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Abstract

The nematode Caenorhabditis elegans (C. elegans) is a well-known model organism in
neuroscience. The relative simplicity of its nervous system, made up of few hundred neu-
rons, shares some essential features with more sophisticated nervous systems, including the
human one. If we are able to fully characterize the nervous system of this organism, we will
be one step closer to understanding the mechanisms underlying the behavior of living things.
Following a recently conducted electrophysiological survey on different C. elegans neurons,
this paper aims at modeling the three non-spiking RIM, AIY and AFD neurons (arbitrarily
named with three upper case letters by convention). To date, they represent the three possi-
ble forms of non-spiking neuronal responses of the C. elegans. To achieve this objective, we
propose a conductance-based neuron model adapted to the electrophysiological features of
each neuron. These features are based on current biological research and a series of in-silico
experiments which use differential evolution to fit the model to experimental data. From the
obtained results, we formulate a series of biological hypotheses regarding currents involved
in the neuron dynamics. These models reproduce experimental data with a high degree of
accuracy while being biologically consistent with state-of-the-art research.

Keywords: Neural system modeling; Conductance-based neuron models; Caenorhabdi-

tis elegans; Parameter estimation; Differential evolution..

1 Introduction

Neurosciences have not yet devised a completely satisfactory explanation of how the activity of
neurons, as well as their mutual interactions, lead to the particular behavior of an organism in
response to stimuli from the environment. However, understanding behavior has been a goal
for researchers for the past few decades. For Sidney Brenner, to whom we owe the introduction
of the nematode Caenorhabditis elegans (C. elegans) in laboratories in 1960s, behavior is “the
result of a complex and ill-understood set of computations performed by nervous systems” [10].
He perceived the study of the nematode’s brain as essential to understand “the way nervous
systems work to produce behavior”. In 1986, White et al. [84] described the full structure of
the nervous system of the C. elegans, i.e. the connectome, for the first time. More than 20
years later, the team of D. Chklovskii published an even more comprehensive version of this
connectome[81].

Although the whole-brain connectomes of some other small organisms such as Drosophila
melanogaster [95] or the tapdole larva of Ciona intestinalis [69] have been recently published,
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the study of C. elegans is still relevant due to the relative simplicity of its nervous system:
the neuronal network of a hermaphrodite adult only accounts 302 neurons and about 7000
synaptic connections. Despite this, the C. elegans is capable of displaying a variety of complex
behaviors [24] encompassing chemotaxis, the ability to regulate pharyngeal food pumping rate
based on the absence or presence of food in its environment, the capacity to avoid elevated
CO2 levels [11] or the ability to adapt locomotion speeding depending on food quality [75].
Furthermore, the nematode shares many of the general essential human biological features [66,
61] and, in particular, many features with the complex human nervous system using similar
neurotransmitters, channels, and developmental genes [4]. In addition, some of the principles
that underlie behaviors in C. elegans may also be similar in more complex animals such as
humans. For instance, Chalasani et al. [15] show that both the worm olfactory system and the
visual system of vertebrates follow the same general principles to process sensory information.
In the same way, some information processing mechanisms are similar in other invertebrates and
vertebrates brains [74]. Surprisingly, all of these features are regulated by the transmission and
propagation of electrical signals along a nervous system composed of only 302 neurons. Hence,
characterizing the role and activity of each of these neurons is of paramount importance to unveil
the mechanisms underlying behavior.

Concerning the characterization of neurons, computational modeling is a valuable asset to
investigate hypotheses not easily testable through direct experimentation thus allowing to gain
biological insights into the working mechanisms of the targeted neurons [55]. Conductance-based
models such as the well-known Hodgkin-Huxley model [47, 48, 49, 50, 46], as well as those derived
from it [30, 45], have been widely studied in recent years [17, 7, 92, 27, 91, 38]. In simple terms,
a conductance-based model is a biophysical representation of a neuron in which the ion channels
are represented by conductances and the polar membrane by a capacitor. Following that line
of research, this paper aims at modeling the non-spiking RIM, AIY and AFD neurons, which
represent the three possible forms of non-spiking neuronal responses of the C. elegans according
to Liu et al. [60]. These authors classify four large distinct classes of neurons conforming to their
current-voltage (I-V) relationships as depicted in Figure 1.C. One of these classes encompasses
the spiking AWA neuron which is the only one that elicits spikes. The remaining three classes
comprise different types of non-spiking neurons, of which RIM, AIY and AFD neurons are
representative examples. Spiking neurons compress continuous inputs into digital signals for
transmitting information via action potentials. On the contrary, the non-spiking RIM, AIY
and AFD neurons do not elicit action potentials and use analog signals (i.e. graded potential
responses), allowing them not to sacrifice information content [73].

Highly detailed biophysical conductance-based neuron models have already been proposed
for the spiking AWA neuron [60] and for the non-spiking AWC and RMD neurons [64]. However,
for the three neurons under study, the lack of empirical microscopic data – detailed at the level
of intervening ion currents – is an impediment to proposing the same type of modeling that is
conceptualized channel by channel. Therefore, we propose a conductance-based neuron model
adapted to the electrophysiological features of each neuron using the aggregated experimental
membrane currents (a.k.a. total membrane currents as in Figure 1.B) and the experimental
voltage traces (Figure 1.A) as references. We also take into consideration the presence or ab-
sence of plausible ion currents in each neuron from the literature and determine the intervening
currents in each model from the conducted in-silico experimentation.

