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Abstract 
Topology is a classical branch of mathematics, born essentially from Euler's studies in the XVII 
century, which deals with the abstract notion of shape and geometry. Last decades were characterized 
by a renewed interest in topology and topology-based tools, due to the birth of computational 
topology and Topological Data Analysis (TDA). A large and novel family of methods and algorithms 
computing topological features and descriptors (e.g. persistent homology) have proved to be effective 
tools for the analysis of graphs, 3d objects, 2D images, and even heterogeneous datasets. This survey 
is intended to be a concise but complete compendium that, offering the essential basic references, 
allows you to orient yourself among the recent advances in TDA and its applications, with an eye to 
those related to machine learning and deep learning. 
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INTRODUCTION 
 
Topology is a branch of mathematics dealing with shape and geometry. Complexity and size of 
current collections of natural or synthetic dataset (2D, 3D, and multidimensional) is rapidly 
increasing. Hence, the ability to look at the shape of data and to discover patterns in any dimension 
is gaining great importance. Recently, successful applications of computational topology [29] to data 
analysis boosted a renewed interest in that field, and topological data analysis (TDA) [11] has earned 
a prominent place in contemporary research, as a rich family of algorithms and methods from 
computational topology, e.g. Morse theory or persistent homology, to analyse and visualize data. 
Focusing on image analysis, in low dimensions (typically 2 or 3), techniques from TDA are used to 
extract and classify geometric features, e.g. level sets or integral lines in [52]. For what regards 
persistent homology, in [61] the authors describe how to define the Morse complex of a two or three-
dimensional grayscale digital image, which is simpler than the cubical complex originally used to 
represent the image and to compute persistent homology. 
Also, [48] show that persistence diagrams built from functions defined on objects are compact and 
informative descriptors and, for example, can be used for retrieval of images and shapes. Also, the 
topological representation of data could provide tools for hierarchical image segmentation, as in [70]. 
Looking at higher dimensions, e.g. to multidimensional datasets, techniques from TDA have been 
adapted to develop novel algorithms of data clustering: in 2008 Carlsson, with Singh and Sexton, 
contributed to founding Ayasdi (www.ayasdi.com), maybe the first machine intelligence platform 
with a TDA core able to compute groupings and similarity across large and high dimensional data 
sets, and to generate network maps visually supporting analysts in understanding data clusters (for 
example showing high dimensional patterns and trends) and which variables are relevant. 
Several works have shown that TDA can be beneficial in a diverse range of problems, even very 
distant from each other, such as: studying the manifold of natural image patches [10]; analyzing 
activity patterns of the visual cortex [62]; in the classification of 3D surface meshes [59, 48]; complex 
networks [58, 43]; clustering [21, 57]; recognition of 2D and 3D object shapes [65, 70]; protein 
folding [8, 69, 44]; viral evolution [19]. 
In this survey, we focus specifically on persistent homology (PH), because we found this technique 
really promising with respect to the interplay with machine and deep learning. 
 
Outline 
The following section is devoted to providing the reader basic notions and a historical overview of 
the main results in the theory of persistence in computational topology, starting from early works by 
P. Frosini, V. Robins and H. Edelsbrunner, which established independently the very first definitions 



and theorems. Section 2 deals with the computability of the most used PH descriptors, together with 
a summary of the software developed to compute PH. Section 3 explains the versatility of such 
methods, applied in several domains: one of the main factors of the recent interest around PH. Section 
4 gives the reader a tour in the most promising applications of TDA in machine and deep learning, 
showing the great potential of embedding topological tools in the learning pipeline along with 
implementations of topological layers. These recent efforts have given rise to the novel field of 
Topological Machine Learning. The last section concludes the paper, and it is devoted to emerging 
studies focused on the interplay of topological data analysis and deep learning theory: e.g. concerning 
how to exploit tools from topological analysis to improve the understanding of the training phase in 
neural networks, or to enhance explainability and interpretability of artificial intelligence methods. 
This paper is the extended version of the authors’ contribution to “IMTA-VII, Seventh Workshop on 
Image Mining. Theory and Applications”, held virtually on 11th January, 2021. 
 
