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Over the past decade, the Differential Dynamic Programming (DDP) method has gained in maturity and popularity within the robotics community. Several recent contributions have led to the integration of constraints within the original DDP formulation, hence enlarging its domain of application while making it a strong and easy-to-implement competitor against alternative methods of the state of the art such as collocation or multiple-shooting approaches. Yet, and similarly to its competitors, DDP remains unable to cope with high-dimensional dynamics within a receding horizon fashion, such as in the case of online generation of athletic motion on humanoid robots. In this paper, we propose to make a step towards this objective by reformulating classical DDP as an implicit optimal control problem, allowing the use of more advanced integration schemes such as implicit or variational integrators. To that end, we introduce a primal-dual proximal Lagrangian approach capable of handling dynamical and path constraints in a unified manner, while taking advantage of the time sparsity inherent to optimal control problems. We show that this reformulation enables us to relax the dynamics along the optimization process by solving it inexactly: far from the optimality conditions, the dynamics are only partially fulfilled, but continuously enforced as the solver gets closer to the local optimal solution. This inexactness enables our approach to robustly handle large time steps (100 ms or more), unlike other DDP solvers of the state of the art, as experimentally validated through different robotic scenarii.

I. INTRODUCTION

Optimal control is a very convenient way to formally and practically compute the movement that a robot has to achieve [START_REF] Diehl | Fast direct multiple shooting algorithms for optimal robot control[END_REF], [START_REF] Schultz | Modeling and optimal control of humanlike running[END_REF], [START_REF] Koenemann | Whole-body model-predictive control applied to the hrp-2 humanoid[END_REF], [START_REF] Carpentier | Recent progress in legged robots locomotion control[END_REF]. Among the various possibilities to numerically solve an optimal control problem, the differential dynamic programming [START_REF] Mayne | A Second-order Gradient Method for Determining Optimal Trajectories of Non-linear Discrete-time Systems[END_REF], [START_REF] Tassa | Synthesis and stabilization of complex behaviors through online trajectory optimization[END_REF] algorithm provides several advantages that make it a frequent choice to solve trajectory optimization problems. First, it is optimally exploiting the sparsity inherently obtained from the temporal structure of the trajectory optimization problem. Second, as a shooting method, DDP ensures to fulfill the robot dynamics at all time. Yet, a major drawback of DDP is its inability to handle constraints in its vanilla formulation.
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for solving constrained optimization problems [START_REF] Nocedal | Numerical optimization[END_REF] such as penalty [START_REF] Tassa | Synthesis and stabilization of complex behaviors through online trajectory optimization[END_REF], [START_REF] Grandia | Feedback mpc for torque-controlled legged robots[END_REF], [START_REF] Mastalli | Crocoddyl: An Efficient and Versatile Framework for Multi-Contact Optimal Control[END_REF], augmented Lagrangian [START_REF] Lantoine | A hybrid differential dynamic programming algorithm for constrained optimal control problems. part 1: Theory[END_REF], [START_REF] Plancher | Constrained unscented dynamic programming[END_REF], [START_REF] Howell | ALTRO: A Fast Solver for Constrained Trajectory Optimization[END_REF], [START_REF] Kazdadi | Equality Constrained Differential Dynamic Programming[END_REF], sequential quadratic programming [START_REF] Tassa | Control-limited differential dynamic programming[END_REF], [START_REF] Giftthaler | A Projection Approach to Equality Constrained Iterative Linear Quadratic Optimal Control[END_REF], [START_REF] Xie | Differential dynamic programming with nonlinear constraints[END_REF] or interior-point methods [START_REF] Pavlov | Interior point differential dynamic programming[END_REF]. All these works have in common addressing various types of robot constraints, but none of them have considered the case of implicit integrators, where the system dynamics are implicitly defined by the zero of a given function. Implicit integrators lead to more robust integration schemes, with better theoretical guarantees in terms of stability and energy preservation, while potentially being able to operate on larger integration steps [START_REF] Rubrecht | Constraints Compliant Control: Constraints compatibility and the displaced configuration approach[END_REF]. It is expected from other fields of optimal control that formulating a solver based on such integrator would boost the capabilities of optimization [START_REF] Gros | Numerical optimal control[END_REF], in particular by enabling larger integration intervals, hence reducing the number of integration nodes (hence number of variables) for a given horizon or enlarging the preview horizon for a similar computational cost. Among these implicit schemes, variational integrators might be formulated [START_REF] Johnson | Scalable Variational Integrators for Constrained Mechanical Systems in Generalized Coordinates[END_REF], with the nice guarantee of keeping the exact energy level of the system.