These series of in-silico experiments are conducted in order to estimate the parameters of
each model, which is a standard approach in conductance-based modeling [87, 42, 33, 59, 41, 25,
19, 80, 13, 14, 20, 62, 77]. In particular, we use differential evolution [76] which has shown to
outperform genetic algorithms and simulated annealing in terms of convergence speed, simulation
time, and minimization of the cost function in similar problems [12].

The remainder of the paper is organized as follows. Section 2 presents a general conductance-
based neuron model to fit the membrane potential evolution of the non-spiking RIM, AIY and
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Figure 1: In-vivo recordings[60] of four different neurons of the C. elegans that represent, to date,
the four forms of possible neuronal responses of the nematode. Figure A shows the evolution of
the membrane potential for a series of current injections, in spans of 5 seconds, starting from
-15pA and increasing to 35pA by 5pA increments. Figure B represents the evolution of the
total ion currents of the different neurons when their membrane potentials are clamped at a
fixed value, in spans of 0.5 seconds, from -100mV and increasing to 50mV by 10mV increments.
Figure C describes the I-V relationships obtained from averaged voltage-clamp recordings (RIM:
n = 3; AIY: n = 7; AFD: n = 3; AWA: n = 16). Peak currents are measured by the absolute
maximum amplitude of currents within the first 100 ms of each voltage step onset, while steady-
state currents are measured by the averaged currents of the last 50 ms of each voltage step. The
figure has been reproduced with the consent of the authors [60].

AFD neurons. In Section 3, we introduce the experimental setup and the methodology to
conduct in-silico experiments and estimate the best parameters for the model. The obtained
results are analyzed in Section 4 from a numerical and a biological perspective. Section 5 presents
a discussion about the major findings of the paper. Finally, conclusions are drawn and future
lines of research presented in Section 6.

2 Model Description

This section presents a general conductance-based neuron model for the non-spiking RIM, AIY
and AFD neurons of the C. elegans. In order to fully characterize each neuron, we review the
literature seeking for biological support to the plausible ion currents intervening in the neurons
under study, and we present them in mathematical terms.

2.1 General model

Conductance-based neuron models, as the one proposed in this paper, are grounded in a series
of seminal works initiated by Hodgkin and Huxley in the 1950s [47, 48, 49, 50, 46]. In general
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terms, this framework describes the neuronal dynamics in terms of activation and inactivation
of voltage-gated conductances where the dynamics of the membrane potential V is described by
a general equation of the form

C
dV

dt
= −

∑
ion

Iion + I (1)

where C is the membrane capacitance, dV/dt is the time derivative of the membrane potential,∑
ion

Iion is the total current flowing across the cell membrane where ion labels a generic type of

ion channel, and I is an input current.
The dynamics of every Iion are governed by gating particles (gates) sensitive to the change in

membrane potential (voltage). These gates can be of two types: activation gate and inactivation
gate, each of which can be in an open or a closed state. Typically, the probability of an activation
or inactivation gate being in the open state is denoted respectively by the variables m and h
[23, 54]. Thus, the current generated by a large population of identical ion channels is given by

Iion = gionm
a
ionh

b
ion(V − Eion) (2)

where gion is the maximal conductance (namely the conductance of the channel when all the
gates are open); Eion is the reverse potential, that is, the potential at which the ion current
reverses its direction (a.k.a. equilibrium potential); and a and b respectively refer to the number
of activation and inactivation gates. In this paper, a is always assumed equal to 1 and the value
of b depends on features of the ionic currents. Channels that do not have inactivation gates
(b = 0) induce a persistent current while channels that do inactivate (b = 1) induce a transient
current.

Channels can be deactivated (m = 0), partially activated (0 < m < 1), or fully activated
(m = 1); likewise, they can be completely inactivated (h = 0), partially inactivated (0 < h < 1),
or deinactivated (h = 1). The dynamics of variables m and h are described by the following
equation

dx

dt
=
x∞(V )− x

τx
, x ∈ {m,h} (3)

where τx is the constant time for which x reaches its respective equilibrium value x∞. We
express x∞ by a Boltzmann sigmoid function [54, 23]:

x∞(V ) =
1

1 + exp

(
V x
1/2
−V

kx

) , x ∈ {m,h} (4)

where V x
1/2 satisfies x∞(V x

1/2) = 1/2 and kx is the slope factor with km > 0 and kh < 0 as to

represent activation and inactivation respectively, i.e., smaller values of |kx| lead to a sharper
x∞.

2.2 Determining the Iion currents involved in the model

In order to describe the dynamics of the membrane potential of RIM, AIY and AFD neurons
from equation (1), it is necessary to determine all Iion currents involved in the equation. Un-
fortunately, the three neurons under study have not yet been as thoroughly studied as, for
instance, the AWA neuron for which all intervening types of currents have been studied and
reported at a microscopic detail [60]. Therefore, anticipating future biological confirmation, we
can only proceed by establishing a set of plausible Iion currents taking into consideration some
biological evidences described in the literature. Later on, in section 3, we provide a methodology
for determining which of all of these plausible currents are more likely to actually intervene in
each neuron. In particular, we determine the set of plausible currents based on the following
evidences:
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• Goodman et al. [39] show that the outward current in C. elegans neurons is carried mostly
by voltage-gated potassium channels. Furthermore, there are around 70 genes in the C.
elegans genome that encode potassium channels [8, 72] which is a high number of genes
compared to the size of its nervous system.

