
HAL Id: hal-03351641
https://hal.science/hal-03351641v1

Submitted on 22 Sep 2021 (v1), last revised 17 Feb 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implicit Differential Dynamic Programming
Wilson Jallet, Nicolas Mansard, Justin Carpentier

To cite this version:
Wilson Jallet, Nicolas Mansard, Justin Carpentier. Implicit Differential Dynamic Programming. In-
ternational Conference on Robotics and Automation (ICRA 2022), May 2022, Philadelphia, United
States. �hal-03351641v1�

https://hal.science/hal-03351641v1
https://hal.archives-ouvertes.fr

Implicit Differential Dynamic Programming

Wilson Jalleta,b,*, Nicolas Mansardc and Justin Carpentiera,b

Abstract— Over the past decade, the Differential Dynamic
Programming (DDP) method has gained in maturity and
popularity within the robotics community. Several recent con-
tributions have led to the integration of constraints within
the original DDP formulation, hence enlarging its domain of
application while making it a strong and easy-to-implement
competitor against alternative methods of the state of the art
such as collocation or multiple-shooting approaches. Yet, and
similarly to its competitors, DDP remains unable to cope with
high-dimensional dynamics within a receding horizon fashion,
such as in the case of online generation of athletic motion
on humanoid robots. In this paper, we propose to make a
step toward this objective by reformulating classic DDP as
an implicit optimal control problem, allowing the use of more
advanced integration schemes such as implicit or variational
integrators. To that end, we introduce a primal-dual proximal
Lagrangian approach capable of handling dynamic and path
constraints in a unified manner, while taking advantage of the
time sparsity inherent to optimal control problems. We show
that his reformulation enables us to relax the dynamics along
the optimization process by solving it inexactly: far from the
optimality conditions, the dynamics are only partially fulfilled,
but continuously enforced as the solver get closer to the local
optimal solution. This inexactness enables our approach to
robustly handle large time steps (100 ms or more), unlike other
DDP solvers of the state of the art, as experimentally validated
through different robotic scenarios.

I. INTRODUCTION

Optimal control is a very convenient way to formally

and practically compute the movement that a robot has to

achieve [1], [2], [3], [4]. Among the various possibilities to

numerically solve an optimal control problem, the differential

dynamic programming [5], [6] algorithm provides several

advantages that makes it a frequent choice to solve optimiza-

tion trajectory problems. First, it is optimally exploiting the

sparsity inherently obtained from the temporal structure of

the trajectory problem. Second, as a shooting method, DDP

ensures to fulfill the robot dynamics at all time. Yet, a major

drawback of DDP is its inability to handle constraints in its

vanilla formulation.

Recent works have attempted to account for these con-

straints using various nonlinear programming strategies

for solving constrained optimization problems [7] such as

penalty [6], [8], [9], augmented Lagrangian [10], [11], [12],

a INRIA and b Département d’informatique de l’ENS, Paris, France
c LAAS-CNRS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France
*corresponding author: wilson.jallet@inria.fr
This work was supported in part by the HPC resources from GENCI-

IDRIS (Grant AD011011342), the French government under management of
Agence Nationale de la Recherche as part of the ”Investissements d’avenir”
program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute) and ANR-
19- P3IA-000 (ANITI 3IA Institute), Louis Vuitton ENS Chair on Artificial
Intelligence, and the European project MEMMO (Grant 780684).

[13], sequential quadratic programming [14], [15], [16] or

interior-point methods [17]. All these works have in common

addressing various types of robot constraints, but none of

them have considered the case of implicit integrators, where

the system dynamics are implicitly defined by the zero of

a given function. Implicit integrators lead to more robust

integration schemes, with better theoretical guarantees in

terms of stability and energy preservation, while potentially

being able to operate on larger integration steps [18]. It is

expected from other fields of optimal control that formulating

a solver based on such integrator would boost the capabilities

of optimization [19], in particular by enabling larger inte-

gration intervals, hence reducing the number of integration

nodes (hence number of variables) for a given horizon or

enlarging the preview horizon for a similar computational

cost. Among these implicit schemes, variational integrators

might be formulated [20], with the nice guarantee of keeping

the exact energy level of the system.

In this paper, we introduce an implicit DDP (IDDP)

formulation able to work with such advanced integrators. We

formulate a new backward pass which also backpropagates a

series of gains corresponding to the Lagrange multipliers. We

then propose a proximal augmented Lagrangian algorithm

to properly handle the constraints while ensuring improved

numerical stability. This algorithm is capable of handling

dynamic and path constraints in a unified manner, while

taking advantage through the proposed backward pass of

the time sparsity inherent to optimal control problems. We

then propose a complete implementation of this idea based

on the rigid-body dynamics library Pinocchio [21] and the

automatic differentiation framework Casadi [22], and eval-

uate it on several robotic models of various complexity,

in comparison with classic DDP implementation [9]. The

benchmarks demonstrate good properties of the solver (glob-

alization, convergence rate, accuracy at convergence) and of

the variational integrator that we implemented.