In this paper, we introduce an implicit DDP (IDDP) formulation able to work with such advanced integrators. We formulate a new backward pass which also backpropagates a series of gains corresponding to the Lagrange multipliers. We then propose a proximal augmented Lagrangian algorithm to properly handle the constraints while ensuring improved numerical stability. This algorithm is capable of handling dynamics and path constraints in a unified manner, while taking advantage through the proposed backward pass of the time sparsity inherent to optimal control problems. We then propose a complete implementation of this idea based on the rigid-body dynamics library Pinocchio [START_REF] Carpentier | The Pinocchio C++ library -A fast and flexible implementation of rigid body dynamics algorithms and their analytical derivatives[END_REF] and the automatic differentiation framework Casadi [START_REF] Andersson | Casadi: a software framework for nonlinear optimization and optimal control[END_REF], and evaluate it on several robotic models of various complexity, in comparison with classic DDP implementation [START_REF] Mastalli | Crocoddyl: An Efficient and Versatile Framework for Multi-Contact Optimal Control[END_REF]. The benchmarks demonstrate good properties of the solver (globalization, convergence rate, accuracy at convergence) and of the variational integrator that we implemented.

The paper is organized as follows: we first introduce the implicit DDP formulation and its proximal algorithm (Sec. II), recall the notion of variational integrators and depict its inclusion within IDDP (Sec. III). Finally, we report the results with our implementation and their comparison against Crocoddyl (Sec. IV).

II. IMPLICIT DIFFERENTIAL DYNAMIC PROGRAMMING

This section introduces the notion of implicit differential dynamic programming, which consists in reformulating differential dynamic programming by considering the dynamics as implicit constraints of the problem. Using [START_REF] Kazdadi | Equality Constrained Differential Dynamic Programming[END_REF] as a starting point, we also introduce a primal-dual proximal Lagrangian approach, capable of handling path and dynamical constraints in a unified manner, while taking advantage of the temporal sparsity inherent to optimal control problems.

A. Problem formulation and transcription

Problem formulation. In this work, we focus on equalityconstrained optimal control problems of the form:

min x,u T 0 ℓ(t, x(t), u(t)) dt + h(x(T )) (1a) ẋ(t) = f (t, x(t), u(t)) (1b) (x(t), u(t)) ∈ C(t) ∀t ∈ [0, T [ (1c) x(0) = x0 , x(T ) ∈ C(T ), ( 1d 
)
where f is the continuous system dynamics, T > 0 is the time horizon, and x0 is the initial state condition. We denote X and U the state and control sets, respectively. We assume that the sets of path constraints C(t) can be expressed as equality constraints {(x(t), u(t) ∈ X × U : g t (x(t), u(t)) = 0}. The extension to inequality constrained problems is left as a future work.

The state space X is in general a Lie group; we denote its addition (integration) operation ⊕ and its difference (retraction) operation as ⊖.

Explicit transcription. As classically done within the numerical optimal control literature [START_REF] Diehl | Fast direct multiple shooting algorithms for optimal robot control[END_REF], [START_REF] Gros | Numerical optimal control[END_REF], problem (1) can be transcribed into a finite dimensional nonlinear programming problem of the form:

min x,u N -1 t=0 ℓ t (x t , u t ) + h(x N ) (2a) s.t. x t+1 = f t (x t , u t ), t = 0, . . . , N -1 g t (x t , u t ) = 0 x 0 = x0 ∈ X , (2b) 
where x def = (x 0 , . . . , x N ) and u def = (u 0 , . . . , u N -1 ). The control trajectory u(.) has been discretized on a given time grid and f t is the discrete dynamics obtained from f using an explicit or implicit discrete integrator, and ℓ t is a discretization of (t+1)∆t t∆t ℓ(s, x(s), u(s)) ds. Solving such an equality constrained problem can be performed using classical methods of nonlinear programming [START_REF] Nocedal | Numerical optimization[END_REF] while using sparse linear algebra routines [START_REF] Duff | Direct methods for sparse matrices[END_REF], or either by unrolling the time induced sparsity by exploiting constrained differential dynamic approaches [START_REF] Xie | Differential dynamic programming with nonlinear constraints[END_REF], [START_REF] Giftthaler | A Projection Approach to Equality Constrained Iterative Linear Quadratic Optimal Control[END_REF], [START_REF] Howell | ALTRO: A Fast Solver for Constrained Trajectory Optimization[END_REF], [START_REF] Kazdadi | Equality Constrained Differential Dynamic Programming[END_REF], [START_REF] Pavlov | Interior point differential dynamic programming[END_REF] or even simply by accounting for constraints at the dynamical level [START_REF] Budhiraja | Differential Dynamic Programming for Multi-Phase Rigid Contact Dynamics[END_REF]. All these methods require the dynamic equations to be perfectly solved, following a bilevel programming strategy. While explicit dynamics can be efficiently evaluated with high numerical accuracy [START_REF] Featherstone | Rigid body dynamics algorithms[END_REF], implicit dynamics typically require several steps of the Newton-Raphson algorithm in order to accurately compute x t+1 , as done in [START_REF] Chatzinikolaidis | Trajectory optimization for contactrich motions using implicit differential dynamic programming[END_REF], which in turn may slow down the whole solving process. Implicit transcription. Yet, solving the dynamics with a high accuracy is not required to make the solver converge to an optimal solution, as suggested by inexact methods within the optimization and machine learning community [START_REF] Schmidt | Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization[END_REF]. In this work, we propose to "relax" the dynamics and solve them inexactly by considering them as standard constraints, leading to the following implicit transcription scheme:

min x,u N -1 t=0 ℓ t (x t , u t ) + h T (x N ) (3a) f t (x t , u t , x t+1 ) = 0, t = 0, . . . , N -1 (3b) g t (x t , u t ) = 0 (3c) x 0 = x0 . ( 3d 
)
Contrary to standard constraints such as (3c), Eq. (3b) depends on both the current state x t and the next state x t+1 at a given time instant t, which leads to an alternative formulation of the dynamic recursion, as shown hereafter.

By denoting c(x, u) the entire stack of constraints, the Lagrangian function associated with (3) is given by:

L(x, u, λ) = N -1 i=0 ℓ(x i , u i ) + h(x N ) + λ ⊤ c(x, u), ( 4 
)
where λ is the stack of Lagrangian multipliers related to the path and dynamic constraints, also known as co-state in optimal control [START_REF] Liberzon | Calculus of variations and optimal control theory[END_REF]. The Karush-Kuhn-Tucker (KKT) [START_REF] Boyd | Convex Optimization[END_REF] conditions for optimality of (3) are thus given by:

∇ x,u L(x, u, λ) = 0 x 0 = x0 g t (x t , u t ) = 0, f t (x t , u t , x t+1 ) = 0, 0 ≤ t < N. (5) 

B. Dynamic programming of the implicit transcription

The dynamic programming recursion related to (3) is

V t (x) = min u,y ℓ t (x, u) + V t+1 (y) s.t. f t (x, u, y) = 0 (6) 
with V t the value function at time t and V N (x) = h(x).

Without loss of generality and to simplify the presentation, we consider g t (x, u) included within f t (x, u, y). Using the same ideas behind DDP [START_REF] Jacobson | Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games[END_REF], [START_REF] Tassa | Synthesis and stabilization of complex behaviors through online trajectory optimization[END_REF], we can iteratively solve (3) using successive second-order approximations of the problem and dynamic programming. The approach combines standard sequential quadratic programming (SQP) from the optimization literature [START_REF] Nocedal | Numerical optimization[END_REF] with dynamic programming. We introduce the following Hamiltonian function:

Q t (x, u, y, λ) = ℓ t (x, u) + λ ⊤ f t (x, u, y) + V t+1 (y). ( 7 
)
Backward pass. In the sequel, we use the usual notations to denote the partial derivatives of Q (Q x , Q xu , etc.). In the backward pass, the method solves a sequence of QP subproblems for t = N -1, . . . , 0, following the recursion:

Vt (δx) = min δu,δy 1 2   δx δu δy   ⊤   Q xx Q xu Q xy Q ux Q uu Q uy Q yx Q yu Q yy     δx δu δy   + Q ⊤ x δx + Q ⊤ u δu + Q ⊤ y δy + q (8a) s.t. f + F x δx + F u δu + F y δy = 0 (8b)
where f = f t (x, u, x y ), and back-propagates a sequence of model value functions Vt which are quadratic functions of the states x t ,

Vt (x + δx) = v t + V ⊤ x δx + 1 2 δx ⊤ V xx δx.
The partial derivatives of the Hamiltonian Q are given by

Q x = ℓ x + F ⊤ x λ Q u = ℓ u + F ⊤ u λ Q y = V ′ x + F ⊤ y λ Q xx = ℓ xx + λ • F xx Q xu = ℓ xu + λ • F xu Q xy = λ • F xy Q uu = ℓ uu + λ • F uu Q uy = λ • F uy Q yy = V ′ xx + λ • F yy q = ℓ t + λ ⊤ f + v ′ (9)
and V ′ is a shorthand for the next-timestep model value function Vt+1 (so

V ′ x = ∇ x Vt+1 ). The KKT conditions of the underlying QP are   Q uu Q uy F ⊤ u Q yu Q yy F ⊤ y F u F y 0 nc   =K   δu δy δλ   = -   Q u + Q ux δx Q y + Q yx δx f + F x δx   . ( 10 
)
The solution of this equation depends on the value of the step δx. Assuming the left-hand side KKT matrix K is invertible, we have that we can write

δu = k + Kδx, δy = a + Aδx, δλ = ξ + Ξδx, (11) 
where the zeroth-and first-order sensitivities (k, a, ξ) and (K, A, Ξ) are solutions of the matrix equation

K   k K a A ξ Ξ   = -   Q u Q ux Q y Q yx f F x   . ( 12 
)
Forward pass, linear rollout. In contrast to usual DDP approaches [START_REF] Jacobson | Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games[END_REF], [START_REF] Tassa | Synthesis and stabilization of complex behaviors through online trajectory optimization[END_REF], [START_REF] Howell | ALTRO: A Fast Solver for Constrained Trajectory Optimization[END_REF], [START_REF] Kazdadi | Equality Constrained Differential Dynamic Programming[END_REF], we do not perform a nonlinear rollout but a linear one, which corresponds to taking a primal-dual step in SQP methods [START_REF] Nocedal | Numerical optimization[END_REF].The linear increments are obtained by the recursion:

δx t+1 = a t + Aδx t , δu t = k t + Kδx t , δλ t+1 = ξ t + Ξδx t . (13 
) Similarly to [START_REF] Lantoine | A hybrid differential dynamic programming algorithm for constrained optimal control problems. part 1: Theory[END_REF], [START_REF] Kazdadi | Equality Constrained Differential Dynamic Programming[END_REF], [START_REF] Kazdadi | Equality Constrained Differential Dynamic Programming[END_REF] depicts an affine update of the multipliers δλ t+1 . The next iterates are given by a partial step α

x + = x ⊕ αδx, u + = u + αδu, λ + = λ + αδλ,
where α ∈ (0, 1] is determined by a line-search procedure, which will be expanded upon in a latter section.

C. A proximal-point reformulation

The so-called KKT matrix K introduced in (10) is not guaranteed to be nonsingular, and might have very poor conditioning. Some authors in the optimization literature [START_REF] Wright | Superlinear Convergence of a Stabilized SQP Method to a Degenerate Solution[END_REF] advocate for regularization of the matrix in SQP. This idea is close to that of the method of multipliers [START_REF] Nocedal | Numerical optimization[END_REF], which optimizes a penalized, augmented Lagrangian function. We propose introducing an inexact proximal point method in the dual variables, where we update the primal and dual variables (states x, controls u and multipliers λ) as follows:

(x k+1 , u k+1 , λ k+1 ) ≈ arg min x,u max λ L prox µ k (x, u, λ, λ k ), (14) 
with:

L prox µ k (x, u, λ, λ k ) = L(x, u, λ) - 1 2µ k λ -λ k 2 2 . ( 15 
)
The exact update is known to be equivalent to the method of multipliers (see [START_REF] Rockafellar | Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming[END_REF]). The proximal iteration above is also equivalent to minimizing the augmented Lagrangian function

L AL µ k (x, u, λ k ) = L(x, u, λ) + µ k 2 c(x, u) 2 2 , (16) 
but leading to more stable numerical schemes, as recalled in [START_REF] Kazdadi | Equality Constrained Differential Dynamic Programming[END_REF].

