
HAL Id: hal-03351793
https://hal.science/hal-03351793

Submitted on 22 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Automated Dysfunctional Model Extraction for Model
Based Safety Assessment of Digital Systems

Tiziano Fiorucci, J.M. Daveau, Giorgio Di Natale, Philippe Roche

To cite this version:
Tiziano Fiorucci, J.M. Daveau, Giorgio Di Natale, Philippe Roche. Automated Dysfunctional Model
Extraction for Model Based Safety Assessment of Digital Systems. IEEE 27th International Sym-
posium on On-Line Testing and Robust System Design (IOLTS 2021), Jun 2021, Torino, Italy.
�10.1109/IOLTS52814.2021.9486705�. �hal-03351793�

https://hal.science/hal-03351793
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Automated Dysfunctional Model Extraction for
Model Based Safety Assessment of Digital Systems

Tiziano Fiorucci1,2, Jean-Marc Daveau1, Giorgio Di Natale2, Philippe Roche1
1STMicroelectronics, 850 Rue Jean Monnet 38926 Crolles Cedex, France

2Univ. Grenoble Alpes, CNRS, Grenoble INP*, TIMA, 38000 Grenoble, France

Abstract—In the field of automatic quality or safety assurance
level evaluation, this paper proposes the first approach towards
the automation of the extraction processes of both the valid
and faulty state machines within a System-on-a-Chip. The data
automatically extracted by this method is a relevant input for
behavioural modelization and FMEA analysis. The method is
based on a semi-automated approach for the systematic extraction
of failure modes of a digital design in the hypothesis of a single-
event upset (SEU) or stuck-at in flip-flops. This procedure aims
to enhance human driven failure analysis and provide inputs for
RAMS frameworks in the process of quality assurance of complex
devices. The main objective is to transport and apply RAMS
methods and tools in the area of SoCs design. Experimental results
have been conducted on an I2C - AHB system, laying the base
for a complete and more complex analysis on an entire SoC.

I. INTRODUCTION

The classical and well established quality or safety assurance
process relies on complex and systematic methods, needing as
input the complete description of every block of the studied
system. In particular, the set of failure modes and consequences
is required for each block, in order to compose them the
system’s behaviour in case of faults. This process is usually
man driven, such as in the case of System on Chip or per-
formed using proven Reliability, Availability, Maintainability,
and Safety (RAMS) methods in the area of mechatronics or
electromechanics systems [15]. Model Based Safety Assess-
ments (MBSA) ensure the safety assurance process using indi-
vidual block failure models [10] and a composition framework
based on model checking methods. Such approaches are widely
used in critical software development with tools such as [18]
to prove software correctness or build correct software [11] but
not in the domain of digital System-On-a-Chip (SoC), although
attempts have been made [9].

The Failure Mode and Effects Analysis (FMEA) of a SoC or
a single Intellectual Property (IP) is still mostly human based,
prone to a series of errors and omissions inherent to the human
reasoning, inference and encompassing process. The main hard
point of applying MBSA methods to SoCs is building the
failure models for each IP composing it. Because safety models
are far from the specifications of digital IPs behavioral models,
a first step towards the automation of the construction of such
a failure model is the automated exploration of the faulty state-
space and extraction of its safety relevant behavior.

Attempts have already been put in practice on rather simple
systems, relying on a human based library of components de-
scribing possible malfunction [9] [27]. However, such models
are far from the complete dysfunctional model specifications
and only macroscopic failures are considered, thus not leaving
space to unexplored combination values in registers that may
lead to unexpected faulty states and behaviours. For example,
a 0 to 4 counter, which needs a 3-bit state register, may go out
of it functional range in case of a bit flip. The state ”1−0−1”,

*Institut National Polytechnique Grenoble Alpes

in Fig.1, is a non-explored and not explicitly declared state. It
may occur due to a faulty combination of values in the flip-
flops storing the state.