 
1. PERSISTENT HOMOLOGY: HISTORY AND BASIC NOTIONS 
 
Algebraic topology is a branch of mathematics using tools from abstract algebra to study and 
characterize topological spaces (see [40] for an introductory textbook). The basic aim is to find 
algebraic invariant able to classify topological spaces up to homeomorphism. Persistent Homology 
bridges algebraic topology with the Morse theory core idea: exploring topological attributes of an 
object in an evolutionary context. 
The concept of persistence was introduced independently in 1990 by P. Frosini, M. Ferri and 
collaborators in Bologna (Italy), by V. Robins in 2000 in her PhD thesis devoted to multi-scale 
topology applied to fractals and dynamics, and by the group of Edelsbrunner at Duke (North 
Carolina). 
 
1.1 Basics  
In order to understand the core idea of PH, it is necessary to be familiar with the basics of algebraic 
topology. A simplicial complex is the standard algebraic object used to represent shapes of any 
dimension; simplices are its building blocks. 
 
Def. A k-simplex is the k-dimensional convex hull of k+1 vertices.  
The convex hull of any nonempty subset of the k+1 vertices is called a face of the simplex. 
 
A simplicial complex K is a set built from 0-dimensional simplices (0-simplices or points), 1-
dimensional simplices (line segments), 2-simplices (triangles), 3-simplices (tetrahedra) and so on. 
The dimension of K is defined as the largest dimension of any simplex in it. Actually, to be a 
simplicial complex, K should satisfy the following conditions. 
 
Def. A simplicial complex K is a set of simplices such that: 

 every face of a simplex is also a simplex of K; 
 the intersection of any two simplices 𝜎1 and 𝜎2 in K is either a face of both 𝜎1and 𝜎2, or the 

empty set. 
 

These conditions allow defining the boundary operator, which is fundamental to define the 
homology, an algebraic object computable (via linear algebra) for K that accounts for the number of 
connected components, holes, voids, etc.  
The boundary of a k-simplex  𝜕𝜎𝑗  is the formal sum of the (k-1)-dimensional faces of  𝜎𝑗 . For 
example, the boundary of a triangle {𝑎, 𝑏, 𝑐} of vertices 𝑎, 𝑏  and 𝑐  is given by the sum of the edges 
{𝑏, 𝑐} +  {𝑎, 𝑐} +  {𝑎, 𝑏}. 
More formally,  

𝜕({𝑣0, … , 𝑣𝑘}) = ∑ (−1)𝑖{𝑣0, … , 𝑣𝑖^, … 𝑣𝑘}𝑘
𝑖)0 .   

 
It's straightforward that a boundary has no boundary: 𝜕 ° 𝜕  = 𝜕2 = 0.  

Figura 1a. An example of a simplex for each dimension from 0 to 3. b. An example of a 3-dimensional simplicial complex. 



Let K a k-simplicial complex, and F a field; in PH the most used F is the two-element field F2 =
𝐙/2𝐙 . Let {𝜎1, … , 𝜎𝑛} be the set of p-simplices of K, where 𝑝 ∈ {0,1, …, k}.  
𝐶𝑝(𝑲) denotes the vector space generated over F by the p-dimensional simplices of K; hence, 𝐶𝑝(𝑲)   
is made of all p-chains, which are the formal sums over the p-simplex 𝑐 =  ∑ 𝑎𝑗𝜎𝑗

𝑛
𝑗=1   where 𝑎𝑗 ∈ 𝐅  

and 𝜎𝑗 is a p-simplex in K. 
Hence, the boundary operator defined above is a linear operator between chain vector spaces: 
𝜕𝑝: 𝐶𝑝(𝑲) → 𝐶𝑝−1(𝑲); also, now we define p-cycles 𝑍𝑝(𝑲) and k-boundaries 𝐵𝑝(𝑲) as 
 

𝑍𝑝(𝑲) ≔ ker (𝜕: 𝐶𝑝 → 𝐶𝑝−1   and    𝐵𝑝(𝑲) ≔ 𝐼𝑚(𝜕: 𝐶𝑝+1 → 𝐶𝑝). 
 
