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Abstract: A new design of output-feedback repetitive control scheme for nonlinear minimum-
phase systems with arbitrary relative degree and globally Lipschitz nonlinearities is proposed.
This work extends the recent results in Astolfi et al. [2021]. The delay of the repetitive control
scheme is represented by a transport equation. A high-gain observer and a forwarding-based
feedback law are employed to steer the desired output to zero in presence of periodic signals
(references and/or perturbations) and model uncertainties.
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1. INTRODUCTION

Repetitive control (RC) schemes are based on the main
idea that a delay can be used to generate any periodic
signal. RC schemes are therefore very popular in regula-
tion problems of periodic signals, i.e. reference tracking
and/or disturbance rejection, and used in many control
applications in both continuous-time, Hara et al. [1988],
and discrete-time domain, Tomizuka et al. [1989]. See,
more recently, Mattavelli and Marafao [2004], Kurniawan
et al. [2014], Blanken et al. [2019] and references therein.
Although this vast success, from the theoretical point
of view, few works addressed the problem of using RC-
schemes for continuous-time nonlinear systems. In view of
the difficulties of dealing with infinite-dimensional systems
(i.e., the delay), a common approach is to focus on some
finite-dimensional RC approximation based on the use of
low-pass filters (see, e.g., Weiss and Häfele [1999]) or on
its equivalent harmonic representation (see, e.g., Astolfi
et al. [2019], Ghosh and Paden [2000]). Recently, a new
stability analysis approach for an exact RC-scheme (i.e.
infinite-dimensional) has been proposed in the context of
nonlinear systems which are strictly dissipative, under the
assumption that the relative degree between the control
input and the regulated output is zero, see Califano and
Macchelli [2019].

This work addresses the problem of designing an output-
feedback RC-scheme for minimum-phase nonlinear sys-
tems having a relative degree larger than one and with
globally Lipschitz nonlinearities. It relies on the recent
developments proposed in Astolfi et al. [2021] where the
same class of systems is considered but with a partial-
state feedback design. A new design is proposed, allowing
to extend the class of systems to which RC-approaches
apply. With respect to Astolfi et al. [2021], it is employed a
different transport-equation design which is able to achieve
? This research was partially supported by the French Grant ANR
ODISSE (ANR-19-CE48-0004-01).

an input-to-state stability property with respect to the
estimation error. As a consequence, the state-feedback
law, based on forwarding forwarding technique, can be
turned into output-feedback by means of classical high-
gain observers, see, e.g., Atassi and Khalil [1999].

Notation. R denotes the space of real numbers and C the
space of complex numbers, R+ := [0,∞) and N denotes
the space of positive integers, i.e. N := {1, 2, . . . ,∞}. For a
function w : (t, x) ∈ R+×[0, 1] 7→ w(t, x) ∈ R, the notation
wt (respectively, wx) denotes the partial derivative of w
w.r.t the variable t (respectively, w.r.t. the variable x).
When a function w depends only on the variable of the
time t (resp. space x), its derivative is simply denoted by
ẇ (resp. w′); L2(0, 1) denotes the Hilbert space of real-
valued square-integrable functions over the interval (0, 1)
and H1(0, 1) ⊂ L2(0, 1) is the Hilbert space of real-valued
absolutely continuous functions over [0, 1] with square-
integrable derivative; ‖ · ‖L2 and ‖ · ‖H1 denotes their
repsectively induced norms (see, also, Astolfi et al. [2021]).
A function α : R+ → R+ is said to be of class-K∞ if α is
continuous, increasing, α(0) = 0 and lims→∞ α(s) =∞.

2. MAIN MOTIVATION

Consider a system of the form

ẋ = f(x,d(t)) + g(x,d(t))u
y = h(x,d(t))

(1)

with system state x ∈ Rnx , control input u ∈ R and output
y ∈ R. The problem of periodic output regulation consists
in designing a regulator for system (1) so that the output
y satisfies

lim
t→∞

e(t) := lim
t→∞

(
y(t)− r(t)

)
= 0

for some T -periodic reference r ∈ R and in presence of
possible T -periodic disturbances d ∈ Rnd . In Repetitive-
Control design, the solution to such a problem is typically
pursued by including a regulator of the form 1

1 Here s ∈ C represents the Laplace variable.



R(s) :=
exp(−Ts)

1− exp(−Ts)
(2)

inside the control-feedback loop. The main purpose of (2),
based on the so called internal-model principle (Paunonen
et al. [2008]), is to generate any desired periodic steady-
state input, see for instance Hara et al. [1988]. However,
the analysis and the design of a RC-based stabilizer-
feedback for systems (1) is not straightforward since the
Laplace transformation cannot be used in such a nonlinear
framework, and different tools need to be used.