0-0-0

0-0-1 0-1-0

0-1-1

1-0-0

1-0-1 Bit-Flip

Nominal FSM

1-1-0

1-1-1

Faulty_FSM

Fig. 1. Non Explicit State Exploration Example

Exploring non-functional states in a digital system is far
from human encompassing capabilities, even for systems with
a small number of flip-flops. The approach proposed in this
paper aims at filling the gap between digital IP behavioral
model and generation of a dysfunctional model for FMEA
evaluation, providing a model that can be used in a MBSA
framework, thus, targeting safety assessment of the full system
from its individual IPs. In this work we target tools based on
the Altarica safety modeling language [25].

In the proposed approach, digital fault injection, in the form
of bit-flip, stuck-at and transient faults, is used to extract the
non-functional behavior of the studied digital block from its
functional model. The extraction of those data allows building
a failure model that includes the propagation of errors to and
from inputs and outputs, thus enabling structural composition.
We show that it is possible to extract a failure model in the
form of a state machine describing the faulty behavior with
scalable level of details and ensuring the fault propagation to
(resp. from) outputs (resp. inputs).

The paper is organized as follow: In Section II we provide
some background, including a brief description of the Altarica
language. In section III we describe the general methodology
to extract faulty behaviour. In section V we apply faulty state
extraction to two relevant examples and present the extracted
faulty state automaton. In section IV-C we perform faulty state
extraction on the complete system, proving the scalability of
the model, allowing the composition of more complex systems
without missing faulty states. Future work and conclusion are
presented on sections V-F and VI.

II. STATE-OF-THE-ART

Several attempts towards fully automated FMEA are re-
ported in literature. They can be divided into 3 categories
based on the main idea that drove the approach to the prob-
lem: (1) Fault injection based, (2) manual-developed libraries
approach, and (3) formal netlist verification methods. In the



first category, the work in [24] aims to create primitives for a
different standard [IEC61508], starting from a fault injection
campaign and analyzing the results to evaluate the FMEA of
a safety critical SoC, in order to evaluate the compliance to
the standard. In the second category, the works in [9] and [27]
have developed a framework for behavioral modeling a SoC
(then being able to extract the FMEA from there) but starting
from a library of elementary blocks, human written and prone
to errors, which do not assure the complete FSM coverage for
the blocks under test. In the last category, the works in [19] [7]
[12] [26] have tackled the problem from a different point of
view, trying to formally verifying the netlist of a specific circuit
and then build a translator from Verilog to CLU, the language
utilized to verify control and mixed (data/control) paths.

In [20], the behavior of system components are specified by
UML (Unified Modelling Language) state machines determin-
ing intended/correct and undesired/faulty behaviors. The UML
state machine description represents both nominal behavior of
the component but also the failure modes though dedicated
states (called failure states). The behavior of the component in
each state is defined using the Object Constraint Language
(OCL). The user then specify top nodes of the fault tree
(state combinations at the system boundaries) and sequences
of events composing the fault tree are computed and expanded.
In [8] a reverse approach is followed were fault trees are
converted and integrated into the statechart behavioural model
of the system under evaluation.

In this work we focus on tools based on the Altarica
language [25], which is a high level formal modeling language
dedicated to safety analysis. It can be seen as a generalization
of Petri nets for the behavioral part, and block diagrams for
the structural part. It borrows to Petri nets the notion of
states, events and guarded transitions and to block diagrams,
the notion of hierarchical descriptions and flows circulating
through a network. Starting from such dysfunctional models,
fault scenarios leading to a specified set of unexpected states
can be computed and quantified to determine the probability
of such behaviours. Automatic generation of reliability models
such as fault tree, event tree, markov chain or monte-carlo
simulation models for use in reliability assessment tools can
be performed. Framework such as SimfiaNeo [14], [22], based
on the Altarica language, belong to that category.