• Some papers [16, 15] show the existence of Ca2+ dynamics (ICa) in the AIY and AFD
neurons, as well as in the RIM neuron [65, 94, 40]. Additionally, calcium currents have
been reported in some other neurons such as AWA neuron [60], AWC neuron [15], ASER
neuron [39, 58], AIB neuron [15, 40], AVA neuron [65, 94, 40] or RIA neuron [43].

• The presence of an inwardly rectifying potassium current (IKir) has been experimentally
confirmed in AWA neuron [60] and HSN neuron [28]. Furthermore, there are three genes
that encode inward rectifier potassium channels [8] and are widely expressed in multiple
neurons including sensory phasmid neurons in the tail, unidentified neurons in both the
head and tail of male worms, neurons of the anterior ganglia, and different types of sensory
neurons [89]. It can also be noted that the inward current for AFD (depicted in Figure 1)
is typical of an inwardly rectifying potassium current.

• A leakage current corresponding to chloride channels (IL) is taken into account as in
Refs. [60] [64] in which it plays an important role in the behavior of the neurons considered.

• C.I. Bargmann [8] shows the lack of voltage-gated Na+ channels in C. elegans neurons.

Therefore, based on previous studies, we consider in this paper four plausible types of currents
(IK , ICa, IKir and IL) that we now describe in further detail.

2.2.1 Potassium and calcium current

The sequencing of the C. elegans genome has revealed approximately 70 genes that encode
potassium channels [8, 72] and, consequently, a wide variety of potassium channels are expressed
in one neuron, so that the total potassium current IK is, in reality, the sum of many potassium
subcurrents. These subcurrents may differ in their activation and inactivation kinetics, activation
thresholds or pharmacology. However, for the sake of simplicity and due to the lack of biological
evidence about the types of potassium channels expressed in the neurons, we assume that the
outward current is dominated by a unique current IK . Likewise, the same remark can be made
on the inward calcium current ICa: there are many different types of voltage-gated calcium
channels that coexist within the cell membrane [79]. Therefore, we assume that IK and ICa
respectively aggregate all the potassium and calcium subcurrents.

In addition to previous remarks, the potassium and calcium currents (IK and ICa) can
display two different types of dynamics according to the biophysical features of neuron channels.
In particular, these currents can be transient (Iion,t) or persistent (Iion,p) and are described by
the following equations:

• Type 1. Transient current (current that inactivates):

Iion,t = gionmionhion(V − Eion), ion ∈ {Ca,K} (5)

• Type 2. Persistent current (current that does not inactivate):

Iion,p = gionmion(V − Eion), ion ∈ {Ca,K} (6)

where the dynamic of variables m and h are governed by the equation (3).
The type of outward current IK can be determined according to the macroscopic data de-

picted in Figure 1. Specifically, RIM and AFD display a transient potassium current while
AIY exhibits a persistent potassium current. However, we cannot identify straightforwardly the
type of calcium current ICa due to the possible interactions occurring between different kinds of
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inward currents such as IL or IKir. Hence, as summarized in Table 1, we still need to identify
whether the calcium currents are transient or persistent. In other words, in the list of plausible
currents (IK , ICa, IKir and IL), we have to split the calcium current into two possible current
types: transient calcium current (ICa,t) and persistent calcium current (ICa,p).

Neurons RIM and AFD AIY

Potassium current IK Persistent Transient

Calcium current ICa Unidentified Unidentified

Table 1: Type of potassium IK and calcium ICa currents in RIM, AIY and AFD neurons.

2.2.2 Leak current and inward rectifier potassium current

The leak current IL from chloride Cl− channels, with constant conductance (that is, a = b = 0
in equation (2)), is described as

IL = gL(V − EL) (7)

where gL is the maximal conductance of leak channels and EL is the reverse potential.
The inwardly rectifying potassium current IKir is a current that is turned on by hyperpo-

larization and turned off by depolarization [44]. In the mathematical sense, this translates into
the parameter a being equal to 0 (a = 0) in equation (2) so that IKir is inactived under depo-
larizations (hKir → 0) and deinactivated under hyperpolarizations (hKir → 1). Furthermore,
according to [54], there are biophysical evidences showing that the kinetics of IKir are practically
instantaneous (that is, τKir << 1) so that it can be considered hKir = hKir∞(V ). Therefore,
this current can be modeled as

IKir = gKirhKir∞(V )(V − EK). (8)

where hKir∞ is described by the equation (4)

2.3 Summary of all possible models for each neuron

Taking into account the list of plausible currents, we face a combinatorial problem. Until
biological confirmation is obtained, rather than focusing on a single model for each neuron, we
explore several possible models taking into account:

• The outward current is dominated by a potassium current: transient (IK,t) in the case of
the RIM and AFD neurons and persistent (IK,p) in the case of the AIY neuron.

• There is a presence of leakage current (IL), mainly due to chloride channels.

• Some other types of inward currents may also be present: IKir, ICa,t and ICa,p.

Considering these types of currents, Table 2 shows all the models that we are going to analyze
for each neuron. In the next section we propose a numerical methodology for evaluating all of
these models and for determining which of them describe the best the dynamics observed in
each neuron.