And it yields that: 𝐵𝑝(𝐾) ⊂  𝑍𝑝(𝐾) ⊂  𝐶𝑝(𝐾). 
Finally, the p-th homology group 𝐻𝑝(𝐾) is defined as the quotient space 𝑍𝑝/𝐵𝑝 : two cycles 𝑐1 and 
𝑐2 are homologous if they are in the same homology class: ∃  𝑏 ∈  𝐵𝑝(𝐾)such that 𝑐2 − 𝑐1 = 𝑏. In 
algebraic topology, the homology group of a complex is one of the most studied and used. Also, the 
homology group is linked to the Betti numbers 𝛽𝑝, very important topological invariants: 𝛽𝑝(𝑲)  =
 dim(𝐻𝑝(𝑲)). The p-th Betti number, informally, counts the number of p-dimensional holes on a 
topological surface; for example, a two-dimensional torus has 𝛽0  = 1 (it is connected), 𝛽1  = 2 (it 
shows two independent loops on its surface), and 𝛽2 = 1 (only one cavity). Back to the case of a 
simplicial complex K, the 0-dim Betti number is the number of connected components and 2-dim 
Betti number is the number of voids of K. 
The homology group and the Betti numbers are able to encode the global topological properties of a 
shape, represented by a simplicial complex. 
 
Persistence needs a core ingredient: filtrations. A filtration of a simplicial complex K is a sequence 
of nested sub-complexes: 

∅ =  𝑲0 ⊂  𝑲1 ⊂ ⋯ ⊂  𝑲𝑚  =  𝑲  
 
In a few words, think of a filtration as a way to build the given complex iteratively by adding 
simplices, starting from vertices, step by step. Of course, given a complex, there are many ways to 
define a filtration. Depending on the data, different filtered simplicial complexes are considered, and 
the definition of most of them is based on the distance induced by the metric of the ambient space of 
data. At each filtration step 𝑡𝑗 consider the simplicial complex 𝑲𝑗, sub-complex of K, and compute 
the rank of each p-th homology group (i.e. 𝛽𝑝) for each 𝑝 ∈  {0, 1, … , 𝑘}: the variation of the 𝛽0 (or 
𝛽1) will account for the birth or death of connected components (or loops). Increasing p, the variation 
of Betti numbers will account for p-dimensional topological features, whose evolution is able to 
encode precious information about the global structure of the growing complex looking at the lifespan 
(death - birth) of each topological feature. 
 
1.2 History  
Frosini, Ferri and collaborators [32, 33, 34, 67] in a family of papers published in between 1990 and 
1993, introduced the size functions, which are equivalent to the 0-dimensional persistent homology. 
The size functions are defined as functions from the real plane to the natural numbers which describe 
the shape of the objects (seen as sub-manifolds of a Euclidean space). Also, different techniques of 
computation of size functions are provided, together with the definition of a deformation distance 
between manifolds measuring the difference in shape of two manifolds, and applications to shape 
analysis. 
In 2002 Edelsbrunner et al. [30] formalize the notion of persistence within the framework of a 
filtration, which is the history of a growing complex. They introduced the classification of a 
topological event occurring during growth as either a feature or noise, depending on its lifespan 
within the filtration. The algorithm provided in this paper for computation yields only for sub-
complexes of spheres and only with coefficients in F2. 
 
In 2005 Zomorodian and Carlsson [71] show that the persistent homology of a filtered d-dimensional 
simplicial complex is simply the standard homology of a particular graded module over arbitrary 
field coefficients. In the same paper, authors provide an algorithm for computing individual persistent 
homology groups over an arbitrary principal ideal domain in any dimension. They also introduced 
barcodes, a combinatorial invariant; a complete introduction to persistence homology and its 
application from the perspective of barcodes is provided by Ghrist in [37]. 
From now on, the research community becomes more and more interested not only in the theoretical 
advances in persistence, but also in how to implement the persistence algorithms, in order to exploit 
the existence of computable topological descriptors in shape analysis, and, more generally, in data 
analysis. In 2010 Plex, the first software for computing persistence is released (see also Section 2.1). 
 