III. METHODOLOGY

On top of any explicit finite state machine or control code
encoding the user specified behaviour, it is possible to build an
extended state including the totality of the signals belonging
to the control path of a design. These signals compose a more
complete and larger state machine exposing new states and
transitions that are not explicitly specified. Combinations of
these signals in these states can lead to a subtle set of fault
states, difficult to identify from the HDL description as the
encoding in this state machine is sparse due to correlations.
Such argument can be strengthened by the fact that even for
a small (>≈50) number of flip-flops, the complete state space
(250) cannot be traversed in a reasonable time. Therefore a
non-negligible proportion of these states are what we call
faulty states, potentially leading to undesired or unspecified
and faulty behavior.

In order to build a failure model from a nominal behavioral
Register Transfer Model (RTL) in Verilog or VHDL, behaviour
of the system under faults must be analyzed and faulty behavior
as well as failure modes must be extracted. We proceed using
the following steps:

1) Identification and Extraction of Control Signals -
Starting from the functional description, the entire set

ctrl
path
reg

data
path
reg

I2C Block

Dumped for State Construction

Affected by Fault Injection

Probed Output

Fig. 2. scheme of probes placement and affected/dumped registers

of possible values in the flip-flops of the control path,
composing what we denominate as the state, has to be
identified and extracted. In digital systems, the state is
easily determined and is composed by all the flip-flops
composing the control path and possibly the datapath
in some cases. This set correspond to both the control
(and possibly data) state of the system and possible fault
injection sites, as described in Fig.2.

2) Testbench Setup - A standalone testbench is set up and
special care is given on evaluation of the coverage and
testbench representativity as the states traversed during
the golden execution will serve as non faulty behavior
reference. Tools like Incisive Metrics Coverage (IMC)
[1] or Certitude [5] can be used to assess testbench
coverage. A first golden run is performed as reference
run to allow extraction of functional states that will be
used later in the process to be differentiated from non-
functional ones.

3) Fault Injection Campaign - Fault injection is the mean
by which the misbehavior and faulty execution is pro-
voked on purposes. Probes (i.e., observation points) are
defined during the setup of the fault injection campaign.
They are set on the outputs of all blocks in order to
identify failures that propagates to other blocks. Probes
monitor and compare the probed signal value at each
clock cycle with the golden reference and report any
difference. They have been set to stop simulation when
a fault reaches an output of the design. This step is the
core of our analysis aimed at extracting faulty behaviour,
modes and effects though exploration of the faulty states
by fault injection.

4) Extraction of Faulty Behavior - Once the faulty runs
have completed, non-functional (i.e. faulty) states and
behavior are extracted by subtracting functional states
from the state dictionary taken from the golden run to
the faulty run states, leaving only newly discovered faulty
states and transitions.

5) Construction of the Faulty Model - The newly dis-
covered states and transitions are used to augment the
functional models with faulty behavior. Transitions from
a functional to a non-functional state are labeled with
the responsible fault such are states responsible for an
incorrect output. This model serves as a base for the
translation into the Altarica language.

Currently, the method is limited in the effect analysis of
the FMEA. Effect such as loss of power cannot be attached
automatically to a faulty state as it would requires an inference
and abstraction process out the reach of the tool currently.
Thus, such labelling is performed manually by attaching the
Effect (of FMEA) to the output and then back-propagating it to



the states and faults responsible for the given output corruption.

IV. TEST CASE

In order to detail the methodology presented in Section III,
we use a test case composed of 2 blocks: an I2C slave [23]
connected to an AHB [16] bus master interface. Commands
(read or write) along with parameters (address and data) are
received on the serial line and transformed into a series of
AHB read and write transactions. Such a system, composed of
two interconnected blocks, is humanely understandable so are
its dysfunctional modes, while being complex enough to detail
thoroughly the methodology.