The new KKT equations given by:

  Q uu Q uy F ⊤ u Q yu Q yy F ⊤ y F u F y -1 µ k I nc   Kµ k   k K a A ξ Ξ   = -   Q u Q ux Q y Q yx f -λ-λ k µ k F x   (17)
are very similar to the previous ones depicted in [START_REF] Howell | ALTRO: A Fast Solver for Constrained Trajectory Optimization[END_REF]. Contrary to [START_REF] Howell | ALTRO: A Fast Solver for Constrained Trajectory Optimization[END_REF], the conditioning of the matrix is improved thanks to -1 µ k I nc . The benefit of the proximal reformulation of the Lagrangian, as shown in [START_REF] Carpentier | Proximal and sparse resolution of constrained dynamic equations[END_REF], [START_REF] Kazdadi | Equality Constrained Differential Dynamic Programming[END_REF], enables our approach to cope with ill-posed problems, where F u and F y are potentially rank-defficient. Globalization and inexactness strategy. The inexactness of the iterates can be controlled using strategies such as the bound-constrained Lagrangian (BCL) [START_REF] Conn | A Globally Convergent Augmented Lagrangian Algorithm for Optimization with General Constraints and Simple Bounds[END_REF], as advocated by [START_REF] Plancher | Constrained unscented dynamic programming[END_REF], [START_REF] Kazdadi | Equality Constrained Differential Dynamic Programming[END_REF]. Additionally, the BCL strategy allows to automatically adjust µ k according to the primal/dual feasibility of the problem given by ( 5) and to schedule the tolerance ǫ k of the inner loop, related to the dual feasibility and the tolerance of the outer loop η ⋆ , related to the overall primal feasibility. Stopping criterion. We distinguish the inner iterations (the minimization phase where we find the inexact proximal iterate) from the outer iterations.

For the inner iterations, we can consider two different criteria: (i) the gradient of the augmented Lagrangian:

∇ x,u L µ k (x, u, λ k ) ∞ ≤ ǫ k (18) 
or (ii) the primal-dual residuals of the proximal saddle-point:

∇ x,u L(x, u, λ) c(x, u) -1 µ k (λ -λ k ) ∞ ≤ ǫ k , (19) 
with ω k the tolerance of the inner iterations at iteration k.

For the outer iterations, we can consider the distance between consecutive proximal iterates λ k and λ k+1 , which are strongly correlated to the gradient of the so-called Moreau envelope [START_REF] Boyd | Proximal Algorithms[END_REF]. Indeed, the Moreau envelope corresponds to the value of the saddle-point ( 14):

M µ k (λ k ) max λ min x,u L(x, u, λ) - 1 2µ k λ -λ k 2 2 . ( 20 
)
and its gradient corresponds to:

∇ λ M µ k (λ k+1 ) = c(x k+1 , u k+1 ) = - 1 µ k (λ k+1 -λ k ).
This means that a stopping criterion on proximal dual iterates can be translated into a criterion on the constraints' norm:

c(x, u) ∞ ≤ η ⋆ . (21) 
Primal proximal regularization. In addition to regularizing the dual variables, it is possible to enforce strong convexity in the primal variables by adding corresponding proximal terms:

min x,u max λ L prox µ k (x, u, λ) + ρ k 2 x ⊖ x k 2 2 + ρ k 2 u -u k 2 2 , (22) 
By doing so, the resulting KKT matrix K + diag(ρ k I, ρ k I, -1 µ k I) depicts a better inertia [START_REF] Gill | A primal-dual augmented Lagrangian[END_REF], enforcing the overall numerical conditioning of the problem while making our formulation robust against singular cases as depicted in the results section IV. Linesearch. We use the augmented Lagrangian as a merit function:

min α L AL µ k (x ⊕ αδx, u + αδu, λ k ). (23) 
An alternative is to use the primal-dual augmented Lagrangian function [START_REF] Gill | A primal-dual augmented Lagrangian[END_REF], which accounts for steps in the inner multiplier λ. We use a backtracking Armijo linesearch as in [START_REF] Tassa | Synthesis and stabilization of complex behaviors through online trajectory optimization[END_REF], [START_REF] Mastalli | Crocoddyl: An Efficient and Versatile Framework for Multi-Contact Optimal Control[END_REF], although more sophisticated approaches involving e.g. quadratic interpolation could be used.

III. ADVANCED IMPLICIT INTEGRATORS

In this section, we review the concept of variational integrators and show they can be easily plugged within the implicit differential dynamic setting.

A. Variational integrators

Variational integrators [START_REF] Marsden | Discrete mechanics and variational integrators[END_REF], [START_REF] Johnson | Scalable Variational Integrators for Constrained Mechanical Systems in Generalized Coordinates[END_REF] are a class of numerical integrators for second-order dynamical systems derived from variational principles in physics, which are known to exhibit better energy conservation properties when compared to classical numerical integration methods such as Euler or Runge-Kutta schemes over Lagrangian equations of motion [START_REF] Johnson | Scalable Variational Integrators for Constrained Mechanical Systems in Generalized Coordinates[END_REF]. Continuous formulation. Variational integrators (VI) rely on the discretization of the so-called least action principle [START_REF] Marsden | Discrete mechanics and variational integrators[END_REF], [START_REF] Johnson | Scalable Variational Integrators for Constrained Mechanical Systems in Generalized Coordinates[END_REF]. Given a dynamical system's Lagrangian function L(q, q) = T (q, q) kinetic energy

-V (q) potential energy , ( 24 
)
the least action principle states that the state trajectory q : [0, T ] → Q is a stationary point of the action functional defined by:

S(q) T 0 L(q, q) dt. ( 25 
)
In continuous time, the stationary conditions lead to the classical Euler-Lagrange equations

d dt ∂L ∂ q - ∂L ∂q = 0, (26) 
from which the so-called Lagrangian equations of motion can be derived, resulting in:

M (q)q + C(q, q) q + g(q) = 0,

where M, C and g stands for the mass matrix, Coriolis and centrifugal effects and the generalized gravity associated to the kinetic and potential energy. q and q are the first and second order time derivatives of q respectively. Discrete formulation. Direct discretization of the variational principle introduces a discrete action sum

S d (q) = N -1 i=0 L d (q i , q i+1 ), (28) 
where L d (q i , q i+1 ) is a term for the quadrature of the action integral [START_REF] Featherstone | Rigid body dynamics algorithms[END_REF], and q = (q 0 , . . . , q N ) are the generalized coordinates at the different discrete time instants. We chose a good empirical quadrature, the trapezoidal rule. We obtain discrete dynamics by looking at the stationary conditions ∇ q S d (q) = 0. These conditions lead to new discrete dynamics, the so-called Discrete Euler-Lagrange equation (DEL):

∂ 2 L d (q i-1 , q i ) + ∂ 1 L d (q i , q i+1 ) = 0. ( 29 
)
The VI is a two-step integrator, where we recover (q i , q i+1 ) from (q i-1 , q i ).

Solving the forward dynamics can be done using Newton-Raphson iterations, as advocated by [START_REF] Johnson | Scalable Variational Integrators for Constrained Mechanical Systems in Generalized Coordinates[END_REF]. However, for e.g. stiff systems, care has to be taken to scale these Newton steps as to ensure convergence. Control and constrained dynamics. Forces not included inside of the system's Lagrangian function L, e.g. control, friction and contact forces, can be included into the variational principle through their virtual work; the corresponding variational principle is called the virtual work principle. In continuous time, for a given set of external forces f (t), this reads

dS(q) • δq + T 0 f (t) • δq(t) dt = 0. (30) 
The corresponding Euler equation derived from the stationary conditions yields the usual differential equation

d dt ∂L ∂ q - ∂L ∂q = f (t).
This also works for external forces, which are given by f c (t) = J c (q) ⊤ λ(t) with J c the Jacobian related to the external force. In discrete-time, the complete dynamical equation including bilateral constraints reads For control, the augmented state variable is given by configuration, velocity, and contact forces z = (q, v, λ). The system of equations [START_REF] Wright | Superlinear Convergence of a Stabilized SQP Method to a Degenerate Solution[END_REF] can then be plugged in (3) in order to replace (3b).