1.2 Persistence diagrams  
The first descriptors derived from PH are persistence diagrams. Such descriptors provide a (visual) 
summary of births and deaths of topological events. E.g. they track when a loop appears and 
disappears while the complex is growing (i.e., while the filtration parameter increases). From another 
viewpoint, they can be seen as a parametrized version of the Betti numbers.  
More in detail, a persistence diagram is a collection of points in 𝑅2: any topological feature has a 
birth b and a death d, and is represented in diagrams as a point of coordinates (b,d). Two persistence 
diagrams may be compared efficiently using proper distances such as the p-Wasserstein distance, or 
the bottleneck distance which is the limit over p of the p-Wasserstein distance with p going to infinity. 
The Bottleneck (or matching) distance 𝑑𝐵 between two subsets X and Y of a metric space (M, d) is: 
 

𝑑𝐵(𝑋, 𝑌): =  𝑖𝑛𝑓𝜙  𝑠𝑢𝑝𝑥∈𝑋 𝑑(𝑥, 𝜙(𝑥))  
 
where 𝜙 runs over all bijections between X and Y.  
Bottleneck distance is used to compare persistence diagrams and to derive their stability. Indeed, 
despite the way these descriptors are built, they show robustness with respect to noise, as stated in 
the stability theorem [23, 7]: persistence diagrams are stable with respect to perturbations of the data, 
and such a stability yields also for multidimensional persistent homology, as shown in [17]. 
An alternative way to represent topological persistence is given by barcodes, which are equivalent to 

diagrams, and their equivalence is shown in Figure 2. Topological features, in barcodes, are 
represented as line segments of length (b,d) where b is its birth, and d is its death; hence, a barcode 
is a collection of horizontal bars in a plane: the horizontal axis corresponds to the filtration parameter 
growing the complex, while the vertical axis represents an (arbitrary) ordering of homology 
generators. Barcodes have been introduced in [71] along with an algorithm to compute them, via 
linear algebra on the boundary matrix. The runtime of that algorithm is 𝑂(𝑛3), where n is the number 
of simplices. 

Figure 2 Diagrams and barcodes are equivalent representations of topological persistence, and the correspondence is visually 

proved in this picture. (credits: Matthew L. Wright, 2014 http://www.mrwright.org) 



In Figure 3 the first row shows a growing complex associated to a set of points sampled on a torus. 
The filtration is defined using the Euclidean metric (Rips complex). In the second row, there are its 
barcodes of dimension 0, 1, and 2. The length of each bar is the lifespan of the corresponding 
generator: long bars are interpreted as relevant features, while short bars as noise. Equivalently in 
diagrams, as can be seen from Figure 2, dots near the diagonal represent noise. 
Unfortunately, persistence diagrams and barcodes exhibit a complex structure, and are difficult to 
integrate into today's machine learning workflows. This is why the community currently works to 
define novel topological descriptors derived from the topological ones, or defining novel 
differentiation rules applicable to known topological descriptors. 
In the following section, a list of the most successful PH-based descriptors is provided and discussed, 
together with the current algorithms and software used (and developed) by the research community 
to compute them. 
 
2. PH-BASED DESCRIPTORS AND IMPLEMENTATIONS 
 
After persistence diagrams, other PH-based descriptors were defined, implemented, and used: 
persistence silhouette, persistence landscape, and persistence images. 
The birth of them was motivated by the need for stronger properties of stability and for easy and fast 
algorithms to compute and compare them, in order to increase their usage and efficacy in data 
analysis. 
In 2015 Bubenik [9] developed the notion of a persistence landscape, a stable functional 
representation of a persistence diagram that lies in a Banach space (Hilbert, for p = 2), where 
statistical learning methods can be directly applied. The persistence landscape is a collection of 
continuous, piecewise linear functions 𝜆𝑝 ∶  𝐍 ×  𝐑 →  𝐍 that summarizes a persistence diagram.  
For 1 ≤  𝑝 ≤ ∞  the p-landscape distance between two landscapes 𝜆1  and  𝜆2  is defined as 
| 𝜆1  − 𝜆2|𝑝 ; the ∞-landscape distance is stable with respect to the bottleneck distance, and the p-
landscape distance is continuous with respect to the p-Wasserstein distance on persistence diagrams. 
Statistical properties of landscapes and similar descriptors (average landscape, silhouette) are 
investigated in [20], resulting in establishing useful stability properties. 
More recently, in 2018, P. Bubenik (https://arxiv.org/abs/1802.08117) devoted such an effort in 
showing when and how persistence landscapes lie in a Hilbert space, allowing to apply machinery 
from statistics or machine learning. In details, a weighted version of the persistence landscape is 
introduced, in order to define a one-parameter family of kernels that may be useful for learning. Also, 

Figure 3 The rank of the homology groups of dimension 0, 1, and 2 associated with a sequence of nested sub-complexes. 