3 Methodology and Experimental Setup

In the previous section, we determined a list of plausible models that can describe the dynamics of
each neuron (see Table 2). This section proposes a methodology based on parameter estimation
to determine which of the models fit best the experimental data depicted in Figure 1. Parameter
estimation is carried out through differential evolution [76] using the mean squared error as
estimator of the quality of the model.
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RIM and AFD AIY

IK,t + IL IK,p + IL
IKir + IK,t + IL IKir + IK,p + IL
ICa,t + IK,t + IL ICa,t + IK,p + IL
ICa,p + IK,t + IL ICa,p + IK,p + IL

ICa,t + IKir + IK,t + IL ICa,t + IKir + IK,p + IL
ICa,p + IKir + IK,t + IL ICa,p + IKir + IK,p + IL

Table 2: List of all possible models for each neuron. Please refer to Table ?? for a full-fledged
description of each one.

3.1 Methodology

To identify the model that best describes the dynamics of each neuron under study, a three-stage
methodology is proposed, consisting of the following steps:

• Step 1. Parameter estimation:

Procedure: We have conducted 50 independent runs of the differential evolution algo-
rithm described in section 3.2 for each of the 18 possible models listed in Table 2.
Input: 18 possible models (3 neurons × 6 models per neuron).
Output: 50 possible parameterizations per model (900 in total).

• Step 2. Ranking the models:

Procedure: We conduct a Wittkowski statistical test (generalized Friedman rank sum
test) [88] in order to produce a ranked list of the six models of every neuron.

Input: 6 models per neuron × 50 parameterizations per model.
Output: The 6 models of each neuron are ranked from best to worst.

• Step 3. Selection of the best model:

Procedure: Preferentially the best ranked model is selected. However, in the case that
there are no statistical differences between the best ranked model and other models, we
use the peak performance measure [26] as criterion to select the best model, i.e. the
parameterization with the smallest cost function prevails over the rest. This step applies
pairwise comparisons using paired Wilcoxon signed-rank test [86] corrected for multiple
comparisons with the Holm method [51].

Input: A list of ranked models per neuron.
Output: 1 model is selected per neuron with its corresponding parametrization.

The Wittkowski test uses the marginal likelihood principle to obtain consistent estimates
for rank scores (i.e. determine which models consistently score better than others). Meanwhile,
Wilcoxon signed-rank is a non-parametric test used when distributions cannot be assumed to
be normally distributed. The latter test complements the former by determining whether the
differences between two models with different ranks are additionally statistically different or not.

3.2 Differential evolution (DE)

Originally proposed by Storn and Price [76], DE is a population-based metaheuristic of the
family of evolutionary algorithms capable of tackling a wide variety of problems [67, 29]. As
every population-based metaheuristic, DE is an optimization method that iteratively optimizes
a problem by trying to improve a set of NP candidate solutions, that are initially set at random
within a given solution space of D parameters. New candidate solutions are generated by using
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mutation (controlled by a scaling factor F ) and crossover (controlled by another factor CR) and
selection then determines which of them will survive into the next generation. Although DE has
undergone several improvement since its appearance [63, 21, 22], its proof of convergence [34] is
based on the canonical version that we use in this paper.

When addressing parameter estimation in the context of Hodgkin-Huxley based models,
DE has been shown to be an effective method and superior to other continuous optimization
methods [12, 13, 14]. In these works as well as in other studies on the parametrization of
DE [76, 3, 1, 83], DE main parameters are fixed to F = 0.5 and CR = 0.9. The choice of
parameters in this paper is based on these works.

We have implemented DE on Scilab by setting constraints on parameter values to remain
biologically relevant (Table 3). Value ranges are determined based on literature data (e.g. see
chapter 2 in [54] which lists a large number of parameter values for different models encountered
in different contexts). We run the optimization process during 1000 iterations with the following
parameters values: F = 0.5, CR = 0.9 and NP = 140. The code of the algorithm is available
at https://github.com/lois76/ParamEstimationDE/tree/master/differentialEvolution
published under GNU Public License v3.0.

Parameters Min value Max value

gCa, gKir, gK , gL 0nS 50nS

ECa 20mV 150mV

EK -100mV 0mV

EL -90mV 30mV

V m
1/2, V

h
1/2, V

Kir
1/2 -90mV 0mV

km 0mV 30mV

kh, kKir -30mV 0mV

τm, τh 0ds 15ds

x0m, x0h 0 1

C 0 10

Table 3: Parameter ranges have been obtained from literature [54, 60] to be biologically relevant.

3.3 Parameter estimation

Parameter estimation is carried out by minimizing the mean square error (MSE) between the
experimental voltages Vexp(I, t) depicted in Figure 1.A and the voltages V θ

est(I, t) estimated by
the model:

MSE(θ) =
1

N

∑
t

∑
I

(
Vexp(I, t)− V θ

est(I, t)
)2

(9)

where t ∈ [0, 50ds] corresponds to the biological real time with a sampling period of ∆t =
0.004ds; N = 12500 is the number of data points in the measurement record; I corresponds
to successive step values of current injections starting from -15pA and increasing to 35pA by
intervals of 5pA; and θ is the vector containing the parameters of a specific model. For instance,
the parameter vector of the IK,p + IL-model is expressed by:

θIK,p+IL = [gK gL EK EL V
mK

1/2 kmK τmK m0
K C]

The respective θ-vectors of all possible models displayed in Table 2 are provided in Table A. We
emphasize the importance of not setting the initial conditions m0 and h0 at any prefixed value
but to consider them as parameters to be estimated, so that the algorithm can escape from
bad regions in the solution space that are due to a bad choice of the initial conditions. Finally,
V θ
est(I, t) is calculated using the ordinary differential equation solver (ode function) of Scilab.
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4 Analysis of Results

In this section, we analyze results from two complementary perspectives. First, we treat them
from a global perspective. The aim is to determine which ion currents actually play a role in
the functioning of the neuron. This way, we can formulate some biological hypotheses and shed
some light on future biological research. Then, we provide a full-fledged characterization of the
models for each neuron under study based on the selection criteria established in Section 3.1.