The paper is organized as follows: we first introduce

the implicit DDP formulation and its proximal algorithm

(Sec. II), recall the notion of variational integrators and

depict its inclusion within IDDP (Sec. III). Finally, we report

the results with our implementation and their comparison

against Crocoddyl (Sec. IV).

II. IMPLICIT DIFFERENTIAL DYNAMIC PROGRAMMING

This section introduces the notion of implicit differential

dynamic programming, which consists in reformulating dif-

ferential dynamic programming by considering the dynamics

as implicit constraints of the problem. Rooted on [13], we

also introduce a primal-dual proximal Lagrangian approach

mailto:wilson.jallet@inria.fr

capable of handling dynamical and path constraints in a

unified manner, while taking advantage of the temporal

sparsity inherent to optimal control problems.

A. Problem formulation and transcription

Problem formulation. In this work, we focus on equality-

constrained optimal control problems of the form:

min
x,u

∫ T

0

ℓ(t, x(t), u(t)) dt+ h(x(T)) (1a)

ẋ(t) = f(t, x(t), u(t)) (1b)

(x(t), u(t)) ∈ C(t) ∀t ∈ [0, T [(1c)

x(0) = x̄0, x(T) ∈ C(T), (1d)

where f is the continuous system dynamics and x̄0 is the

initial state condition. We denote X and U denote the state

and control sets, respectively. We assume that the sets of

path constraints C(t) can be expressed as equality constraints

{(x(t), u(t) ∈ X × U : g(x(t), u(t)) = 0}. The extension to

inequality constrained problems is left as a future work.

The state space X is in general a Lie group; we denote

its addition (integration) operation ⊕ and its difference

(retraction) operation as ⊖.

Explicit transcription. As classically done within the nu-

merical optimal control literature [1], [19], problem (1) can

be transcribed into a finite dimensional nonlinear program-

ming problem of the form:

min
x,u

∑N−1

t=0
ℓt(xt, ut) + hT (xN) (2a)

s.t. xt+1 = ft(xt, ut), t = 0, . . . , N − 1
gt(xt, ut) = 0
x0 = x̄0 ∈ X ,

(2b)

where x
def
= (x0, . . . , xN) and u

def
= (u0, . . . , uN−1). The

control trajectory u(.) has been discretized on a given time

grid and ft is the discrete dynamics obtained from f using

an explicit or implicit discrete integrator.

Solving such an equality constrained problem can be

performed using classical methods of nonlinear program-

ming [7] while using sparse linear algebra routines [23],

or either by unrolling the time induced sparsity by exploit-

ing constrained differential dynamic approaches [16], [15],

[12], [13], [17] or even simply by accounting constraints

at the dynamic level [24]. All these methods require the

dynamic equations to be perfectly solved, following a bi-

level programming strategy. While explicit dynamics can

be efficiently evaluated with high numerical accuracy [25],

implicit dynamics typically require several steps of the

Newton-Raphson algorithm in order to accurately compute

xt+1, as done in [26], which in turn may slow down the

whole solving process.

Implicit transcription. Yet, solving the dynamics with a

high accuracy is not required to make the solver converge to

an optimal solution, as suggested by inexact methods within

the optimization and machine learning community [27]. In

this work, we propose to “relax” the dynamics and solve

them inexactly by considering them as standard constraints,

leading to the following implicit transcription scheme:

min
x,u

∑N−1

t=0
ℓt(xt, ut) + hT (xN) (3a)

ft(xt, ut, xt+1) = 0, t = 0, . . . , N − 1 (3b)

gt(xt, ut) = 0 (3c)

x0 = x̄0. (3d)

Contrary to standard constraints such as (3c), Eq. (3b)

depends on both the current state xt and of the next state

xt+1 at a given time instant t, which leads to an alternative

formulation of the dynamic recursion, as shown hereafter.

By denoting c(x,u) the entire stack of constraints, the

Lagrangian function associated with (3) is given by:

L(x,u,λ) =

N−1∑

i=0

ℓ(xi, ui) + h(xN) + λ
⊤c(x,u), (4)

where λ is the stack of Lagrangian multipliers related to

the path and dynamic constraints, also known as co-state in

optimal control [28]. The Karush-Kuhn-Tucker (KKT) [29]

conditions for optimality of (3) are thus given by:

∇x,uL(x,u,λ) = 0

x0 = x̄0

gt(xt, ut) = 0, ft(xt, ut, xt+1) = 0, 0 ≤ t < N.

(5)

B. Dynamic programming of the implicit transcription

The dynamic programming recursion related to (3) is

Vt(x) = min
u,y

ℓt(x, u) + Vt+1(y)

s.t. ft(x, u, y) = 0
(6)

with Vt the value function at time t and VN (x) = h(x).
Without loss of generality and to simplify the presentation,

we consider gt(x, u) included within ft(x, u, y). Using the

same ideas behind DDP [30], [6], we can iteratively solve

(3) using successive second-order approximations of the

problem and dynamic programming. The approach combines

standard sequential quadratic programming (SQP) from the

optimization literature [7] with dynamic programming.