Look at the longest feature in 𝐻0: it represents that along the sequence only one connected component survives. This figure 

is by R. Ghrist [37]. 



Bubenik shows that in many cases it is possible to exactly reconstruct all of the component persistence 
diagrams from an average persistence landscape. 
In [1] barcodes are mapped to the so-called persistence surfaces. This is done by computing a 
weighted sum of normalized (isotropic) Gaussians, evaluated at each point in the diagram. Upon 
discretization of this persistence surface, one obtains the persistence image, stable and computable, 
that can then be concatenated in a vector and fed to a support vector machine. 
Recently, as a consequence of the flourishing of several PH-based descriptors, some research groups 
devoted such an effort in depicting a formal framework able to encompass all the existing descriptors, 
or, at least most of them. This effort was motivated not only by the requirement of a setting in which 
stability properties, or statistical features can be handled more easily, but also to make topological 
methods compatible with modern machine learning algorithms.  
One example of this framework are the persistence curves: inspired by persistent Betti numbers, 
Chung and Lawson presented in [22] a canonical way to generate mappings from a persistence 
diagram to a real-valued summary function or vector, showing that several well-known summaries, 
such as Persistence Landscapes, fall under the PC framework; and proved some theoretical results, 
including stability and stochastic convergence. Finally, they used the PC framework to perform 
texture analysis, time series classification (classifying orbits of a discrete dynamical system), and 
skin lesion analysis. Another example is given by Perslay, a topological layer for machine learning, 
referred in Section 4.1. 
 
2.1 Implementations  
In this subsection, we present the most relevant implementations of PH. The goal is to provide 
effective tools for the computation of barcodes as well as methods for their analysis and comparison. 
A reference paper for the comparative analysis is represented by the work [56], in which a benchmark 
of the selected open-source implementations is carried out on 12 reference public-available datasets. 
In addition, other software tools not described in [56] are briefly surveyed here for the sake of 
completeness. 
Javaplex [2] implements persistent homology and related techniques from computational and applied 
topology, in a library designed for ease of use, ease of access from Matlab and java-based 
applications.  The Computational Topology workgroup at Stanford University has mainly developed 
JavaPlex, which is grounded on previous similar packages from the same group. Among them, Plex 
is the first known software providing computation of PH, as well as the first proposing the use of 
zigzag persistence [12]. 
Dionysus [53], and its new version Dionysus 2, are C++ libraries for the computation of persistent 
homology. Dionysus has been the first software package to implement the dual algorithm [25], but it 
is also known since it contains advanced tools for the construction of vineyards (i.e. continuous 
families of persistence diagrams) [24], for the determination of homology generators and for the 
computation of Wasserstein and bottleneck distances. 
Another interesting C++ software package is Perseus [55] which computes the persistent homology 
leveraging Morse-theoretic reduction. Since the standard algorithm for computing persistence 
intervals relies on Smith normal form and is therefore of super-cubical complexity in the total number 
of cells, reducing the number of cells might result in relevant savings both in memory and time. 
Perseus achieves a drastic reduction of the number of cells in the original filtration in linear time via 
discrete Morse theory without altering its persistent homology [51].  In addition, being based on 
general discrete Morse theory, this preprocessing step does not rely on peculiarities of a particular 
type of complex structure, but it can be applied straightforwardly to simplicial complexes, cubic 
complexes and Vietoris-Rips complexes to name a few.    
More recently, PHAT [5] (and its spin-off DIPHA [4] devoted to distributed calculus) proposed a 
C++ implementation focused on the efficient and fast computation of PH based on matrix reduction. 
The authors aimed at a generic design that decouples algorithms from data structures; several 
different reduction strategies as well as data types to store and manipulate the boundary matrix are 
provided.  
GUDHI [49] is a C++ library with a Python interface implementing an efficient data structure for 
general simplicial complexes (simplex tree) as well as the possibility to compute simultaneously 
persistence diagrams with coefficients over multiple finite fields F𝑝. 
The R package TDA [31] provides an R interface for the efficient algorithms of the C++ libraries 
GUDHI, Dionysus and PHAT, including the PH of Rips filtrations and of sublevel sets of arbitrary 
functions evaluated over a grid of points.  
SIMBA [26] implements a new algorithm, leveraging on a batch collapse strategy as well as a new 
sparse Rips-like filtration that enables the approximation the persistent homology of Rips filtrations 
with quality guarantees. A software, developed in C++, is made available upon request and, in 
practical application, is an order of magnitude faster than existing methods.   