After conducting the 900 simulations, we rank the models using the Wittkowski test (Table 4)
and perform pairwise comparisons between the different models using paired Wilcoxon signed-
rank test (Figure 2).

At first glance, it can be noted that none of the models yield MSE values near to zero (a
MSE of zero would mean a model that perfectly fits experimental data). These results can be
explained by the fact that biological measurements are not exempt from experimental noise and
can also be subject to some degree of experimental error. In fact, the noise in experimental data
can be easily observed in Figure 1.A where the curves present the characteristic non-smooth
shape of noisy data. Additionally, we can also appreciate some fluctuations in voltage in the
RIM and AIY neurons for the -15pA current injection that could well be due to measurement
errors. All this implies that the experimental measurements carry an aggregated error that is
reflected in the obtained results.

Model
Neuron

RIM AIY AFD

IK,t + IL 5.9(654.7)∗ / 6(57.6)∗

IK,p + IL / 5.8(181.6)∗ /

IKir + IK,t + IL 5.0(345.7)∗ / 3.7(17.1)∗

IKir + IK,p + IL / 5.0(177.1)∗ /

ICa,t + IK,t + IL 3.5(115.9)∗ / 4.1(17.5)∗

ICa,t + IK,p + IL / 2.4(65.5)∗ /

ICa,p + IK,t + IL 2.2(69.1)∗ / 2.5(16.2)

ICa,p + IK,p + IL / 3.3(72.7)∗ /

ICa,t + IKir + IK,t + IL 2.8(64.4)∗ / 2.5(15.1)

ICa,t + IKir + IK,p + IL / 1.2(63.3) /

ICa,p + IKir + IK,t + IL 1.6(59.5) / 2.3(15.0)

ICa,p + IKir + IK,p + IL / 3.3(72.3)∗ /

Table 4: Results of the mean rank of each model obtained using the Wittkowski test. The
selected models appear in underlined bold font and have been selected according to the criteria
established in Section 3.1. In parentheses the results of the best cost function (minimum mean
square error (MSE)) for the different models. The ∗ stands for the models that are significantly
different to the one selected (after pairwise comparisons using paired Wilcoxon signed-rank test).

From a global perspective, and according to the results displayed in Table 4 and Figure 2,
we can formulate some hypotheses that should be confirmed in future biological studies. It can
also be noted that some of these hypotheses – based on in-silico experiments – show consistence
with current research in biology:

• Hypothesis on the RIM neuron: as a first observation, the presence of calcium currents
plays a determining role in improving the results in this neuron, which is consistent with
[65], [94] and [40] showing the existence of calcium dynamics in RIM. Particularly, we
can presume the presence of a persistent calcium current (ICa,p) since the models ICa,p +
IK,t+IL (rank=2.2) and ICa,p+IKir+IK,t+IL (rank=1.6) are significantly different from
ICa,t + IK,t + IL (rank=3.5) and ICa,t + IKir + IK,t + IL (rank=2.8) respectively. Indeed,
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the only difference between the models relies in the type of calcium current (transient vs.
persistent). Additionally, the model ICa,p + IKir + IK,t + IL (rank=1.6) is statistically
different from ICa,p + IK,t + IL (rank=2.2) which suggests the presence of IKir in RIM.

• Hypothesis on the AIY neuron: the models ICa,t + IK,p + IL (rank=2.4) and ICa,t +
IKir + IK,p + IL (rank=1.2) are significantly different from ICa,p + IK,p + IL (rank=3.3)
and ICa,p + IKir + IK,p + IL (rank=3.3) respectively, which suggest the presence of ICa,t
in AIY. In fact, hypothesizing the presence of ICa,t is consistent with the experimental
findings of Clark et al. [16] who observe a presence of a transient calcium current in the
AIY axon. On the other hand, the model ICa,t + IK,p + IL (rank=2.4) is statistically
different from ICa,t + IKir + IK,p + IL (rank=1.2) which suggests the presence of IKir in
AIY.

• Hypothesis on the AFD neuron: the results suggest the existence of a calcium current,
which is consistent with [16]. In particular, the calcium current can be assumed of persis-
tent type (ICa,p) as the models ICa,p+IK,t+IL (rank=2.5) and ICa,t+IK,t+IL (rank=4.1)
are significantly different. We can also hypothesize the presence of an inwardly rectifying
potassium current (IKir) in this neuron since the models ICa,t + IK,t + IL (rank=4.1) and
ICa,t + IKir + IK,t + IL (rank=2.5) are statistically different.
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Figure 2: Pairwise comparisons using paired Wilcoxon signed-rank test and corrected for mul-
tiple comparisons with the Holm method. Connected distributions (with stars (∗) on top) are
significantly different.

Following the previous set of hypotheses, we can proceed with the selection of the models
that offer, at the same time, high accuracy and biological consistency with research for each
neuron. Specifically, the models that result from the established methodology are the ICa,p +
IKir + IK,t + IL-model for the RIM and AFD neurons, and the ICa,t + IKir + IK,p + IL-model
for the AIY neuron. Figure 3 shows the respective membrane potentials curves for these models
(please refer to Appendix B for the associated parameter values).

