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Abstract—Driven by the need of performance-efficient compu-
tations, a large number of systems resort to cache memories.
In this context, cache side-channel attacks have been proven to
be a serious threat for many applications. Many solutions and
countermeasures exist in literature. Nevertheless, the majority of
them do not cope with the constraints and limitations imposed
by embedded systems. In this paper, we introduce a novel cache
architecture that leverages randomized set placement to defeat
cache side-channel analysis. A key property of this architecture is
its low impact on performance and its small area overhead. We
demonstrate that this countermeasure allows protecting the system
against known cache side-channel attacks, while guaranteeing
small overheads, making this solution suitable also for embedded
systems.

I. INTRODUCTION

Nowadays, advanced micro-architectures become common
in embedded systems. Furthermore, the development of the
Internet of Things tends to make these processors accessible
internet-wide. While physical attacks (such as side-channel
analysis [1]) are considered for decades in the design of embed-
ded systems, remote micro-architectural attacks only became
relevant threats recently on these systems. Moreover, compared
to side-channel attacks which usually require a physical access
to the system, micro-architectural vulnerabilities may be ex-
ploited remotely. This makes these threats even more dangerous
since they may allow a distributed attack on a large number of
systems at the same time.

Cache memories are among the greatest source of micro-
architectural leaks. Indeed, these components are shared among
different processes and security domains. Furthermore, the
state of a given cache is easily modifiable (by doing mem-
ory accesses or using flush instructions) and is also easily
observable (by measuring the time of memory accesses). This
is why so many micro-architectural attacks target caches. Many
solutions have been proposed in the literature to cope with
this type of attack. They mainly rely on cache partitioning
(where a process cannot access a partition dedicated to another
process), or on randomization of the content of the cache (in
order to add noise to the measurements of the attacker and
increase the time required to extract useful information from the
leakage). Partitioning solutions are very robust against cache
attacks, but they require important hardware redesign and can
have a significant impact on performance. On the other hand,
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randomization generally has a much lower overhead, but it is
more difficult to prove its efficiency in terms of security.

This work proposes a new secure cache architecture that
leverages randomized set permutation, while allowing the de-
signer to adapt the security level of the system, through a
configurable refresh period of the random permutation. We
demonstrate in this paper that this technique can be imple-
mented efficiently and it also throws-out most cache side-
channel attacks. The cache architecture is modeled in the Gem5
simulator [2], to evaluate its performance and its security. We
complement the architecture with a security analysis and per-
formance evaluation. The Scramble Cache architecture with a
8-way 32kB, a history table of 8 elements, and 8192 accesses to
refresh the seed, achieves in the worst case 0.49% degradation
of the hit-rate.

The rest of this paper is structured as follows. Section II
describes our assumptions and gives an overview of cache
attacks. Existing solutions are then described and compared
in section III. The Scramble Cache architecture is presented
in section IV. Finally, the performances and the security are
discussed in section V.

II. BACKGROUND

A. Security Model

In this work, we consider an embedded system with a single-
core processor, which comprises a first-level cache. We assume
this system can run multiple tasks due to the presence of a small
operating system (such as FreeRTOS, VxWorks, or any other
equivalent). An important assumption we make is that all tasks
share the same address space. In other words, we assume that
there is no Memory Management Unit (MMU) and, instead,
memory isolation between processes is done through a static
partitioning of the address space.

We assume that an attacker may gain privilege on the system
by corrupting a task running on the operating system: either
remotely by exploiting software vulnerabilities or through a
physical attack (e.g., debug port or a memory corruption).

Being an embedded system, we also assume an attacker can
measure the global execution time of applications through side-
channel measurements [1]. In this model, most cache attacks
described in subsection II-B can be performed. Even trace-
driven attacks that usually require either hyperthreading or
multiple-core architecture become relevant due to the time



sharing within the same core. Since there is no MMU, the
cache remains valid between context switches.

B. Cache Attacks

Cache attacks leak information on the addresses accessed
based from various measurable elements on the cache: mem-
ory access time or performance counters (e.g., cache hit or
miss counts). These micro-architectural attacks appeared very
shortly [3] after physical side-channel attacks [1]. Since these
works, several practical exploits were developed, leading to the
discovery of Common Vulnerabilities and Exposures (CVEs) on
widely used cryptographic libraries. A common classification,
proposed by Acıçmez et. al [4], identifies three categories of
cache attacks:

• Timing-driven attacks, which use the overall execution
time of a process to deduce the behavior of the cache. They
are classified as passive attacks (such as the Bernstein’s
attack [5]) when no modification of the victim cache are
required and only address conflicts of the victim algorithm
are exploited; or active attacks, when the attacker forces
the eviction of specific lines of the cache, as in the
EVICT+TIME attack of Osvik et. al [6].