The Topological ToolKit (TTK) [50] is an open-source library for TDA which implements, in a 
generic and efficient way, a substantial collection of reference algorithms, including those for the 
computation of persistence diagrams. The main merit of TTK is having made such algorithms 
accessible to a wider community by proving a library integrated with state-of-the-art libraries for 
scientific visualization (VTK) and image analysis (ITK) and with a graphical front-end, i.e. Paraview. 
 
3. A PLETHORA OF APPLICATIONS 
 
PH, as concern data analysis, is a versatile method: there is no restriction to apply to any particular 
kind of data (such as images, sensor measurements, time-series, graphs, etc.). When we want to 
analyse an image, a shape or a dataset, generally we choose a representation for the input data, e.g. 
the vertices of a triangulation for a shape or an n-dimensional point cloud for a dataset, along with a 
(natural) notion of distance, or similarity, between them. This distance is generally induced by the 
metric in the ambient space (e.g. the Euclidean metric) or may come as an intrinsic metric defined by 
a pairwise distance matrix. It is important to notice that the choice of the metric may be critical to 
reveal interesting topological and geometric features of the data.  
To exploit PH methods, depending on the data, different filtered simplicial complexes may be used, 
e.g. Vietoris-Rips complex, Cech complex, Alpha complex, Witness complex, Morse complex, 
cubical complex, clique (or flag) complex, or CW complex.  
In general, the TDA pipeline consists of the following three steps: 1. Give to input data a multi-scale 
topological structure, i.e. a complex along with a filtration; 2. Compute multi-scale topological 
signature (as PH-based descriptors); 3. Take advantage of the signature to perform pattern analysis 
tasks, exploiting machine learning methods (i.e. looking at statistical aspects and representations of 
topological persistence).  
In the following, there is a focus on applications of PH to image and signal analysis. 
 
3.1 Image and shape analysis 
Results in [10] provide an example of how unexpected could be the findings of topological enquire 
of imaging: the authors showed that the space of 3 x 3 high-contrast patches from digital images has 
the topology of a Klein bottle, and suggested to use this fact to implement a novel compression 
method of 2D images. 
First applications of PH were in 2D and 3D shape analysis, and specifically in diverse tasks, i.e. 
classification, segmentation, retrieval, and many others. We list here just a few examples: in [18], 
2006, the original size functions were used to generate 25 measuring functions for automatic retrieval 
of trademark images, outperforming existing whole-image matching techniques;  In [63], 2010, a 
persistence based clustering and the Heat Kernel Signature function are combined to achieve a multi-
scale isometry invariant segmentation of deformable shapes; in [65], Turner and colleagues 
demonstrated how PH may be used to represent shapes and execute operations such as computing 
distances between shapes or classifying and modeling shapes and surfaces. Persistence descriptors 
have been used also statistical shape analysis, as in [36]. 
More recently, the quite natural approach of looking at the statistics of a set of topological features 
in 3D shape analysis has been improved in a more general setting with the software SINATRA [68], 
distributed under the GNU General Public License by the Crawford Lab of the Brown University. It 
implements a statistical pipeline for carrying out sub-image analyses using topological summary 
statistics, by following four steps: (i) 3D shapes are summarized by a collection of vectors (or curves) 
detailing their topology (e.g. Euler characteristics, persistence diagrams); (ii) shapes are classified 
using a statistical model based on their topological summaries; (iii) an association measure is 
computed for each topological feature (e.g. centrality measures, posterior inclusion probabilities, p-
values, …); (4) association measures are mapped back onto the original shapes via a reconstruction 
algorithm, highlighting evidence of the physical (spatial) locations that best explain the variation 
between the two classes. An example of application has been provided by the authors, who used the 
software to analyze mandibular molars from four different suborders of primates, recovering 
correctly the known morphometric variation across phylogenies. 
  