We introduce the following Hamiltonian function:

Qt(x, u, y, λ) = ℓt(x, u) + λ⊤ft(x, u, y) + Vt+1(y). (7)

Backward pass. In the sequel, we use the usual notations

to denote the partial derivatives of Q (Qx, Qxu, etc.). In

the backward pass, the method solves a sequence of QP

subproblems for t = N − 1, . . . , 0, following the recursion:

V̄t(δx) = min
δu,δy

1

2





δx
δu
δy





⊤ 



Qxx Qxu Qxy

Qux Quu Quy

Qyx Qyu Qyy









δx
δu
δy





+Q⊤

x δx+Q⊤

u δu+Q⊤

y δy + q

(8a)

s.t. f + Fxδx+ Fuδu+ Fyδy = 0 (8b)

where f = ft(x, u, xy), and back-propagates a sequence of

model value functions V̄t which are quadratic functions of

the states xt,

V̄t(x+ δx) = vt + V ⊤

x δx+
1

2
δx⊤Vxxδx.

The partial derivatives of the Hamiltonian Q are given by

Qx = ℓx + F⊤

x λ Qu = ℓu + F⊤

u λ

Qy = V ′

x + F⊤

y λ Qxx = ℓxx + λ · Fxx

Qxu = ℓxu + λ · Fxu Qxy = λ · Fxy

Quu = ℓuu + λ · Fuu Quy = λ · Fuy

Qyy = V ′

yy + λ · Fyy q = ℓt + λ⊤f + v′

(9)

and V̄ ′ is a shorthand for the next-timestep model value

function V̄t+1 (so V ′
x = ∇xV̄t+1).

The KKT conditions of the underlying QP are




Quu Quy F⊤
u

Qyu Qyy F⊤
y

Fu Fy 0nc





︸ ︷︷ ︸

=K





δu
δy
δλ



 = −





Qu +Quxδx
Qy +Qyxδx
f + Fxδx



 . (10)

The solution of this equation depends on the value of the step

δx. Assuming the left-hand side KKT matrix K is invertible,

we have that we can write

δu = k +Kδx, δy = a+Aδx, δλ = ξ +Ξδx, (11)

where the zeroth- and first-order sensitivities (k, a, ξ) and

(K,A,Ξ) are solutions of the matrix equation

K





k K

a A

ξ Ξ



 = −





Qu Qux

Qy Qyx

f Fx



 . (12)

Forward pass, linear rollout. In contrast to usual DDP

approaches [30], [6], [12], [13], we do not perform a non-

linear rollout but a linear one, which corresponds to taking a

primal-dual step in SQP methods [7].The linear increments

are obtained by the recursion:

δxt+1 = at +Aδxt, δut = kt +Kδxt, δλt+1 = ξt +Ξδxt.
(13)

Similarly to [10], [13], (13) depicts an affine update of the

multipliers δλt+1. The next iterates are given by a partial

step α

x+ = x⊕ αδx, u+ = u+ αδu, λ
+ = λ+ αδλ,

where α ∈ (0, 1] is determined by a line-search procedure,

which will be expanded upon in a latter section.

C. A proximal-point reformulation

The so-called KKT matrix K introduced in (10) is not

guaranteed to be nonsingular, and might have very poor

conditioning. Some authors in the optimization literature [31]

advocate for regularization of the matrix in SQP. This idea

is close to that of the method of multipliers [7], which

optimizes a penalized, augmented Lagrangian function. We

propose introducing an inexact proximal point method in the

dual variables, where we update the primal and dual variables

(states x, controls u and multipliers λ) as follows:

(xk+1,uk+1,λk+1) ≈ argmin
x,u

max
λ

Lprox
µk

(x,u,λ,λk),

(14)

with:

Lprox
µk

(x,u,λ,λk) = L(x,u,λ)−
1

2µk

‖λ− λ
k‖

2

2
. (15)

The exact update is known to be equivalent to the method of

multipliers (see [32]). The proximal iteration above is also

equivalent to minimizing the augmented Lagrangian function

LAL
µk
(x,u,λk) = L(x,u,λ) +

µk

2
‖c(x,u)‖22, (16)

but leading to more stable numerical schemes, as recalled

in [13].

The new KKT equations given by:




Quu Quy F⊤
u

Qyu Qyy F⊤
y

Fu Fy − 1

µk
Inc





︸ ︷︷ ︸

Kµk





a A

k K

ξ Ξ



 = −





Qu Qux

Qy Qyx

f − λ−λk

µk
Fx





(17)

are very similar to the previous ones depicted in (12).

Contrary to (12), the conditioning of the matrix is improved

thanks to − 1

µk
Inc

. The benefit of the proximal reformulation

of the Lagrangian, as shown in [33], [13], enables our

approach to cope with ill-posed problems, where Fu and

Fy are potentially rank-defficient.