• Access-driven attacks, which use the addresses accessed
by the victim process to perform the attack. In these
attacks, the adversary will usually put the cache in a known
state and perform a differential analysis after the victim’s
execution. This category includes the PRIME+PROBE at-
tacks [6], [7] as well as cache template attacks [8].

• Trace-driven attacks, which extend the timing driven
categories by observing a very precise sequence of
events: cache hit or cache misses. These attacks are
very powerful as shown with the FLUSH+RELOAD [9]
or FLUSH+FLUSH attacks [10]. However, they require a
high-rate monitoring of the events, which is usually only
possible on high-end hardware (multi-core architectures,
or hyper-threading).

A more formal way to describe cache attacks is described
by Deng et. al [11]. The attack is modeled as a three-step
procedure (as shown in Figure 1): (1) The cache is placed into
a defined state by the attacker, (2) The victim accesses some
sensitive data, thus changing the state of the accessed cache
lines; (3) The attacker makes some measurements and recovers
sensitive information, which are correlated with the accessed
cache lines.

Core Attacker process Victim process

Step 1
 Cache Caracterisation 

and/or Modification 

Step 2
Victim Execution 

Step 3
Measurement and

Analysis
 - Cache Probing

- Flush
- Eviction

- Access Time
- Flush
- Performance counters

Fig. 1: Three step attack model of cache attacks on a single
core considered in this work

III. RELATED WORK

The most straightforward defense against cache attacks is
cache partitioning. The core idea is to separate different

processes by isolating them into distinct regions within the
cache, preventing interferences between a victim process and
the attacker process. Static partitioning introduced by Page [12]
creates partitions of cache at the hardware level. Intel proposes
the Cache Allocation Technology (CAT) [13] on Xeon cores,
whose primary goal is to get predictable performances for
processes, but it can also be used as mitigation for cache
attacks [14]. Nevertheless, CAT performs a way-partitioning
of the cache, and it can isolate a limited number of domains (4
or 8). The NoMo cache of [15] uses way-partitioning of one or
more ways of a set for each hardware thread and therefore, it
suffers from the same limitations of CAT. The Partition Locked
cache [16] performs finer-grained dynamic partitioning, where
each process can lock a specific line of the cache and prevent
it from being evicted by another process. This solution requires
an Instruction Set Architecture (ISA) extension and the authors
measured a 12% overhead on execution time.

An alternative to hardware partitioning is to randomize the
cache behavior, which adds noise to the attacker observa-
tions. Non-intrusive randomizations include random eviction
of lines [17] or random prefetching [18]. Random Permutation
cache [16] (RP Cache) and NewCache architectures [19] are
cache designs that use dynamic set remapping. The RP Cache
maintains a permutation table that is updated as the lines are
evicted from the cache. Thus, the cache requires an additional
lookup when accessing memory. Still, the architecture performs
better than partitioning solutions with an overhead below 1%.
The ScatterCache [20] uses a keyed index derivation function
(based on a strong cryptographic primitive) to obtain the
locations of the ways. This architecture resolves the imple-
mentability issue of the RP Cache and manages to provide
isolation without noticeable effects on performances (even
some performance improvements were observed). CEASER
[21] uses a dynamic remapping, periodically changing the
memory-to-cache mapping on Last Level Caches (LLC). The
authors measured a slowdown of 3% on a 8 MB, 16-Way LLC.

Table I compares the different existing solutions in terms
of four criteria: security, overhead (considering performance
and implementability), the scalability (regarding the number of
threads) and whether an extension of the ISA is required. Ran-
dom data placement is very effective against cache attacks and
has very low effect on performances. However, a challenging
aspect of these architectures is the hardware implementation of
the permutation. Especially considering first-level caches where
the access latency should be as low as possible. The Scramble
Cache proposed in this work, uses a very simple permutation
that can be implemented with only few logic gates. The security
of the Scramble Cache is ensured by changing the address
layout very frequently. Our architecture allows to select the
security level and include mechanisms to limit the overhead on
performances.