In order to complete the analysis, we propose in Appendix C an additional metric taking
into account the noise level of experimental data, from which an additional statistical analysis is
conducted (Table 6). The results show consistency and reinforce the set of previously established
hypotheses.

For every neuron under study, it can be observed that the curves of the models fit well with
experimental data in all series of current injections. Furthermore, the quality of the fitting is
maintained throughout the entire evolution of the membrane potential. In the light of these
results, it can be concluded that the proposed method is robust to experimental noise and
that it can be directly applied to raw experimental data. As shown in Figure 3, the proposed
method converges towards models that describe the dynamics of the different neurons with good
accuracy despite the experimental noise reflected in the aggregated error of the results.
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Figure 3: Evolution of membrane potential for a series of current injection starting from -15pA
and increasing to 35pA by 5pA increments. Experimental data (represented in green) and
outcomes of the selected models (represented in blue) overlap for the same values of current
injection.

5 Discussion

Some experimental techniques, such as ionic conductance measures [71], are relatively hard to
perform, especially in C.elegans because of the neurons’ small size and the difficulty of dissect-
ing a one milimeter long worm. These are the main reasons explaining the lack of biophysical
information about C. elegans channels, making the current modeling of C. elegans neurons
challenging. The advantage of the modeling methodology proposed is that it requires few ex-
perimental data for obtaining minimal deviations from empirical measurements while capturing
many microscopic properties described in the literature.

In the light of the obtained results, we have formulated a series of biological hypotheses. In
particular, the results suggest, on the one hand, the presence of a calcium current in all the
neurons, which is consistent with reported cases in the literature and, on the other hand, its
important role in the quality of the fitting. More in detail, the results point out a persistent
type calcium current (ICa,p) for the RIM and AFD neurons and a transient type calcium current
(ICa,t) for AIY, which is consistent with other works in the literature tackling the latter neuron.
Results also indicate the presence of an inwardly rectifying potassium current (IKir) in the three
neurons. That way, the ICa,p + IKir + IK,t + IL-model for the RIM and AFD neurons, and the
ICa,t + IKir + IK,p + IL-model for the AIY neuron are able to reproduce experimental data with
a high degree of accuracy while being biologically consistent with state-of-the-art research.

Although our formulated hypotheses should be validated in future electrophysiological exper-
iments, we argue that the models and mathematical framework presented in this paper provide
a valuable asset for the modeling and study of the nematode neural network under more real-
istic electrophysiological models. Indeed, the non-spiking neural network of the C. elegans is a
relevant subject of study [85, 70, 68, 56, 57, 18].

In order to expand the method proposed in this paper to other contexts such as spiking
neurons, an essential step would be to define feature-based errors functions[25] more adapted
than the MSE for quantitatively capturing features relative to spiking pattern, as in [82] and
[53]. This line of research can be promising as spiking neural networks are the most widely
studied case in the literature [9, 31, 52, 78, 93, 32, 6, 90, 5, 36, 37, 35, 2].
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6 Conclusions

In this paper, we have presented a conductance-based model for the RIM, AIY and AFD non-
spiking neurons of the C. elegans along with a methodology for determining the plausible in-
tervening currents in these neurons due to the lack of electrophysiological data. Results suggest
the presence of an inwardly rectifying potassium current (IKir) in every neuron as well as the
existence of Ca2+ dynamics (ICa) that depending on the neuron can be of transient type (e.g.
AIY) or persistent type (e.g. RIM and AFD). Although the existence of these currents is yet to
be demonstrated, the respective formulated models are able to reproduce the evolution of the
membrane potential with good accuracy. In the future, the following natural step is to pursue
the validation of these hypotheses from electrophysiological studies.
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ṁK = mK∞(V )−mK

θ = [gCa gK gL ECa EK EL V
mCa

1/2 V hCa

1/2 V mK

1/2 khCa
kmCa

kmK
τmCa

τhCa
τmK

m0
Ca h

0
Ca m

0
K

C]

ICa,p +
IK,t + IL-
model


CV̇ = −gCamCa(V − ECa)− gKmKhK(V − EK)− gL(V − EL) + I

τmCa
˙mCa = mCa∞(V )−mCa

τmK
ṁK = mK∞(V )−mK

τhK
˙hK = hK∞(V )− hK

θ = [gCa gK gL ECa EK EL V
mCa

1/2 V mK

1/2 V hK

1/2 kmCa
kmK

khK
τmCa

τmK
τhK

m0
Ca m

0
K h0K C]

ICa,p +
IK,p + IL-
model


CV̇ = −gCamCa(V − ECa)− gKmK(V − EK)− gL(V − EL) + I

τmCa
˙mCa = mCa∞(V )−mCa

τmK
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B Estimated parameters for the selected models in each of the
neurons

Table 5 shows the estimated parameters for the selected models in each of the neurons.