Globalization and inexactness strategy. The inexactness

of the iterates can be controlled using strategies such as

the bound-constrained Lagrangian (BCL) [34], as advocated

by [11], [13]. Additionally, the BCL strategy allows to auto-

matically adjust µk according to the primal/dual feasibility

of the problem given by (5) and to schedule the tolerance

ǫk of the inner loop, related to the dual feasibility and the

tolerance of the outer loop η⋆, related to the overall primal

feasibility.

Stopping criterion. We distinguish the inner iterations (the

minimization phase where we find the inexact proximal

iterate) from the outer iterations.

For the inner iterations, we can consider two different

criteria: (i) the gradient of the augmented Lagrangian:

‖∇x,uLµk
(x,u,λk)‖∞ ≤ ǫk (18)

or (ii) the primal-dual residuals of the proximal saddle-point:
∥
∥
∥
∥

[
∇x,uL(x,u,λ)

c(x,u)− 1

µk
(λ− λ

k)

]∥
∥
∥
∥
∞

≤ ǫk, (19)

with ωk the tolerance of the inner iterations at iteration k.

For the outer iterations, we can consider the distance be-

tween consecutive proximal iterates λk and λ
k+1, which are

strongly correlated to the gradient of the so-called Moreau

envelope [35]. Indeed, the Moreau envelope corresponds to

the value of the saddle-point (14) defined above:

Mµk
(λk) , max

λ

min
x,u

L(x,u,λ)−
1

2µk

‖λ− λ
k‖22. (20)

and its gradient corresponds to:

∇λMµk
(λk+1) = c(xk+1,uk+1) = −

1

µk

(λk+1 − λ
k).

This means that a stopping criterion on proximal dual iterates

can be translated into a criterion on the constraints’ norm:

‖c(x,u)‖∞ ≤ η⋆. (21)

Primal proximal regularization. In addition to regularizing

the dual variables, it is possible to enforce strong convexity

in the primal variables by adding corresponding proximal

terms:

min
x,u

max
λ

Lprox
µk

(x,u,λ) +
ρk
2
‖x⊖ xk‖22 +

ρk
2
‖u− uk‖22,

(22)

By doing so, the resulting KKT matrix

K + diag(ρkI, ρkI,−
1

µk
I) depicts a better inertia [36],

enforcing the overall numerical conditioning of the problem

while making our formulation robust against singular cases

as depicted in the results section IV.

Linesearch. We use the augmented Lagrangian as a merit

function:

min
α

LAL
µk
(x⊕ αδx,u+ αδu,λk). (23)

An alternative is to use the primal-dual augmented La-

grangian function [36], which accounts for steps in the inner

multiplier λ. We use a backtracking Armijo linesearch as

in [6], [9], although more sophisticated approaches involving

e.g. quadratic interpolation could be used.

III. ADVANCED IMPLICIT INTEGRATORS

In this section, we review the concept of variational

integrators and show they can be easily plugged within the

implicit differential dynamic setting.

A. Variational integrators

Variational integrators [37], [20] are a class of numerical

integrators for second-order dynamical systems derived from

variational principles in physics, which are known to exhibit

better energy conservation properties when compared to clas-

sical numerical integration methods such as Euler or Runge-

Kutta schemes over Lagrangian equations of motion [20].

Continuous formulation. Variational integrators (VI) rely

on the discretization of the so-called least action prin-

ciple [37], [20]. Given a dynamical system’s Lagrangian

function

L(q, q̇) = T (q, q̇)
︸ ︷︷ ︸

kinetic energy

− V (q)
︸︷︷︸

potential energy

, (24)

the least action principle states that the state trajectory

q : [0, T] → Q is a stationary point of the action functional

defined by:

S(q) ,

∫ T

0

L(q, q̇) dt. (25)

In continuous time, the stationary conditions lead to the

classical Euler-Lagrange equations

d

dt

∂L

∂q̇
−

∂L

∂q
= 0, (26)

from which the so-called Lagrangian equations of motion

can be derived, resulting in:

M(q)q̈ + C(q, q̇)q̇ + g(q) = 0, (27)

where M,C and g stands for the mass matrix, Coriolis and

centrifugal effects and the generalized gravity associated to

the kinetic and potential energy. q̇ and q̈ are the first and

second order time derivatives of q respectively.

Discrete formulation. Direct discretization of the variational

principle introduces a discrete action sum

Sd(q) =
N−1∑

i=0

Ld(qi, qi+1), (28)

where Ld(qi, qi+1) is a term for the quadrature of the action

integral (25), and q = (q0, . . . , qN) are the generalized

coordinates at the different discrete time instants. We chose

a good empirical quadrature, the trapezoidal rule. We obtain

discrete dynamics by looking at the stationary conditions

∇qS
d(q) = 0. These conditions lead to new discrete

dynamics, the so-called Discrete Euler-Lagrange equation

(DEL):

∂2Ld(qi−1, qi) + ∂1Ld(qi, qi+1) = 0. (29)

The VI is a two-step integrator, where we recover (qi, qi+1)
from (qi−1, qi).

Solving the forward dynamics can be done using Newton-

Raphson iterations, as advocated by [20]. However, for e.g.

stiff systems, care has to be taken to scale these Newton

steps as to ensure convergence.