IV. THE SCRAMBLE CACHE ARCHITECTURE

A. Overview

The Scramble Cache implements an efficient randomization
of the set locations. In contrast to partitioning techniques, this



TABLE I: Comparison of existing countermeasures

Solution Security Overhead Scalability ISA extension
Static Partitioning [12], [15], [16] Good High No Yes
Randomization [17], [18] Low , Probabilistic Low Yes Yes
Dynamic Remapping [16], [19] Good, Probabilistic Medium No Yes
ScatterCache [20] Good, Probabilistic Medium Yes Yes
CEASER [21] Low , Probabilistic Medium Yes No
Scramble Cache (this work) Good, Probabilistic Low Yes No

approach allows full cache sharing, which favors performance.
The Scramble Cache uses a lightweight seeded permutation πr
to modify the set addresses. The permutation can be renewed
at any moment by changing the seed value r. This can be done
either after a fixed number of cycles, a fixed number of accesses
to the cache, on interruptions or context switches.

Ideally, the Scramble Cache would change the permutation
as frequently as possible in order to spread memory accesses
over the whole cache, as shown in Figure 2. Interestingly,
randomization tends to reduce internal cache collisions because
addresses are not mapped to a fixed set anymore.

Time

Prime Probe

Without 
ScrambleCache

Fig. 2: Example of the Scramble Cache behavior

However, changing the cache address mapping introduces
several issues:

1) Coherency: data writes in the cache (dirty lines) may not
be properly written back to parent caches. We resolve this
issue by performing write backs of all dirty lines on seed
change. This cost can be reduced by keeping a history of
dirty lines as we will demonstrate.

2) Aliasing: with permutation, unique data locations are not
preserved because of the seed change, the same data may
be valid at different places. We prevent this problem with
a simple line generation tracking mechanism.

3) Performance: changing the seed frequently creates an
important series of cache misses. We propose a history
mechanism to move data from old locations, while pre-
serving security properties.

We describe the Scramble Cache starting from a set asso-
ciative cache, with physical tags where S bits of the effective
address (the set bits) are used to locate the cache sets. The
cache contains 2S sets, each made on N lines, for a total
size of N × 2S cache words. The Scramble Cache architecture
is depicted on Figure 3. Compared to a baseline cache, the
architecture adds three important elements: (1) The permutation
of the input address, (2) a generation management mechanism,
(3) a history table. Random seeds come from a cache-internal
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Fig. 3: The Scramble Cache Architecture

PRNG that is seeded randomly at reset. The modified cache
control logic is found in the History Lookup FSM and is
detailed on algorithm 1. The rest of this section describes the
components of the architecture.

B. Address Permutation

The Scramble Cache applies a permutation on the set index
extracted from the cache input address. Any address transfor-
mation (bijective or not) can be applied, because the cache
always checks the physical tags before supplying the data to
the CPU. We represent the permutation as a function πr(s),
where r is a randomization parameter and s is the input set
address.

A cheap way to implement a permutation in hardware is to
use an ”eXclusive-OR” (XOR) function, with πr(s) = s ⊕ r.
However, a XOR only allows limited number of permutations.
For example, when S = 8 (the cache has 256 sets), out of
possible 256! permutations, only 256 can be reached with a
XOR-based permutation. Therefore an attacker may success-
fully perform an exhaustive search of the permutation seed
r. However, if the permutation changes many times between
attacker analysis (as shown on Figure 2), all intermediate values
of r have to be recovered, which makes the search more
complex. But changing the permutation has a cost in terms
of performance.

Thus, we suggest an alternative permutation family in the
Scramble Cache, which has a wider seed input. The permutation
is constructed by adding a layer of bit shuffling after the XOR,
which can be viewed as a randomized barrel shifter. Formally,
the π function takes the form:

πr(s) = f(s⊕ r0, r1)

The function f is defined recursively, by dividing the binary
representation of its input in two equal parts. The permutation



of a 2-bit wide input is denoted cswap, which stands for
”conditional swap”. Let n = |s| be the bit length of f(s, r).
The function f first computes w of size n bits, with the i-th
bit defined as:

w[i] =

{
cswap(s[i], s[i+ n/2], r[i])[0] if i < n/2

cswap(s[i− n/2], s[i], r[i])[1] otherwise

Then, the binary w representation is divided in two equal parts
w0, w1 and the recursive formula f(s, r) = f(w0, r)||f(w1, r)
is applied. Figure 4 shows the permutation graph of f for the
4-bit wide inputs.
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Fig. 4: Example of the f permutation for 4-bit wide addresses

C. Generation tracking for aliasing issues

Changing the permutation introduces a serious issue: the
translation of an address may point towards old data. Accessing
this data may discard modifications that have occurred since.
To prevent the reuse of old data, we add to each line, besides
the address tag, a generation counter to track how many
generations away is each cache line, as shown in Figure 3.