The I2C slave, taken from [4], receives read or write
commands followed by an address byte and an optional data
byte. On an I2C read, the byte returned from the AHB
read transaction is returned. Chronograms for the read and
write sequences are represented on figure 4. The system is
represented on figure 3. At both end of the system (I2C and
AHB buses), verification IPs (VIP) are attached to generate and
verify I2C and AHB transactions. An I2C Master and AHB
slave VIP are used.

v
i
p
_
I
2
C

I
2
C
_
m
i
n
i
o
n

g
l
u
e
_
l
o
g
i
c

A
H
B
_
m
s
t

v
i
p
_
A
H
Bsda

scl

data_req

data_val

data_FM

data_TM

dmai

dmao

AHBO

AHBI

Fig. 3. Block Diagram of the System under Evaluation

A. I2C Test Case
The testbench is composed of a series of read and write

requests. The coverage evaluation of the design has been
carried out using both Modelsim FSM coverage evaluation
tool and IMC. The results are presented in Table II and I.
Having considered the results of the two coverage evaluations
sufficient, the attention has been moved onto the application of
the method presented in section III. The list of all the injection
sites, reported by Cadence Functional Safety Verification tool
are considered for state including ones containing data as the
serial nature of the I2C protocol mixes control and data on
the same signals. All outputs are probed so that any mismatch
with the reference run will stop the simulation and report the
fault as detected. State (flip-flop value, i.e. ’0’ or ’1’) is simply
extracted at each clock cycle and printed in the simulation logs.

B. AHB Interface Test Case
The AHB bus interface is taken from the GRLIB [2] library

with added custom logic to be connected to the master parallel
interface of the I2C. The added logic comprise an interpreter
for the command received by the I2C and the glue interface to
the GRLIB AHB master block. A verification IP is connected
to the AHB interface side to respond to transactions and check
protocol. Figure 4 represents the translation of the I2C signals
in the appropriate AHB transaction request signals. Coverage
for AHB block is low and can be explained as only a limited
use of the AHB protocol is made:

1) only byte access are performed.
2) only single (SINGLE) non-sequential (NONSEQ) trans-

fer are performed.
3) the VIP has not been programmed to insert HREADY

wait states in the transaction.

I2C AHB
cov. tot. overall cov. tot. overall

Overall 352 410 93.8% 333 1057 61.3%
block 164 180 95.4% 51 68 85.55%
Expression 44 44 100% 7 17 41.18%
Toggle 112 148 75.68% 266 963 30.17%
FSM 32 38 83.36% 9 9 100%

TABLE I
COVERAGE FIGURES REPORTED BY IMC (%)

Total Covered %
State Coverage 8 8 100
Transition Coverage 25 13 53

TABLE II
COVERAGE FIGURES FOR THE I2C BLOCK REPORTED BY MODELSIM (%)

4) the VIP has not be programmed to generate HRESP
transaction response error.

The low coverage obtained here doesn’t restrict the generality
of the methodology but may prevents failure mode to be
identified in this specific case.

C. Complete System Test Case
The complete system is composed of both the I2C slave and

AHB master along with both VIPs at the end. As previously
mentioned, probes are set on the output of the complete system,
leaving this time, faults freely propagating internally between
the I2C and the AHB without being reported by FSV or
the simulation to be stopped. The main difference of this
testbench regarding the two standalone previous ones is that
faults injected in one block will be able to propagate to the
other one (I2C → AHB, for example) and back-propagate to
the first block (AHB→ I2C) as simulation will not be stopped
when the fault will output from the first (i.e. I2C), and later
second (i.e. AHB), block. Such ”fault loop” (I2C 	 AHB or
AHB 	 I2C) are expected to be the main possible source of
faulty states differences between the standalone and full system
faulty states extraction. However, as faults are injected on the
inputs in both approach (standalone and full system), we expect
to capture, at least a part of theses ”faults loop” induced faulty
states in the standalone extractions.

V. APPLICATION

In this section, we apply the methodology presented in
section III to the two blocks of our test case one after the
other, constructing a failure model for each one.

