the
whole Universe, all spinors are Weyl type—i.e., there is no matter–antimatter discrimination.
Therefore, the observed asymmetry necessarily arises after division of the Universe into
subsystems, and may or may not have a gravitational origin.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Classical Limit of the SU(∞) Yang–Mills Model of Subsystems

We first review some of properties of curvatures of (pseudo)Riemannian manifolds.
For any Riemannian or pseudo-Riemannian manifold (M, g) of dimensions d > 2 and
metric g equipped with a Levi–Civita connection ∇, the Riemann curvature (1,3) tensor at
point p ∈ M is defined as:

Rp(X, Y)Z = ∇X∇Y −∇Y∇X −∇[X,Y] (A1)

Vector fields X, Y, Z ∈ TMp, where TMp is the tangent space ofM at p. When
X, Y, Z are chosen to be ∂i ≡ ∂/∂xi basis of the tangent space for coordinates xi, i =
0, · · · d− 1, one recovers the usual coordinate-dependent definition of the Riemann curva-
ture tensor (we drop p because it corresponds to the point with coordinates xi):

R(∂i, ∂j)∂k = Rl
kij, (A2)

Rijkl ≡ R(∂i, ∂j, ∂k, ∂l) ≡
〈

R(∂i, ∂j)∂k, ∂l

〉
= gml Rm

kij (A3)

Using the notation defined in (A3) for (0,4) Riemann curvature tensor, the sectional
curvature K(Π) = K(X, Y) with respect to a 2D plane Π ⊂ TMp containing two vectors
X, Y ∈ TMp at p ∈ M is defined as:

K(Π) ≡ K(X, Y) =
Rp(X, Y, X, Y)

〈X, X〉〈Y, Y〉 − 〈X, Y〉2 (A4)

Notice that K(Π) is independent of the choice of X and Y, and depends only on the
plane passing through them. It can be shown that 〈Rp(X, Y)Z, W)〉 is expandable with
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respect to sectional curvatures [131]. Using relations between different curvature tensors of
a Riemannian manifold, the Ricci scalar at point p ∈ M is defined as [132]:

R(p) = ∑
i 6=j

Rp(ei, ej, ei, ej) = ∑
i 6=j

Kp(ei, ej) (A5)

where ei, i = 0, · · · , d− 1 is an orthonormal basis of TMp. From (A5), we conclude that
there is only one sectional curvature at each point of a 2D surface, and it is equal to its Ricci
scalar curvature.

In order to extend the relation (19) between SU(∞) Yang–Mills action, and the Ricci
scalar curvature of its diffeo-surface of an isolated quantum system with SU(∞) symmetry,
to a large number of such systems when the Universe is divided into subsystems, we
have to integrate their contributions. In Section 2.3.1 we showed that the parameter space
of subsystems is (3+1)D dimensional. Applying definitions of curvature tensors to this
parameter space, each sectional curvature in (A5) can be interpreted as the Ricci curvature
of the diffeo-surface of a subsystem. The summation in the right-hand side of (A5) and
integration over the volume of the parameter space in the action functional amount to
taking into account all subsystems of the Universe. Therefore, the right-hand side of (24)
corresponds to the right-hand side of (19) when the Universe is divided into subsystems.
In the same way, the left-hand side of (24) corresponds to the left-hand side of (19) when
the contributions of subsystems are calculated separately. However, (24) is valid only in the
classical limit, because as discussed in Section 2.4, after the selection of the reference and
clock, the ensemble of remaining subsystems should be considered as an open quantum
system. Therefore, (24) is an approximation, valid only in the classical limit where the
reference and the clock can be considered as classical.
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