The generation can be viewed as an infinite counter which
is incremented each time the permutation changes. In practice,
our cache can only keep track of limited generations with the
history mechanism explained in subsection IV-D. Thus, for
a history with depth R, the cache keeps a global generation
counter cglob updated as cglob ← (cglob +1) mod R. Each time
data is brought in the cache, the line generation takes the value
of the global counter. The relative age of a line can thus be
computed with (cglob − cline) mod R.

D. History Mechanism

The history mechanism is a core element of the Scramble
Cache. It allows reducing the miss rate when changing the
permutation by enabling older data to be moved directly to
their new location. This is done by storing R previous seed
values in a table (the History Table in Figure 3). To ensure
strict process isolation, we associate a process identifier with
each entry in the table.

Upon a miss, the cache yields control to an FSM, which
takes care of the searching if the data is cached by using the
previous R seeds, by implementing algorithm 1. This algorithm
scans the history table in order, from the newest generation to
the older ones, and checks if an older value of r leads to valid
data. In case the data is valid, it is swapped with the current
line to avoid looking in the table in the future.

On seed change, we still need to write back all lines that
cannot be tracked by the history anymore. A FSM scans all

Algorithm 1: History lookup algorithm
Input: Set address s, Process identifier pid, isWrite

snew ← πr(s)
c← cglob
for (rold, pidold) ∈ History Table do

c← (c− 1) mod R
sold ← πrold (s)
if generation[sold] = c and isTagValid(sold) and pid = pold then

swap(data[snew], data[sold])
swap(tag[snew], tag[sold])
generation[snew]← c

end

sets linearly and all lines marked as dirty which have their
counter cline = (cglob− (R−1)) mod R are removed from the
cache and put into a write back queue.

V. EVALUATION

For our performance studies, we use Gem5 [2], [22], an
event-driven, timing-accurate system simulator. The Gem5 sim-
ulator supports several CPU architectures, memory models,
system calls emulation and different modeling granularities
(functional or timing-accurate). This flexibility makes Gem5
a very powerful tool for design exploration.

A. Gem5 Modeling of the Scramble Cache

The Scramble Cache model that we developed in Gem5
handles requests coming from slave ports (CPU-side) and has a
master port that interacts with the memory-side (usually a bus),
as shown on Figure 5. Once a packet (Gem5’s abstraction of
read or write requests) is received on a CPU-side slave port,
the Scramble Cache determines if the cache can accept the
packet or not: the cache only handles a single request at a
time. When the Scramble Cache accepts a packet, it switches
into a blocked mode and delays the packet processing by a
constant delay representing the hit access time. If the line is
found (normal hit) the cache instantly sends the response to
the CPU. Otherwise, the history table is browsed linearly to
check if older data can be moved. Depending on the index of
the entry, an appropriate latency is added (a multiple of the hit
access latency). If the data is not present, the master port will
be activated to send a read request to the main memory. The
memory-side master port uses a queue of packets containing
read and write back requests from the Scramble Cache.

B. System Architecture

To evaluate performances, we instantiate a simple system,
depicted in Figure 5, that is similar in terms of memory
architecture to an embedded system. The baseline configuration
uses Gem5’s built-in L1 data and instruction caches of 32KB,
8-Way associative, with a random replacement policy. The L1
caches are configured with a hit latency of 2 CPU cycles. A
history lookup step of the Scramble Cache has a latency defined
to 1 CPU cycle. For the rest of the section, unless specified,
the Scramble Cache history has a depth of 8-entries and its
permutation change interval is set to 8192 accesses. We use
a Linear Feedback Shift Register (LFSR) to generate pseudo-
random numbers, with latency modeled to 1 cycle.



Fig. 5: System Simulated in Gem5

C. Performance Analysis

1) Benchmarking Methodology: We evaluate Scramble
Cache performances by running workloads from the Mibench
[23] benchmark suite in the small and large profiles. First,
the simulations are validated on the baseline system without
countermeasures, to obtain a reference time. Then, for different
parameters, we replace the L1 data cache with the Scramble
Cache and compare the performance results against the baseline
configuration. Our analysis focuses on the following param-
eters: the size of the L1 cache, the depth history table, and
the permutation change interval (expressed in number of cache
accesses).