A. Identification and Extraction of Faulty States
As stated in section I, all digital systems can be represented

as a finite state automaton, where the state is composed by all
the flips-flops of the system, whether they maintain a control
or data state. In this approach we consider, in a first approach,
only control states with the following justification: faults (bit-
flip) in datapath may not propagate in control states nor even
create a faulty control state. Therefore faults in data states (that
is flip-flops) will not lead to faulty behavior unless some data
states are transformed directly into control states and encoding
is sparse (some data states do not correspond to any control
state and will therefore result in faulty state unless handled
explicitly handled by a default case in the design).

On our example, analysis is performed at the RTL level,
and the (signals composing the) state have been identified



Fig. 4. Chronogram of a communication between I2C and AHB

easily considering the small size of the design. As the I2C
protocol makes use of a serial line, data states and control states
are merged when they can’t be completely differentiated. On
the AHB interface block, data states are excluded as no path
exists from a data signal to a control signal (the reverse being
obviously not true).

From a general perspective, analysis should be performed at
the gate netlist level to ensure correct extraction of the control
and data states with the drawback of slower fault simulation.
Also data states can be pruned from the whole state using
graph netlist forward (from data input) and backward (from
data output) propagation algorithms. However, fault injection
tools operating at the RTL level such as FSV [1] and ZOIX [6]
do perform a pre-synthesis step to identify potential injection
sites, that is flip-flops.

Once signals composing the state of a block have been
identified, using a standalone testbench which can be derived
from verification ones, a golden run is performed and golden
states and transitions are recorded at each clock cycle. Such
states and transitions are referred as legal composing the non-
faulty or golden behaviour. Results for I2C and AHB blocks
are reported in table III. The golden state automaton for the
I2C is represented on figure 5.

B. Fault Injection Campaign Setup

The next step in the methodology is fault injection. It is
performed using Cadence fault injection tool FSV [1]. Once
fault injection sites are automatically identified from the RTL
description, fault injection is performed and 400 faults are
injected per identified site using a custom pre-generated fault
dictionary. An in-house tool build on top of the GSL [3] has
been developed for this purpose. Such number is statistically
significant enough [21] without compromising fault injection
campaign running time. Faults are also injected on inputs to
take into effect of faults propagated from other blocks during
composition. Also, fault probes are set on the outputs to record
injected faults that will propagate to other blocks. For each
fault injection run, states are recorded to identify new states
and transitions that appear as a consequence of the injected
faults. The new discovered states and transitions are referred
as illegal or faulty.

In our modeling approach, we are interested only in states
and transitions and we omit executions paths that are the
ordered list of transitions traversed during a golden or fault run,
even though it is available from the extracted data. The reason
is that the faulty behaviour modelling strategy targeted, based
on the Altarica language, doesn’t requires such information.
Thus only new faulty discovered states and transitions are
extracted from execution runs and faults leading to an illegal

execution path (list of traversed transitions) containing only
legal states and transitions will not be reported as a faulty be-
havior unless an incorrect output is reported during simulation.

In order to achieve this status during the nominal execution
of the testbench, the IP has been modified, adding dedicated
code to write, into a log file, the state vector that includes all the
selected control signals. This allows to have a real time, event
driven, transition set in between the different combinations of
the observed signals. The created log file will be crucial to the
rest of the procedure, that will take it as input.

C. Faulty Behavior Extraction
Once the raw data have been dumped by the simulator in

the log files (for a total of 12000 files equal to 400 faults ×
30 flip-flops for the I2C and 42000 files equal to 400 faults
× 105 flip-flops for the AHB), it is necessary to extract the
values of the signals composing the state, records them and
keep trace of all transitions. In order to complete this task, a
python script using the NetworkX library [17] has been written
to create a dictionary containing all the different states and their
occurrence count, as well as another dictionary with all the
transitions, to perform statistics and extract the faulty behavior
model.