3.2 Signal processing and time series analysis  
Even if PH originates in the context of image and shape analysis, due to its versatility it was 
successfully and largely applied in signal processing and analysis. Indeed PH provides efficient tools 
to denoise and analyse both homogeneous and heterogeneous time series, and many researchers 
exploited topological features.   
Perea and Harer [57] used a sliding window approach to obtain a point cloud from a time series; the 
point cloud is then analysed looking at periodicity as the repetition of patterns, quantifying this 
recurrence as the degree of circularity/roundness in the generated point-cloud. This approach has 
been applied data from gene expression and physiology, astronomical data, and weather. Y. Umeda, 



in [66], proposed a novel approach for the classification of volatile time series: TDA is used to extract 
the structure of attractors, resulting efficient for both chaotic and non-chaotic time series, achieving 
performances improved of 18.5% compared to conventional approaches. In [3] the occupancy of 
specific areas or rooms in a smart building is monitored, using a method based on the analysis of a 
set of topological features extracted from the data acquired in a room for a week by three different 
low-cost sensors. 
The set of signals to which TDA can be applied is today quite rich; it includes, for example, 
physiological signals such as EEG or ECG (as in [28]), and financial time series such as stock market 
indices. The analysis of market crashes in [38] is quite interesting, because was the first application 
of TDA to this kind of data, providing a new type of econometric analysis, which complements the 
standard statistical measures, to perform a reliable early detection of early warning signals of 
imminent market crashes. 
 
4. NEW TRENDS: PH INTO ML 
 
The idea of allowing neural networks to learn topological information has been explored most 
frequently by feature engineering, looking at some predefined standard features conveying 
topological information. 
Only very recently, researchers devoted such an effort in building topological layers to be used in 
deep learning. Unfortunately, even if persistence diagrams and barcodes found a large number of 
applications, the space of persistence diagrams lacks structure, e.g. different persistence diagrams 
may have a different number of points, and several basic operations are not well-defined, such as 
addition and scalar multiplication: the (metric) space of persistence diagrams is not a Hilbert space. 
In addition, the cost of computing the bottleneck or Wasserstein distance grows quickly as the number 
of off-diagonal points in the diagrams increases [27]. To tackle this issue, a lot of effort has been 
devoted to vectorization and kernel methods. Vectorizations of persistence diagrams is based on the 
construction of either finite-dimensional embeddings [1, 15, 20], i.e., embeddings turning persistence 
diagrams into vectors in Euclidean space 𝐑𝑑. We already met some of them in Section 3: landscapes 
and images are the most referred and used. 
Persistence kernels are generalized scalar products that implicitly turn persistence diagrams into 
elements of infinite-dimensional Hilbert spaces.  As for vectorization, the construction of kernels for 
persistence diagrams, preserving their stability properties has attracted some attention. Most kernels 
have been obtained by considering diagrams as discrete measures in 𝐑2. Convolving a symmetrized 
(with respect to the diagonal) version of persistence diagrams with a 2D Gaussian distribution, 
Reininghaus et al. [59] introduce a multi-scale kernel to perform shape classification and texture 
recognition. Considering Wasserstein distance between projections of persistence diagrams on lines, 
Carriere, Cuturi and Oudot [14] build another kernel and test its performance on several benchmarks. 
Other kernels, still obtained by considering persistence diagrams as measures, have also been 
proposed by Kusano et al. [46] and Le et al. [47]. Refer to [42] for further details about vectorization 
and kernel approaches to represent barcodes. 
Even though vectorization and kernel methods improved the use of persistence diagrams in machine 
learning tremendously, several issues remain. For instance, most of them only have a few trainable 
parameters; therefore, it may be very difficult to determine which vectorization is going to work best 
for a given task. On the contrary, kernel methods are generally efficient, but require large memory 
resources to compute and store the kernel evaluations (whose computations have at least linear 
complexity) for each pair of persistence diagrams. Hence, such methods are very costly with respect 
to memory usage and running time on large datasets. 
In general, a framework using topological signatures in a neural network could suffer from some 
limitations: (i) it may rely on a particular filtration, (ii) it may lack stability results, and (iii) the 
differentiability of persistent homology generally is not guaranteed with respect to the layer’s input. 
Hence, such a topological layer cannot be placed in the middle of a deep network. In the following a 
list of most used and successful topological layers, most of them published with code, is provided. 
 