Control and constrained dynamics. Forces not included

inside of the system’s Lagrangian function L, e.g. control,

friction and contact forces, can be included into the varia-

tional principle through their virtual work; the corresponding

variational principle is called the virtual work principle. In

continuous time, for a given set of external forces f(t), this

reads

dS(q) · δq+

∫ T

0

f(t) · δq(t) dt = 0. (30)

The corresponding Euler equation derived from the stationary

conditions yield the usual differential equation

d

dt

∂L

∂q̇
−

∂L

∂q
= f(t).

This also works for external forces, which are given by

fc(t) = Jc(q)
⊤λ(t) with Jc the Jacobian related to the

external force. In discrete-time, the complete dynamical

equation including bilateral constraints reads

∂2Ld(q0, q1) + ∂1Ld(q1, q2) + u∆t+Dφ0(q0)
⊤λ1 = 0

φ1(q1) = 0.
(31)

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Iterate

10 10

10 8

10 6

10 4

10 2

100
p

=
|c

(x
)|

Primal/dual residuals

10 10

10 8

10 6

10 4

10 2

100

d

Primal residual

Desired prim. feasibility { k}k

Reject

Accept

Dual residual

Fig. 1. Convergence plot for the Acrobot, with a time step of ∆t = 0.1.

For control, the augmented state variable is given by

configuration, velocity, and contact forces z = (q, v, λ). The

system of equations (31) can then be plugged in (3) in order

to replace (3b).

IV. RESULTS

In this section, we illustrate and analyse the performances

of our implicit differential dynamic programming solution

over several robot settings, namely the control of an under-

actuated acrobot, a pick-and-place scenario with the UR-5

robot and finally motions on Solo-8 and Solo-12 quadrupedal

platforms [38]. We notably show the benefits of our implicit

formulation against Crocoddyl [9], an alternative explicit

DDP solver of the state of the art, which is able to operate

with Semi-Explicite and Runge-Kutta 4 integration schemes.

Our framework has been developed in Python and lever-

ages the versatile CasADi [22] autodiff framework in con-

junction with Pinocchio [21], [39] to evaluate the variational

integrators and their derivatives, while relying on the analyt-

ical derivatives of Rigid Body Dynamics algorithms [40] for

the other types of integrators. We will make our framework

freely available upon acceptance. More details on these

experiments, in particular the resulting motions, are also

reported in the companion video.

Acrobot. The acrobot is a simple underactuated 2DoF sys-

tem. The task we solve is to get the pendulum upright, whilst

penalizing the cumulative control torque. We formulate the

task as an hard constraint q = 0. We also impose terminal

velocity q̇ = 0, which leads to an over-constrained problem.

We use the variational integrator to integrate over a large time

step ∆t = 0.1s. Figure 1 shows the convergence behaviour

(in both primal and dual residuals) of our solver.

UR5 robotic arm. We impose a terminal position and

null velocity of the end-effector of the UR5, as well as

the end-effector passing through given waypoints p0, p1 at

time instants 0 ≤ t0 < t1 < T . This is formulated as a

hard constraint. We test the problem with random waypoint

locations on a number of seeds, with multiple integration

time steps ∆t. Fig. 3 illustrates the motion obtained using

our method.

The implementation of standard DDP we use is from

the Crocoddyl library [9]; constraints are included as soft

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Iterate

10 7

10 6

10 5

10 4

10 3

p
=

|c
(x

)|

Primal/dual residuals

10 7

10 6

10 5

10 4

10 3

d

Primal residual

Desired prim. feasibility { k}k

Reject

Accept

Dual residual

Fig. 2. Convergence of the implicit solver for the “bowing” movement.

quadratic penalties

wg‖p(q(ti))− pi‖
2
2 (32)

with wg = 600. Note there is no guarantee that the waypoint

constraints are satisfied at convergence.

For our experiments, we pick waypoints randomly from

the workspace with 10 fixed seeds, defining 10 different

instances of the task. We solve the task using i) our solver

with the semi-implicit Euler method, ii) with the variational

integrator, as well as iii) DDP with semi-implicit Euler iv)

DDP with RK4. We set a maximum number of iterations of

500. We also consider the residual between the instantaneous

mechanical power dEm/dt and the control instantaneous

power P = 〈u(t), q̇〉, which would be zero for an ideal

integrator of the system, by the work-energy principle.

TABLE I

UR5: PROPORTION OF SOLVED INSTANCES OVER 10 RUNS.

Method integrator 10 ms 20 ms 50 ms 100 ms

IDDP (ours) Euler 1.0 1.0 1.0 1.0
IDDP Variational 1.0 1.0 1.0 1.0

Croco Euler 1.0 1.0 1.0 0.8
Croco RK4 0.7 0.6 0.6 0.3

TABLE II

OPTIMAL COST FOR A PICK-AND-PLACE TASK WITH UR5.