An alternatively approach, pursued in Astolfi et al. [2021],
Califano et al. [2018], Califano and Macchelli [2019], con-
sists in rewriting the scheme (2) by using an equivalent
transport equation representation. In particular, the main
result in Astolfi et al. [2021] is that of developing a new
RC-feedback control law for systems (1) having a well-
defined relative degree and that can be rewritten, after a
change of coordinates, into the form

ż = f(t, z, ξ1),

ξ̇i = ξi+1, i = 1, . . . , r − 1

ξ̇r = q(t, z, ξ1, . . . , ξr) + u,

e = ξ1,

(3)

where (z, ξ) ∈ Rn × Rr is the system state, with the
z ∈ Rn-dynamics being the so-called zero-dynamics and
ξ := (ξ1, . . . , ξr) ∈ Rr representing the derivatives of the
output e ∈ R that we aim at regulating to zero, and
u ∈ R the control input. Note that with respect to the
representation (1), we have

ξ1 = h(x,d(t))− r(t),

and the explicit dependence on d, r in (3) is compactly
substituted by the dependence on time t. Finally, the zero-
dynamics in (3) is supposed to possess some good input-
to-state properties as specified later. The RC-design for
system (3) proposed in Astolfi et al. [2021] has then the
form

ηt(t, x) = − 1
T ηx(t, x) ∀ (t, x) ∈ R+ × [0, 1],

η(t, 0) = η(t, 1) + θ(t) ∀ t ∈ R+,

u(t) = γ(θ(t), η(t, x)) ∀ (t, x) ∈ R+ × [0, 1],

(4)

where (t, x) ∈ R+ × [0, 1] and η ∈ L2(0, 1), the signal θ is
a linear combination of the state variables ξ of the form

θ := ξr +

r−1∑
i=1

gr−iaiξi,

and the feedback law γ : R × L2(0, 1) → R is designed
according to the so-called forwarding approach. The draw-
back of such an approach is that the knowledge of θ, and
therefore of the state components (ξ1, . . . , ξr), is required.

The objective of this work is to extend such an approach
to the context of output feedback, in which the sole use
of e = ξ1 is employed for the RC-feedback law (4). To
this end, recall that a common routine in output-feedback
control is to replace the state information ξ by an estimate

ξ̂ provided by an observer. In the context of minimum-
phase systems, such an observer is typically chosen as
a high-gain observer, see, e.g., Atassi and Khalil [1999].
However, for this to work, an input-to-state stability (ISS)
with respect to estimation error is needed, see Andrieu

and Praly [2009]. As a consequence, when considering
the feedback (4), such an approach cannot be followed
since simple computations can show that the ISS property
with respect to estimation error acting at the boundary
conditions η(t, 0) may not be verified, see, for instance
Tanwani et al. [2016]. The main result of this work is
therefore that of proposing a variation of the scheme (4) by
developing a pure output feedback RC-scheme for systems
of the form (3), with the signal θ acting in a distributed
way and not at the boundary of the η-dynamics.

3. MAIN RESULT

Following Astolfi et al. [2021], consider a system of the
form (3) and suppose that the following assumptions hold.

Assumption 1. The function q in (3) is globally Lipschitz,
C2 in its arguments and periodic with respect to the first
argument.

Assumption 2. The zero-dynamics ż = f(t, z, 0) of system
(3) admits a unique C2 T -periodic bounded solution z̄(t)
which is globally uniformly stable and input-to-state stable.
In particular, there exists a positive definite function V :
R × Rn → R+ and class K∞ functions α, ᾱ and real
numbers α, ρ > 0 satisfying

α(|z − z̄(t)|) ≤ V (t, z − z̄(t)) ≤ ᾱ(|z − z̄(t)|) (5)

for all (t, z) ∈ R+ × Rn and〈
∇V (t, z − z̄(t)), f(t, z, ξ1)− f(t, z̄(t), 0)

〉
≤

− α|z − z̄(t)|2 + ρ|ξ1|2 (6)

for all (t, z, ξ1) ∈ R+ × Rn × R.

Under previous assumptions, an output-feedback repetitive-
control based regulator can be designing by combining the
following elements.

• A high-gain observer of the form:
˙̂
ξi = ξ̂i + `ibi(e− ξ̂1), i = 1 . . . , r − 1

˙̂
ξr = us + `rbr(e− ξ̂1),

(7a)

where ` ≥ 1 is the so-called high-gain parameter, the
parameters bi > 0, i = 1, . . . , r have to be properly
chosen and the term us is an extra input to be defined.
Note that following Wang et al. [2015], the high-gain
observer (7a) could be also substituted by a low-power
high-gain observer Astolfi and Marconi [2015].