An example of raw log is given on listing 1. States and
transitions extraction from the logs is straightforward and
requires only one pass per log file. An example of extracted
fault behavior is represented on figure 5 for one flip-flop.
Extracted automaton characteristics are reported on table III.

I2C Write I2C Read AHB I2C + AHB §
State width (FF in state) 19 19 38 19+38
Fault site (i.e. FF) 30 30 105 133
#Faults per FF 400
Total injected faults 12000 12000 42000 53200
Nominal states 36 36 10 55 (44+11)
Nominal transitions 71 71 18 108 (90+18)
Faulty states 20 53 15 156 (95+51)
Faulty transitions 39 144 45 302 (213+89)
Faults to outputs 34 147 19934 23496
Flow through faults† 3 0 11900 14900
Simulation timeouts 11967 231 0 0
†: Flow through faults are faults injected on inputs propagating to outputs
§ : The extra states found in this column are not belonging to the control

state but are the result of mixed control and data path on the same registers
TABLE III

AUTOMATONS REPORTS

Once the golden and faulty states and transitions have been
extracted from the logs, the failure model can be built by
collapsing states and transitions into the desired ones for the



Fig. 5. Golden and Faulty Automaton I2C

Listing 1. Raw log from I2C FSM extraction
--- Testing repeated reads ---
out:0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0
out:0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0

model. The raw faulty automaton (before node collapsing) for
the I2C block is partially represented on figure 5 where legal
states and transitions are represented in green and illegal ones
in red.

D. Faulty Behavior Model Construction

Once the faulty behavior has been extracted from faulty runs,
the faulty model can be constructed using graph analysis algo-
rithms. The first step in the model construction is collapsing
states that are not meaningful for the dysfunctional model. We
proceed currently with the following rules:

• any component (connected subgraph) comprising only
legal states and legal transitions are collapsed into one
single functional state.

• legal states with illegal transitions or incorrect output
(output value do differs from reference in these states)
are kept and illegal transition probabilities are attached.

• any component comprising only nodes not propagating
any fault to output are collapsed into one single faulty
state. Probabilities to enter this state can be extracted from
transitions leading to the collapsed states.

• faulty nodes propagating faults to outputs are kept and
transition probabilities are attached to allow computing
incorrect output probabilities.

• Effect (E of FMEA) attached to output pins are back
propagated in the state graph faulty states where output
corruption occurs.

However additional rules may be added like to remove faulty
nodes and transitions from masked faults for example, es-
pecially those not leading to any latent faults (execution is
correct with no faults propagated to outputs and internal state
doesn’t differs from reference one at some point, i.e. fault has
vanished). We ultimately target discrete-time Markov chain
[13] for our dysfunctional behaviour modelling.

E. Completeness of the Extraction

We verify that standalone extraction of the faulty model is
complete, that is no new faulty behavior appear when the DUT
is integrated and studied in the complete system. Thus the same
stages as depicted in section III are performed on the complete
system composed of the I2C+AHB system.

F. Result and Comparison

Data gathered by the application of the methodology is
then elaborated starting from data shown in table III and
the dictionaries collecting all states and transitions, created at
faulty behavior extraction phase.

I
N
I
T

f
a
u
l
t
_
t
o
_
o
u
t
p
u
t

nominal_termination

nominal
1

faulty
2nominal

2

faulty
1

simulation_timeout

99.89%

0.005%

0.006% 0.1%

0.006%

0.005%

50.8%

0.7
5%

48.45%

Fig. 6. Extracted FSM for the I2C Block

The result is the model shown in Fig 6, belonging to the I2C
block, follow the rules listed in section V-D showing the actual
probabilities of transition between the connected subgraphs,
being:

• Nominal 1 - Subgraph made of legal states only, part
of the nominal execution.

• Nominal 2 - Subgraph made of legal states only, part
of the nominal execution.