Method integrator 10 ms 20 ms 50 ms 100 ms

IDDP Euler 1.197 1.197 1.200 1.221
IDDP Variational 1.219 1.213 1.196 1.181

Croco Euler 1.748 1.335 6.017 1.183
Croco RK4 N/A N/A N/A N/A

TABLE III

AVERAGE (STANDARD DEV.) OF RESIDUAL ENERGY Em −W OVER ALL

INSTANCES.

Method integrator 10 ms 20 ms 50 ms 100 ms

IDDP Euler 5.81 (3.35) 5.44 (2.91) 5.21 (2.92) 4.54 (2.82)
IDDP Variational 5.35 (2.89) 5.27 (2.86) 4.63 (2.64) 3.09 (1.88)

Croco Euler 10.9 (5.37) 9.86 (6.09) 12.7 (14.5) 4.0e42 (1.3e43)
Croco RK4 N/A N/A N/A N/A

Convergence. Table I shows the proportion of scenarios

for which the solvers converged, depending on the choice

of integrator and time step. Our method (denoted IDDP)

converges on every instance.

Fig. 3. Optimal motion for the UR5 pick-and-place task.

Fig. 4. “Bowing” movement on Solo-8.

Fig. 5. “Spin” movement on Solo-12.

Globalisation. Table II shows that our method achieves better

trajectory cost across multiple value of integration time step

∆t, than the reference implementation of DDP. The table was

created using results from a single instance of the pick-and-

place task. Results for the RK4 integrator are not available,

since the reference implementation of DDP failed for this

instance.

Energy. Table III shows the average and standard deviation

of the residual between the variation of mechanical energy

and work ∆Em − W over the 10 scenarios. Across the

different time integration steps, the implicit DDP algorithm

displays a smaller residual, especially when used with the

variational integrator. As for semi-implicit Euler, our solver

still achieves smaller residuals: the trajectories produced by

DDP actually show larger amplitudes of movement, which

exacerbates energy defects in the integrator.

Solo quadruped. The Solo robot is an example of under-

actuated system subject to contact forces. We formulate

dynamics using the constrained variational integrator (31):

this integrator removes the need for contact linearization and

baumgarte constraint corrections, as in [9]. We impose the

constraints as pj(q) = p̄j ∈ R
3 where the p̄j are points

in the z = 0 plane and pj are feet locations. Note that for

the Solo-8 robot, which has fewer degrees of freedom, and

whose feet cannot move laterally, the dynamics become over-

constrained. We test two tasks, wherein the robot base has to

move down (bowing task, Fig. 4) or rotate from one side to

the other (Fig. 5). Fig. 2 shows convergence of the solver for

a bowing task. The solver converges in about 30 iterations.

Primal infeasibility ‖c(x,u)‖∞ does not improve until the

last two iterates, as the penalty parameter µ0 (initialized at

10) is too low. Yet convergence is achieved quickly.

V. CONCLUSION

We have proposed a reformulation of the classical DDP to

handle dynamical systems modeled under an implicit form.

There are several positive consequences to this proposition.

First, it immediately unlocks the use of more powerful

integrators, such as variational integrators, which better and

more stably represent the robot dynamics. Second, we can

model systems subject to mechanical constraints (such as

legged robots or closed-loop mechanisms) at no extra effort.

A benefit is that we can reduce the number of shooting

intervals without decreasing the quality and the stability of

the optimization, which in turn lowers the total computational

cost. While other optimal control solvers were already able

to handle implicit integrators, DDP is optimal in its way to

handle the sparsity of control problems.

A proximal Lagrangian algorithm is used to solve the un-

derpinning constrained optimization problem. It boils down

to a reformulation of the classical DDP backward pass, which

leads to improved numerical stability. The new backward

pass generates extra gains corresponding to the evaluation of

Lagrange multipliers, which opens a route to new feedback

terms. Our implementation, which will be open-sourced

should the paper be accepted, has been used to empirically

evaluate the performance of our approach in several sce-

narios of various complexities. We have benchmarked the

capabilities of our solver against Crocoddyl, a state-of-the-

art DDP solver used on several legged and aerial robots,

and show that our method converges quickly, more reliably

and to a better optimum. We have also demonstrated the

interest of variational integrators for handling the simulation

of polyarticulated systems.

REFERENCES

[1] M. Diehl, H. G. Bock, H. Diedam, and P.-B. Wieber, “Fast direct
multiple shooting algorithms for optimal robot control,” in Fast

motions in biomechanics and robotics. Springer, 2006, pp. 65–93.
[2] G. Schultz and K. Mombaur, “Modeling and optimal control of human-

like running,” IEEE/ASME Transactions on mechatronics, vol. 15,
no. 5, pp. 783–792, 2009.

[3] J. Koenemann, A. Del Prete, Y. Tassa, E. Todorov, O. Stasse,
M. Bennewitz, and N. Mansard, “Whole-body model-predictive con-
trol applied to the hrp-2 humanoid,” in 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, pp.
3346–3351.

[4] J. Carpentier and P.-B. Wieber, “Recent progress in legged robots
locomotion control,” Current Robotics Reports, pp. 1–8, 2021.