2) Impact of cache size: Figure 6 shows the hit rate change
in a 4kB, 8kB, 16kB, and 32kB L1 data cache for different
workloads. A higher hit rate overhead is better and 0% denotes
no degradation. In comparison with the baseline cache, the
average performance loss by the Scramble Cache using is
0.49% in the worst case (patricia). These results suggest that
as the cache size increases, the Scramble Cache needs more
time to write back all the dirty lines when the history table
is full. With the exception of two workloads, which perform
better because of the reduction in conflict misses by changing
the memory-to-cache mapping.

Fig. 6: Impact of L1 data capacity on Scramble Cache
performance

3) Impact of the history table depth: To evaluate the effect
of the history table depth, we vary this parameter on a 32 KB 8-
way L1 data cache. Figure 7 shows the runtime overhead of the
Scramble Cache for different history table depths. As expected,
the overhead tends to decrease with a deeper history table.
Indeed, increasing depth should reduce the number of misses
caused by a permutation change. This is true up to a certain
point. As we can observe on Figure 7, when the history table
stores more than eight elements, the benefits are not always
visible. At that point, the history table lookup (a linear search)

is not a cheap operation anymore and it is almost as costly as
reading directly from memory.

Fig. 7: Impact of history table depth on Scramble Cache
performance

4) Impact of permutation change interval: The permuta-
tion change interval has a direct impact on the security of
the Scramble Cache. The smallest acceptable value for this
parameter should be selected in order to maximize security.
However, changing the seed more frequently implies more
misses, which at some point cannot be compensated with a
deeper history table. Thus, for the refresh interval selection, a
trade-off between security and performance is necessary. It can
be seen from Figure 8 that when the seed refresh interval is
long enough, the Scramble Cache approaches the performances
of the baseline cache without countermeasures. However, if
the seed is changing very frequently, the performances are
decreasing very quickly.

Fig. 8: Impact of remapping frequency on slowdown of
Scramble Cache

D. Security discussion

The Scramble Cache mitigates the FLUSH+RELOAD and
FLUSH+FLUSH attacks thanks to the partitioning implemented
in the history lookup table. If the attacker flushes a line, the
next reload operation at the same address will fail with high
probability. The only case for the attack to observe a hit,
would be to guess the exact future location where the data
will be stored after scrambling, thus allowing the attacker to
perform the RELOAD operation on that location. The random
nature of the permutation makes the new address of the data
flushed uniformly distributed. Thus, an attacker has 2−S (S is
the number of bits in the set field) chance to observe the correct
result. This means that a larger number of sets will decrease
the efficiency of these attacks.



For other classes of attacks (address conflicts,
PRIME+PROBE), the Scramble Cache adds extra noise to the
victim memory access patterns to make them unexploitable.
The noise level is directly related to the permutation change
interval. To validate this statement, we perform a simple
PRIME+PROBE attack on the Scramble Cache (data cache)
using the Gem5 model. The victim and the attacker run in the
same process. Between PRIME and PROBE, the victim reads
two fixed memory locations once. Figure 9 shows the average
cache access times measured by the attacker after the victim
execution for each cache set. Times are expressed in cycles
and obtained by the x86 instruction rdtsc. As measurements
are noisy (especially with the Scramble Cache), we repeat the
experiment 100 times on the unprotected cache and 10,000
times on the Scramble cache (permutation change every 8096
and a history table of 8 elements). For the latter, we plot the
mean (as a circle) and the standard deviation (as a bar) of the
measurement. It can be observed by comparing Figure 9a
and Figure 9b that the Scramble Cache completely hides the
memory access pattern, making PRIME+PROBE and address
conflicts attacks impractical.

(a) Unprotected version

(b) Scramble Cache

Fig. 9: Results of a PRIME+PROBE attack on the Scramble
Cache

VI. CONCLUSION

In this paper, we presented Scramble Cache an architecture
that implements efficiently set permutation. The keystones of
the Scramble Cache are its generation tracking and history
mechanisms, both allowing to frequently change the permuta-
tion. Thanks to the Scramble Cache modeling in the Gem5, we
observed that a PRIME+PROBE attack is made much harder.
The benchmarks demonstrated that the history table depth
allows a trade-off between security and performance (under the
assumption that changing the seed more frequently improves
security). Indeed, with the permutation changing every 8192
accesses, the overhead on the execution time is below 4%, and
we already observed security improvements against conflict-
based cache timing attacks. Compared to existing remapping
architectures (see Table I), the Scramble Cache achieves a
similar security level as best-known solutions. Furthermore,

its access latency is drastically reduced thanks to a cheap
permutation, making this architecture usable as a first level
cache in constrained environments.
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