∂ 2 L d (q 0 , q 1 ) + ∂ 1 L d (q 1 , q 2 ) + u∆t + Dφ 0 (q 0 ) ⊤ λ 1 = 0 φ 1 (q 1 ) = 0. (31) 

IV. RESULTS

In this section, we illustrate and analyse the performances of our implicit differential dynamic programming solution over several robot settings, namely the control of an underactuated acrobot, a pick-and-place scenario with the UR-5 robot and finally motions on Solo-8 and Solo-12 quadrupedal platforms [START_REF] Grimminger | An open torque-controlled modular robot architecture for legged locomotion research[END_REF]. We notably show the benefits of our implicit formulation against Crocoddyl [START_REF] Mastalli | Crocoddyl: An Efficient and Versatile Framework for Multi-Contact Optimal Control[END_REF], an alternative explicit DDP solver of the state of the art, which is able to operate with Semi-Explicite and Runge-Kutta 4 integration schemes.

Our framework has been developed in Python and leverages the versatile CasADi [START_REF] Andersson | Casadi: a software framework for nonlinear optimization and optimal control[END_REF] autodiff framework in conjunction with Pinocchio [START_REF] Carpentier | The Pinocchio C++ library -A fast and flexible implementation of rigid body dynamics algorithms and their analytical derivatives[END_REF], [START_REF] Carpentier | Pinocchio: fast forward and inverse dynamics for poly-articulated systems[END_REF] to evaluate the variational integrators and their derivatives, while relying on the analytical derivatives of Rigid Body Dynamics algorithms [START_REF] Carpentier | Analytical Derivatives of Rigid Body Dynamics Algorithms[END_REF] for the other types of integrators. More details on these experiments, in particular the resulting motions, are also reported in the companion video. Acrobot. The acrobot is a simple underactuated 2DoF system. The task we solve is to get the pendulum upright, whilst penalizing the cumulative control torque. We formulate the task as a hard constraint q = 0. We also impose terminal velocity q = 0, which leads to an over-constrained problem. We use the variational integrator to integrate over a large time step ∆t = 0.1s. Figure 1 shows the convergence behaviour (in both primal and dual residuals) of our solver. UR5 robotic arm. We impose a terminal position and null velocity of the end-effector of the UR5, as well as the end-effector passing through given waypoints p 0 , p 1 at time instants t 0 < t 1 . This is formulated as a hard constraint. We test the problem with random waypoint locations on a number of seeds, with multiple integration time steps ∆t. Figure 3 illustrates the motion obtained using our method.

The implementation of standard DDP we use is from the Crocoddyl library [START_REF] Mastalli | Crocoddyl: An Efficient and Versatile Framework for Multi-Contact Optimal Control[END_REF]; constraints are included as soft quadratic penalties

w g p(q(t i )) -p i 2 2
(32) with w g = 600 and p(q) the end-effector position. Note there is no guarantee that the waypoint constraints are satisfied at convergence.

For our experiments, we pick waypoints randomly from the workspace with 10 fixed seeds, defining 10 different instances of the task. We solve the task using i) our solver with the semi-implicit Euler method, ii) with the variational integrator, as well as iii) DDP with semi-implicit Euler iv) DDP with RK4. We set a maximum number of iterations of 500. We also consider the residual between the instantaneous mechanical power dE m /dt and the control instantaneous power P = u(t), q , which would be zero for an ideal integrator of the system, by the work-energy principle. ∆t, than the reference implementation of DDP. The table was created using results from a single instance of the pick-andplace task. Results for the RK4 integrator are not available, since the reference implementation of DDP failed for this instance.