[5] D. Mayne, “A Second-order Gradient Method for Determining Optimal
Trajectories of Non-linear Discrete-time Systems,” International

Journal of Control, vol. 3, no. 1, pp. 85–95, Jan. 1966, publisher:
Taylor & Francis eprint: https://doi.org/10.1080/00207176608921369.
[Online]. Available: https://doi.org/10.1080/00207176608921369

[6] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of
complex behaviors through online trajectory optimization,” Oct. 2012,
pp. 4906–4913.

[7] J. Nocedal and S. J. Wright, Numerical optimization, 2nd ed., ser.
Springer series in operations research. New York: Springer, 2006,
oCLC: ocm68629100.

[8] R. Grandia, F. Farshidian, R. Ranftl, and M. Hutter, “Feedback mpc
for torque-controlled legged robots,” in 2019 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2019,
pp. 4730–4737.

[9] C. Mastalli, R. Budhiraja, W. Merkt, G. Saurel, B. Hammoud,
M. Naveau, J. Carpentier, L. Righetti, S. Vijayakumar, and
N. Mansard, “Crocoddyl: An Efficient and Versatile Framework for
Multi-Contact Optimal Control,” arXiv:1909.04947 [cs, math], Mar.
2020, arXiv: 1909.04947. [Online]. Available: http://arxiv.org/abs/
1909.04947

[10] G. Lantoine and R. P. Russell, “A hybrid differential dynamic pro-
gramming algorithm for constrained optimal control problems. part 1:
Theory,” Journal of Optimization Theory and Applications, vol. 154,
no. 2, pp. 382–417, 2012.

[11] B. Plancher, Z. Manchester, and S. Kuindersma, “Constrained un-
scented dynamic programming,” in 2017 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2017,
pp. 5674–5680.

[12] T. A. Howell, B. E. Jackson, and Z. Manchester, “ALTRO: A Fast
Solver for Constrained Trajectory Optimization,” in 2019 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS).
Macau, China: IEEE, Nov. 2019, pp. 7674–7679. [Online]. Available:
https://ieeexplore.ieee.org/document/8967788/

[13] S. Kazdadi, J. Carpentier, and J. Ponce, “Equality Constrained
Differential Dynamic Programming,” May 2021. [Online]. Available:
https://hal.inria.fr/hal-03184203

[14] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential
dynamic programming,” in 2014 IEEE International Conference on

Robotics and Automation (ICRA). Hong Kong, China: IEEE, May
2014, pp. 1168–1175. [Online]. Available: http://ieeexplore.ieee.org/
document/6907001/

[15] M. Giftthaler and J. Buchli, “A Projection Approach to Equality
Constrained Iterative Linear Quadratic Optimal Control,” 2017

IEEE-RAS 17th International Conference on Humanoid Robotics

(Humanoids), pp. 61–66, Nov. 2017, arXiv: 1805.09403. [Online].
Available: http://arxiv.org/abs/1805.09403

[16] Z. Xie, C. K. Liu, and K. Hauser, “Differential dynamic programming
with nonlinear constraints,” in 2017 IEEE International Conference

on Robotics and Automation (ICRA). IEEE, 2017, pp. 695–702.
[17] A. Pavlov, I. Shames, and C. Manzie, “Interior point differential

dynamic programming,” IEEE Transactions on Control Systems Tech-

nology, 2021.
[18] S. Rubrecht, V. Padois, P. Bidaud, and M. de Broissia, “Constraints

Compliant Control: Constraints compatibility and the displaced
configuration approach,” in 2010 IEEE/RSJ International Conference

on Intelligent Robots and Systems. Taipei: IEEE, Oct. 2010, pp. 677–
684. [Online]. Available: http://ieeexplore.ieee.org/document/5650793/

[19] S. Gros and M. Diehl, “Numerical optimal control,” 2019.
[20] E. R. Johnson and T. D. Murphey, “Scalable Variational Integrators for

Constrained Mechanical Systems in Generalized Coordinates,” IEEE

Transactions on Robotics, vol. 25, no. 6, pp. 1249–1261, Dec. 2009.
[21] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux,

O. Stasse, and N. Mansard, “The Pinocchio C++ library – A fast and
flexible implementation of rigid body dynamics algorithms and their
analytical derivatives,” in IEEE International Symposium on System

Integrations (SII), 2019.
[22] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,

“Casadi: a software framework for nonlinear optimization and optimal
control,” Mathematical Programming Computation, vol. 11, no. 1, pp.
1–36, 2019.