• Faulty 1 - Illegal state Subgraph, leading to a propa-
gation of the fault to the output.

• Faulty 2 - Illegal state Subgraph, leading to a simula-
tion timeout.



This kind of dataset is prone to be described in languages
and tool like Altarica, as described in section II and object of
future work.

VI. DISCUSSION AND FUTURE WORK

In this paper we have set-up an experimental method for
automatic extraction of failure behavior for digital IPs. We have
shown experimentally, using fault injection, that it can be used
to build a dysfunctional model suitable for composition though
fault propagation. This step represent the first step toward
building a complete automatic FMEA analysis of a digital
block for composition in an MBSA framework. The next
steps comprehend the generation of the Altarica dysfunctional
models based on these results and their composition in the
SimfiaNeo framework.

Currently, the approach is mostly manual in it implementa-
tion (identification and instrumentation of extracted state flip-
flops, extraction of state through simulation logs) thus limiting
the size and complexity of the design that can be handled. Also
it suffer from the inherent limitation of behavior extraction
based on test (and statistical fault injection) execution which
rely on testbench representativity to exercise correctly all states
of the design. The first limitation can be removed by automa-
tion of control state identification as mentioned in section V-A
and splitting large design into smaller ones to be re-composed.
The state size, which could be foreseen as problematic in large
IP is actually expected to stay of reasonable size as most flip-
flops in a design are usually data flip-flops not part of the
state. Systems like a processor that can re-inject a data state
into the control state (through a jmp register, for example) will
require special care to avoid state explosion through proper cut
of the data−→control paths. The second limitation, inherent to
verification, can be lessened by ensuring proper coverage of
the stimulus used to exercise the design.

VII. ACKNOWLEDGMENT

This research has been possible thanks to the help pro-
vided in trouble shooting by Pietro Inglese from TIMA
Laboratory/Univ. Grenoble Alpes and Daniel Thirion from
STMicroelectronics/ESISAR-Valence. The authors wish to
thank Emmanuel Arbaretier, Thomas Jacquet and Julien Niol
from APSYS/AIRBUS for their collaboration in this project.

REFERENCES

[1] Cadence. https://www.cadence.com/en US/home.html.
[2] Grlib. https://www.gaisler.com/products/grlib/grlib-gpl-2020.4-b4261.

tar.gz.
[3] Gsl, gnu scientific library. https://www.gnu.org/software/gsl/.
[4] I2c minion repository. https://github.com/oetr/FPGA-I2C-Minion.
[5] Synopsys certitude. https://www.synopsys.com/verification/simulation/

certitude.html.
[6] Synopsys zo1x. https://www.synopsys.com/verification/simulation/

z01x-functional-safety.html.
[7] Z. S. Andraus and K. A. Sakallah. Automatic abstraction and verification

of verilog models. In Proceedings. 41st Design Automation Conference,
2004., pages 218–223, 2004.

[8] O. Ariss, D. Xu, and W. E. Wong. Integrating safety analysis with func-
tional modeling. IEEE Transactions on Systems, Man, and Cybernetics
- Part A: Systems and Humans, 41:610–624, 2011.

[9] R. A. Austin, N. Mahadevan, A. F. Witulski, G. Karsai, B. D. Sierawski,
R. D. Schrimpf, and R. A. Reed. Automatic fault tree generation
from radiation-induced fault models. In 2020 Annual Reliability and
Maintainability Symposium (RAMS), pages 1–7, 2020.

[10] M. Batteux, T. Prosvirnova, A. Rauzy, and L. Kloul. The altarica
3.0 project for model-based safety assessment. In 2013 11th IEEE
International Conference on Industrial Informatics (INDIN), pages 741–
746, 2013.

[11] F. Boussinot and R. de Simone. The esterel language. Proceedings of
the IEEE, 79(9):1293–1304, 1991.