Energy. Table III shows the average and standard deviation of the residual between the variation of mechanical energy and work ∆E m -W over the 10 scenarios. Across the different time integration steps, the implicit DDP algorithm displays a smaller residual, especially when used with the variational integrator. As for semi-implicit Euler, our solver still achieves smaller residuals: the trajectories produced by DDP actually show larger amplitudes of movement, which exacerbates energy defects in the integrator.

Solo quadruped. The Solo robot is an example of underactuated system subject to contact forces. We formulate dynamics using the constrained variational integrator (31): this integrator removes the need for contact linearization and baumgarte constraint corrections, as in [START_REF] Mastalli | Crocoddyl: An Efficient and Versatile Framework for Multi-Contact Optimal Control[END_REF]. We impose the constraints as p j (q) = pj ∈ R 3 where the pj are points in the z = 0 plane and p j are feet locations. Note that for the Solo-8 robot, which has fewer degrees of freedom, and whose feet cannot move laterally, the dynamics become over-constrained. We test two tasks, wherein the robot base has to move down (bowing task, Figure 4) or rotate from one side to the other (Fig. 5). Figure 2 shows convergence of the solver for a bowing task. The solver converges in about 30 iterations. Primal infeasibility c(x, u) ∞ does not improve until the last two iterates, as the penalty parameter µ 0 (initialized at 10) is too low. Yet convergence is achieved quickly.

V. CONCLUSION

We have proposed a reformulation of the classical DDP to handle dynamical systems modeled under an implicit form. There are several positive consequences to this proposition. First, it immediately unlocks the use of more powerful integrators, such as variational integrators, which better and more stably represent the robot dynamics. Second, we can model systems subject to mechanical constraints (such as legged robots or closed-loop mechanisms) at no extra effort. A benefit is that we can reduce the number of shooting intervals without decreasing the quality and the stability of the optimization, which in turn lowers the total computational cost. While other optimal control solvers were already able to handle implicit integrators, DDP is optimal in its way to handle the sparsity of control problems.

A proximal Lagrangian algorithm is used to solve the underpinning constrained optimization problem. It boils down to a reformulation of the classical DDP backward pass, which leads to improved numerical stability. The new backward pass generates extra gains corresponding to the evaluation of Lagrange multipliers, which opens a route to new feedback terms. Our implementation has been used to empirically evaluate the performance of our approach in several scenarios of various complexities. We have benchmarked the capabilities of our solver against Crocoddyl, a state-of-theart DDP solver used on several legged and aerial robots, and show that our method converges quickly, more reliably and to a better optimum. We have also demonstrated the interest of variational integrators for handling the simulation of polyarticulated systems.
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 1 Fig. 1. Convergence plot for the Acrobot, with a time step of ∆t = 0.1.

Fig. 2 .

 2 Fig.2. Convergence of the implicit solver for the "bowing" movement.
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 34 Fig. 3. Optimal motion for the UR5 pick-and-place task.
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 5 Fig. 5. "Spin" movement on Solo-12.

TABLE II OPTIMAL

 II COST FOR A PICK-AND-PLACE TASK WITH UR5.

	Method	integrator	10 ms 20 ms 50 ms 100 ms
	IDDP		Euler	1.197	1.197	1.200	1.221
	IDDP	Variational	1.219	1.213	1.196	1.181
	Croco		Euler	1.748	1.335	6.017	1.183
	Croco		RK4	N/A	N/A	N/A	N/A
					TABLE III
	AVERAGE (STD. DEV.) OF RESIDUAL ENERGY Em -W OVER ALL
					INSTANCES.
	Method integrator	10 ms	20 ms	50 ms	100 ms
	IDDP	Euler		5.81 (3.35) 5.44 (2.91) 5.21 (2.92) 4.54 (2.82)
	IDDP Variational 5.35 (2.89) 5.27 (2.86) 4.63 (2.64) 3.09 (1.88)
	Croco	Euler		10.9 (5.37) 9.86 (6.09) 12.7 (14.5) 4.0e42 (1.3e43)
	Croco	RK4		N/A	N/A		N/A	N/A

Convergence. Table

I

shows the proportion of scenarios for which the solvers converged, depending on the choice of integrator and time step. Our method (denoted IDDP) converges on every instance. Globalisation. Table

II

shows that our method achieves better trajectory cost across multiple value of integration time step