Paramètres
Neurones

RIM AIY AFD

gCa 0.24 0.746 0.1

gKir 0.332 0.1 1.92

gK 0.127 0.17 12.62

gL 0.28 0.2 0.1

ECa 105.3 63.33 144.38

EK -100 -99.9 -83.7

EL -81.3 -58.76 -63.27

V mCa

1/2 -21.04 -2.31 -16.34

V hCa

1/2 -44.13

V hKir

1/2 -89.99 -89.8 -67.44

V mK

1/2 -17.7 -10.5 -3.31

V hK
1/2 -21.28 -65.4

kmCa 28.8 13.48 1.84

khCa
-21.47

khKir
-1.2 -3.77 -11.46

kmK 1.18 7.95 7.26

khK -4.64 -29.5

τmCa 0.16 0.33 6.64

τhCa
9.31

τmK 0.2 0.002 0.082

τhK 5.08 - 3.63

m0
Ca 0.349 0.04 0.002

h0Ca 0.52

m0
K 0.79 0.34 0.001

h0K 0.13 0.991

C 0.02 0.028 0.049

Table 5: Estimated parameters for the selected models in each of the neurons, i.e. ICa,p+IKir+
IK,t + IL-model for RIM and AFD, and ICa,t + IKir + IK,p + IL-model for AIY. The estimated
parameters for the rest of models are available at this github repository.
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C Alternative metric

An additional metric F is used to complete the analysis by normalizing the results to the
deviation of each experimental voltage trace:

F (θ) =
1

|I|
∑
I

√
1
N

∑
t(Vexp(I, t)− V θ

est(I, t))
2

σI
(10)

where σI , estimated as in [87], is the noise level (i.e. standard deviation) for the entire voltage
trace associated with the injection current I.

Model
Neuron

RIM AIY AFD

IK,t + IL 6(3.8)∗ / 6(1.85)∗

IK,p + IL / 6(2.06)∗ /

IKir + IK,t + IL 4.9(2.4)∗ / 3.8(0.98)∗

IKir + IK,p + IL / 4.8(1.7)∗ /

ICa,t + IK,t + IL 4.0(1.43)∗ / 4.6(1.04)∗

ICa,t + IK,p + IL / 2.3(1.17)∗ /

ICa,p + IK,t + IL 2.5(1.31)∗ / 2.6(0.97)∗

ICa,p + IK,p + IL / 3.9(1.4)∗ /

ICa,t + IKir + IK,t + IL 2.6(1.19)∗ / 2.8(0.958)∗

ICa,t + IKir + IK,p + IL / 1.0(1.11) /

ICa,p + IKir + IK,t + IL 1.1(1.11) / 1.3(0.952)

ICa,p + IKir + IK,p + IL / 3.0(1.24)∗ /

Table 6: Results of the mean rank of each model obtained using the Wittkowski test. The
selected models appear in underlined bold font and have been selected according to the criteria
established in Section 3.1. In parentheses the results of the best cost function F (10) for the
different models. The ∗ stands for the models that are significantly different to the one selected
(after pairwise comparisons using paired Wilcoxon signed-rank test).
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Christian Rössert, Henry Markram, and Sean L Hill. Experimentally-constrained biophysi-
cal models of tonic and burst firing modes in thalamocortical neurons. PLOS Computational
Biology, 15(5):e1006753, 2019.

[54] Eugene M Izhikevich. Dynamical systems in neuroscience. MIT press, 2007.

[55] Eduardo J Izquierdo. Role of simulation models in understanding the generation of behavior
in c. elegans. Current Opinion in Systems Biology, 13:93–101, 2019.

[56] James Kunert, Eli Shlizerman, and J Nathan Kutz. Low-dimensional functionality of com-
plex network dynamics: Neurosensory integration in the caenorhabditis elegans connectome.
Physical Review E, 89(5):052805, 2014.

[57] James M Kunert, Joshua L Proctor, Steven L Brunton, and J Nathan Kutz. Spatiotemporal
feedback and network structure drive and encode caenorhabditis elegans locomotion. PLoS
computational biology, 13(1), 2017.

[58] Masahiro Kuramochi and Motomichi Doi. A computational model based on multi-regional
calcium imaging represents the spatio-temporal dynamics in a caenorhabditis elegans sen-
sory neuron. PLoS One, 12(1):e0168415, 2017.

[59] Jack Lee, Bruce Smaill, and Nicolas Smith. Hodgkin–huxley type ion channel characteri-
zation: an improved method of voltage clamp experiment parameter estimation. Journal
of theoretical biology, 242(1):123–134, 2006.

[60] Qiang Liu, Philip B Kidd, May Dobosiewicz, and Cornelia I Bargmann. C. elegans awa
olfactory neurons fire calcium-mediated all-or-none action potentials. Cell, 175(1):57–70,
2018.

[61] Maria Markaki and Nektarios Tavernarakis. Modeling human diseases in caenorhabditis
elegans. Biotechnology journal, 5(12):1261–1276, 2010.

[62] C Daniel Meliza, Mark Kostuk, Hao Huang, Alain Nogaret, Daniel Margoliash, and
Henry DI Abarbanel. Estimating parameters and predicting membrane voltages with
conductance-based neuron models. Biological cybernetics, 108(4):495–516, 2014.

[63] Ferrante Neri and Ville Tirronen. Recent advances in differential evolution: a survey and
experimental analysis. Artificial intelligence review, 33(1):61–106, 2010.

[64] Martina Nicoletti, Alessandro Loppini, Letizia Chiodo, Viola Folli, Giancarlo Ruocco, and
Simonetta Filippi. Biophysical modeling of c. elegans neurons: Single ion currents and
whole-cell dynamics of awcon and rmd. PloS one, 14(7), 2019.

[65] Beverly J Piggott, Jie Liu, Zhaoyang Feng, Seth A Wescott, and XZ Shawn Xu. The neural
circuits and synaptic mechanisms underlying motor initiation in c. elegans. Cell, 147(4):
922–933, 2011.

[66] H Press. Genome sequence of the nematode c. elegans: a platform for investigating biology.
Science, 282:2012–2018, 1998.