[12] B. A. Brady, R. E. Bryant, S. A. Seshia, and J. W. O’Leary. Atlas:
Automatic term-level abstraction of rtl designs. In Eighth ACM/IEEE
International Conference on Formal Methods and Models for Codesign
(MEMOCODE 2010), pages 31–40, 2010.

[13] Yen-Chi Chen. Discrete-time markov chain, 2018.
[14] Xavier de Bossoreille, Mathilde Machin, and Laurent Sagaspe. Un

Nouvel Outil de Safety pour Maitriser la Complexité des Systèmes. In
”Maı̂trise des risques et transformation numérique: opportunités et menaces,
Reims, France, October 2018.

[15] J. Farquharson, R. Gallman, and B. King. How to assess ram for a
system-of-systems (s-o-s) in military applications. In Annual Reliability
and Maintainability Symposium. 2001 Proceedings. International
Symposium on Product Quality and Integrity (Cat. No.01CH37179),
pages 278–284, 2001.

[16] P. Giridhar and P. Choudhury. Design and verification of amba
ahb. In 2019 1st International Conference on Advanced Technologies
in Intelligent Control, Environment, Computing Communication
Engineering (ICATIECE), pages 310–315, 2019.

[17] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring
network structure, dynamics, and function using networkx. In Gaël
Varoquaux, Travis Vaught, and Jarrod Millman, editors, Proceedings of
the 7th Python in Science Conference, pages 11 – 15, Pasadena, CA
USA, 2008.

[18] M. Hendriks, Wang Yi, P. Petterson, J. Hakansson, K. G. Larsen,
A. David, G. Behrmann, M. Hendriks, Wang Yi, P. Petterson, J. Hakans-
son, K. G. Larsen, A. David, and G. Behrmann. Uppaal 4.0. In Third
International Conference on the Quantitative Evaluation of Systems -
(QEST’06), pages 125–126, 2006.

[19] Y. Ho, A. Mishchenko, and R. Brayton. Property directed reachability
with word-level abstraction. In 2017 Formal Methods in Computer Aided
Design (FMCAD), pages 132–139, 2017.

[20] Christof Kaukewitsch, Henrik Papist, M. Zeller, and M. Rothfelder.
Automatic generation of rams analyses from model-based functional
descriptions using uml state machines. 2020 Annual Reliability and
Maintainability Symposium (RAMS), pages 1–6, 2020.

[21] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert. Statistical fault
injection: Quantified error and confidence. In 2009 Design, Automation
Test in Europe Conference Exhibition, pages 502–506, 2009.

[22] Mathilde Machin, Laurent Sagaspe, and Xavier de Bossoreille. Simfia-
neo, complex systems, yet simple safety, 2018.

[23] Jayant Mankar, Chaitali Darode, Komal Trivedi, Madhura Kanoje, and
Prachi Shahare. Review of i2c protocol. International Journal of Research
in Advent Technology, 2(1), 2014.

[24] R. Mariani, G. Boschi, and F. Colucci. Using an innovative soc-level
fmea methodology to design in compliance with iec61508. In 2007
Design, Automation Test in Europe Conference Exhibition, pages 1–6,
2007.

[25] T. Prosvirnova. AltaRica 3.0: Model-Based approach for Safety Analyses.
Theses, Ecole Polytechnique, November 2014.

[26] S. A. Seshia and P. Subramanyan. Uclid5: Integrating model-
ing, verification, synthesis and learning. In 2018 16th ACM/IEEE
International Conference on Formal Methods and Models for System
Design (MEMOCODE), pages 1–10, 2018.

[27] A. Witulski, G. Karsai, N. Mahadevan, R. Austin, R. Schrimpf, B. Sier-
awski, R. Reed, J. Pellish, M. Campola, J. Evans, and P. Majewicz.
Development of a flight-program-ready radiation model-based assurance
platform. In 2020 IEEE Aerospace Conference, pages 1–8, 2020.