4.1 Topological layers.  
In these last five years, many research groups defined and implemented topological layers to exploit 
topological features in deep learning pipeline.  
Hofer et al. [41] first developed a technique to input persistence diagrams into neural networks by 
introducing their own topological layer, able to learn a task-optimal representation during training.  
In [35] the authors propose a differentiable Topology Layer that computes persistent homology, based 
on level set filtrations and edge-based filtrations. It is publicly available and its implementation is 
based on PyTorch. A note: this layer may be placed at the beginning of a deep network and, using 
the fact that our input layer is differentiable, it can be used to perform adversarial attacks (gradient 
attack), i.e. cause a trained neural network to misclassify input. 



PersLay [16] is one of the first neural network layers, designed to handle persistence diagrams. It is 
based on a general framework for diagram vectorization: maybe the simplest way to generate a 
permutation-invariant and differentiable feature map is to turn each point of the persistence diagram 
into a vector, and then sum over all such vectors to eventually get a single vector. This is the core 
idea of Perslay: depending on the way the diagram points are turned into vectors and on the 
permutation-invariant operation that is being used, one can show that one can compute persistence 
images, persistence landscapes, persistence silhouettes as particular instances of Perslay. 
Very recently, in [45] the authors propose PLLAY, a layer based on the weighted persistence 
landscapes. They show a tight stability bound that does not depend on the input complexity; therefore 
PLLAY is less prone to extreme topological distortions. Importantly, they provide guarantees of the 
differentiability of PLLAY with respect to the layer’s input: hence, such a layer may be placed 
anywhere in the network. 
In [64] it is demonstrated how to fuse persistence image computation in supervised deep learning 
architectures: PI-Net is maybe the first framework using deep learning for computing topological 
features directly from data. Authors tested such framework on two applications: human activity 
recognition using tri-axial accelerometer sensor data and image classification. Also, the authors 
speeded up the extraction of persistence images form data of several orders of magnitude, paving the 
way to new real-time applications for TDA. 
 
4.2 Understanding Deep Learning. 
The boost for Artificial Intelligence, for example, to provide support to medical decisions, or to 
autonomous vehicles, justifies the need for specific guarantees about accountability, interpretability 
and explainability of AI black-boxes. In this perspective, PH methods provided novel techniques for 
improving and understanding CNN.  
Most of researchers focused on trying to understand how to control and improve the training phase 
of neural networks through topological means, such as Guss and Salakhutdinov [39], Rieck et al. 
[60], who proposed a complexity measure for neural network architectures. 
In the same line, but looking at how the manifold of the input data evolves during training, Naitzat et 
al. [54] provide insights in how shallow and deep nets behave, e.g., showing that a shallow network 
mainly changes geometry and changes topology only in its final layers, while a deep one spreads 
topological changes more evenly across all layers. 
Another interesting approach described by Carlsson and Gabrielsson in [13], where topology is used 
to clarify the roles played by the different layers in a very deep pre-trained convolutional network; 
starting from this example, the authors introduced a novel formalism in order to build networks with 
the set of neurons in each layer represented as a graphical model; hence, models produced this way 
are by their very nature more explainable than before. 
A groundbreaking change in how to investigate learning through topology is given by [6]. In this 
paper authors does not look at input data, or at activation maps, but introduce a mathematical general 
framework to manage the learning process looking at the space of observers (or lenses). The space of 
observers, endowed with pseudo-metrics, is compact and convex, providing fundamental guarantees 
for machine learning. In the experimentations carried out, the authors select and sample operators 
easily, and use them to both perform classical metric learning, and provide an effective initialization 
of the kernels of a CNN.  
 
CONCLUSIONS 
 
The present paper provides an overview of TDA and PH, enabling the reader to appreciate the 
remarkable steps to the spread and great popularity of such methods: (i) from persistence theory to 
computable topological descriptors, (ii) from algorithms to fast computation, enabling people to 
compute topological features and explore their efficacy (e.g. classification or clustering) in several 
application domains; (iii) from the computation of PH-descriptors to the development of topological 
layers for deep learning.     
Also, the advances and results presented in this paper shows that deepening the interactions between 
computational topology and machine learning is beneficial for both: first, topological layers improve 
and extend the functionalities, the performance of neural networks; on the other side, pushing for 
mapping diagrams in a reasonable input for a neural network has increased the effort both in the 
definition of a general framework able to encompass a large number of PH-based descriptors, and in 
an extensive analysis of the statistical properties of such descriptors. Remarkably, such a cross-
fertilization is leading both to promising insights into accountability, interpretability, and 
explainability of machine learning, and to innovative perspective in the field, as in [6].  
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