[67] Kenneth Price, Rainer M Storn, and Jouni A Lampinen. Differential evolution: a practical
approach to global optimization. Springer Science & Business Media, 2006.

[68] Franciszek Rakowski, Jagan Srinivasan, Paul W Sternberg, and Jan Karbowski. Synaptic
polarity of the interneuron circuit controlling c. elegans locomotion. Frontiers in computa-
tional neuroscience, 7:128, 2013.

20



[69] Kerrianne Ryan, Zhiyuan Lu, and Ian A Meinertzhagen. The cns connectome of a tadpole
larva of ciona intestinalis (l.) highlights sidedness in the brain of a chordate sibling. Elife,
5:e16962, 2016.

[70] Kazumi Sakata and Ryuzo Shingai. Neural network model to generate head swing in
locomotion of caenorhabditis elegans. Network: Computation in Neural Systems, 15(3):
199–216, 2004.

[71] Bert Sakmann. Single-channel recording. Springer Science & Business Media, 2013.

[72] Lawrence B Salkoff, Aguan Wei, Beravan Baban, Alice Butler, Gloria L Fawcett, Gonzalo
Ferreira, and Celia M Santi. Potassium channels in c. elegans. WormBook, 2005.

[73] Rahul Sarpeshkar. Analog versus digital: extrapolating from electronics to neurobiology.
Neural computation, 10(7):1601–1638, 1998.

[74] Tomomi Shindou, Mayumi Ochi-Shindou, Takashi Murayama, Ei-ichiro Saita, Yuto Momo-
hara, Jeffery R Wickens, and Ichiro N Maruyama. Active propagation of dendritic electrical
signals in c. elegans. Scientific reports, 9(1):1–12, 2019.

[75] Boris Borisovich Shtonda and Leon Avery. Dietary choice behavior in caenorhabditis ele-
gans. Journal of experimental biology, 209(1):89–102, 2006.

[76] Rainer Storn and Kenneth Price. Differential evolution–a simple and efficient heuristic for
global optimization over continuous spaces. Journal of global optimization, 11(4):341–359,
1997.

[77] Fei Su, Jiang Wang, Bin Deng, Xi-Le Wei, Ying-Yuan Chen, Chen Liu, and Hui-Yan
Li. Adaptive control of parkinson’s state based on a nonlinear computational model with
unknown parameters. International journal of neural systems, 25(01):1450030, 2015.

[78] Yuki Todo, Zheng Tang, Hiroyoshi Todo, Junkai Ji, and Kazuya Yamashita. Neurons with
multiplicative interactions of nonlinear synapses. International journal of neural systems,
29(08):1950012, 2019.

[79] Danièle Tritsch, Dominique Chesnoy-Marchais, and Anne Feltz. Physiologie du neurone.
Wolters Kluwer France, 1999.

[80] Ivan Tyukin, Erik Steur, Henk Nijmeijer, David Fairhurst, Inseon Song, Alexey Semyanov,
and CEES VAN LEEUWEN. State and parameter estimation for canonic models of neural
oscillators. International journal of neural systems, 20(03):193–207, 2010.

[81] Lav R Varshney, Beth L Chen, Eric Paniagua, David H Hall, and Dmitri B Chklovskii.
Structural properties of the caenorhabditis elegans neuronal network. PLoS computational
biology, 7(2), 2011.

[82] Siva Venkadesh, Alexander O Komendantov, Stanislav Listopad, Eric O Scott, Kenneth
De Jong, Jeffrey L Krichmar, and Giorgio A Ascoli. Evolving simple models of diverse
intrinsic dynamics in hippocampal neuron types. Frontiers in neuroinformatics, 12:8, 2018.

[83] Jakob Vesterstrom and Rene Thomsen. A comparative study of differential evolution, parti-
cle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In
Proceedings of the 2004 congress on evolutionary computation (IEEE Cat. No. 04TH8753),
volume 2, pages 1980–1987. IEEE, 2004.

[84] John G White, Eileen Southgate, J Nichol Thomson, and Sydney Brenner. The structure
of the nervous system of the nematode caenorhabditis elegans. Philos Trans R Soc Lond B
Biol Sci, 314(1165):1–340, 1986.

21



[85] Stephen R Wicks, Chris J Roehrig, and Catharine H Rankin. A dynamic network simulation
of the nematode tap withdrawal circuit: predictions concerning synaptic function using
behavioral criteria. Journal of Neuroscience, 16(12):4017–4031, 1996.

[86] Frank Wilcoxon. Individual comparisons by ranking methods. In Breakthroughs in statistics,
pages 196–202. Springer, 1992.

[87] Allan R Willms, Deborah J Baro, Ronald M Harris-Warrick, and John Guckenheimer. An
improved parameter estimation method for hodgkin-huxley models. Journal of computa-
tional neuroscience, 6(2):145–168, 1999.

[88] Knut M Wittkowski. Friedman-type statistics and consistent multiple comparisons for
unbalanced designs with missing data. Journal of the American Statistical Association, 83
(404):1163–1170, 1988.

[89] Andrew P Wojtovich, Peter DiStefano, Teresa Sherman, Paul S Brookes, and Keith Nehrke.
Mitochondrial atp-sensitive potassium channel activity and hypoxic preconditioning are
independent of an inwardly rectifying potassium channel subunit in caenorhabditis elegans.
FEBS letters, 586(4):428–434, 2012.

[90] Tingfang Wu, Florin-Daniel B̂ılb̂ıe, Andrei Păun, Linqiang Pan, and Ferrante Neri. Sim-
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