[23] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct methods for sparse

matrices. Oxford University Press, 2017.
[24] R. Budhiraja, J. Carpentier, C. Mastalli, and N. Mansard, “Differential

Dynamic Programming for Multi-Phase Rigid Contact Dynamics,” in
2018 IEEE-RAS 18th International Conference on Humanoid Robots

(Humanoids). Beijing, China: IEEE, Nov. 2018, pp. 1–9. [Online].
Available: https://ieeexplore.ieee.org/document/8624925/

[25] R. Featherstone, Rigid body dynamics algorithms. Springer, 2014.
[26] I. Chatzinikolaidis and Z. Li, “Trajectory optimization for contact-

rich motions using implicit differential dynamic programming,”
arXiv:2101.08246 [cs, eess], Jan. 2021, arXiv: 2101.08246. [Online].
Available: http://arxiv.org/abs/2101.08246

[27] M. Schmidt, N. L. Roux, and F. Bach, “Convergence Rates
of Inexact Proximal-Gradient Methods for Convex Optimization,”
arXiv:1109.2415 [cs, math], Dec. 2011, arXiv: 1109.2415. [Online].
Available: http://arxiv.org/abs/1109.2415

[28] D. Liberzon, Calculus of variations and optimal control theory.
Princeton university press, 2011.

[29] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Uni-
versity Press, March 2004. [Online]. Available: http://www.amazon.
com/exec/obidos/redirect?tag=citeulike-20&path=ASIN/0521833787

[30] D. Jacobson, “Optimal stochastic linear systems with exponential
performance criteria and their relation to deterministic differential
games,” IEEE Transactions on Automatic Control, vol. 18, no. 2, pp.
124–131, Apr. 1973. [Online]. Available: http://ieeexplore.ieee.org/
document/1100265/

[31] S. J. Wright, “Superlinear Convergence of a Stabilized SQP Method
to a Degenerate Solution,” p. 23, 1998.

[32] R. T. Rockafellar, “Augmented Lagrangians and Applications of the
Proximal Point Algorithm in Convex Programming,” Mathematics of

Operations Research, vol. 1, no. 2, pp. 97–116, 1976, publisher:
INFORMS. [Online]. Available: https://www.jstor.org/stable/3689277

[33] J. Carpentier, R. Budhiraja, and N. Mansard, “Proximal and sparse
resolution of constrained dynamic equations,” in Robotics: Science

and Systems 2021, 2021.
[34] A. Conn, N. Gould, and P. Toint, “A Globally Convergent Augmented

Lagrangian Algorithm for Optimization with General Constraints and
Simple Bounds,” SIAM Journal on Numerical Analysis, vol. 28, Apr.
1991.

[35] S. Boyd, “Proximal Algorithms,” p. 113.
[36] P. E. Gill and D. P. Robinson, “A primal-dual augmented Lagrangian,”

Computational Optimization and Applications, vol. 51, no. 1, pp.
1–25, Jan. 2012. [Online]. Available: http://link.springer.com/10.1007/
s10589-010-9339-1

[37] J. E. Marsden and M. West, “Discrete mechanics and variational
integrators,” Acta Numerica, vol. 10, pp. 357–514, 2001.

[38] F. Grimminger, A. Meduri, M. Khadiv, J. Viereck, M. Wüthrich,
M. Naveau, V. Berenz, S. Heim, F. Widmaier, T. Flayols, J. Fiene,
A. Badri-Spröwitz, and L. Righetti, “An open torque-controlled mod-
ular robot architecture for legged locomotion research,” IEEE Robotics

and Automation Letters, vol. 5, no. 2, pp. 3650–3657, 2020.
[39] J. Carpentier, F. Valenza, N. Mansard, and others, Pinocchio: fast

forward and inverse dynamics for poly-articulated systems, 2015.
[Online]. Available: https://stack-of-tasks.github.io/pinocchio

[40] J. Carpentier and N. Mansard, “Analytical Derivatives of Rigid
Body Dynamics Algorithms,” in Robotics: Science and Systems XIV.
Robotics: Science and Systems Foundation, June 2018. [Online].
Available: http://www.roboticsproceedings.org/rss14/p38.pdf

https://doi.org/10.1080/00207176608921369
http://arxiv.org/abs/1909.04947
http://arxiv.org/abs/1909.04947
https://ieeexplore.ieee.org/document/8967788/
https://hal.inria.fr/hal-03184203
http://ieeexplore.ieee.org/document/6907001/
http://ieeexplore.ieee.org/document/6907001/
http://arxiv.org/abs/1805.09403
http://ieeexplore.ieee.org/document/5650793/
https://ieeexplore.ieee.org/document/8624925/
http://arxiv.org/abs/2101.08246
http://arxiv.org/abs/1109.2415
http://www.amazon.com/exec/obidos/redirect?tag=citeulike-20&path=ASIN/0521833787
http://www.amazon.com/exec/obidos/redirect?tag=citeulike-20&path=ASIN/0521833787
http://ieeexplore.ieee.org/document/1100265/
http://ieeexplore.ieee.org/document/1100265/
https://www.jstor.org/stable/3689277
http://link.springer.com/10.1007/s10589-010-9339-1
http://link.springer.com/10.1007/s10589-010-9339-1
https://stack-of-tasks.github.io/pinocchio
http://www.roboticsproceedings.org/rss14/p38.pdf

	Introduction
	Implicit differential dynamic programming
	Problem formulation and transcription
	Dynamic programming of the implicit transcription
	A proximal-point reformulation

	Advanced implicit integrators
	Variational integrators

	Results
	Conclusion
	References