• The core of the RC scheme, also denoted as internal-
model unit in output regulation theory, see, e.g.,
Astolfi et al. [2019], embedding a delay represented
as a transport equation:

ηt(t, x) = − 1
T ηx(t, x) + exp(βx)θ̂

η(t, 0) = η(t, 1)

η(0, x) = η0(x)

(7b)

defined on (t, x) ∈ R+ × [0, 1], with β being a

parameter to be chosen and θ̂ a signal to be defined.
• The forwarding-based (see, e.g., Marx et al. [2020,

2021], Astolfi et al. [2021]) stabilizing feedback control
law:

u = us + uim

us = −κθ̂
uim = µ

∫ 1

0
(η(t, x)−M(x)θ̂)M(x)dx,

(7c)



where µ > 0 is a positive parameters, θ̂ is defined as

θ̂ := ξ̂r +

r−1∑
i=1

gr−iaiξ̂i, (7d)

with g > 0, ai > 0, i = 1, . . . , r − 1, parameters to
be defined, and the function M : [0, 1]→ R is defined
as the solution of the following two-boundary value
problem {

1
TM

′(x) = κM(x) + exp(βx),

M(0) = M(1)
(8)

which can be explicitly computed as

M(x) =

{
exp(kTx)M + T exp(βx)−exp(κTx)

β−κT , β 6= κT,

exp(kTx)M + xT exp(κTx), β = κT,

M =


exp(β)+exp(κT )

(κT−β)(1−exp(κT )) , β 6= κT,

T exp(κT )
1−exp(κT ) , β = κT.

(9)

The following main result can be stated.

Theorem 1. Suppose Assumptions 1 and 2 hold. Let the
parameters ai, bi of the regulator (7) be such that the
corresponding polynomial

pa(λ) := λr−1 + ar−1λ
r−2 + · · ·+ a2λ+ a1

pb(λ) := λr + brλ
r−1 + · · ·+ b2λ+ b1

are Hurwitz and let µ > 0 and β 6= 0 be fixed. Then, there
exists g? ≥ 1 and, for any g > g?, there exists κ? ≥ 1
such that, for any κ ≥ κ? there exists `? ≥ 1 (the values of
g?, κ?, `? depends only on the Lipschitz constants of f, q,
the parameters α, ρ defined in Assumptions 1, 2, and the
choice of a1, bi) such that the following statements hold
true for any ` ≥ `?.

(1) For any initial condition (z0, ξ0, ξ̂0, η0) ∈ Rn × Rr ×
L2(0, 1), the closed-loop system (3), (7), (8), admits

a unique solution (z, ξ, ξ̂, η) ∈ C0([0,∞);Rn+2r ×
L2(0, 1)), which is bounded forward in time, namely

|z(t)|+ |ξ(t)|+ |ξ̂(t)|+ ‖η(t, ·)‖L2 ≤ δ, ∀ t ≥ 0

for some δ > 0.
(2) Any solution of the closed-loop system the closed-loop

system (3), (7), (8), starting from Rn×Rr ×L2(0, 1)
satisfies limt→∞ e(t) = 0.

The result of Theorem 1 mainly states that the proposed
design (7) guarantees asymptotic regulation to zero of the
error e, namely periodic reference tracking and disturbance
rejection is achieved for systems (1) that can be rewritten,
via a change of coordinates, in the form (3), with a
pure output-feedback design which uses only the regulated
output e. Furthermore, the proposed design is robust with
respect to model uncertainties. Indeed, the control law
(7) is parametrized by some parameters. and their values
depend only on the Lipschitz constants of the functions
f, q and the ISS-properties α, ρ of the zero-dynamics (see
Assumption 2). In other words, the exact knowledge of the
function f, q characterizing system (3), and so of f,g,h of
system (1), is not needed for the design of the proposed
RC-scheme.

As one can see comparing equations (7b) with (4), the
main difference with respect to the design proposed in
Astolfi et al. [2021] is that the driving term of the transport
equation is acting in a distributed fashion and not at the
boundary. This, in turns, is able to guarantee some ISS

properties with respect to the estimated θ̂. In practice,
once the high-gain observer (7a) is converged, one recovers
a state-feedback equation

ηt(t, x) = − 1
T ηx(t, x) + exp(βx)θ

which in turns guarantee the signal θ (and therefore ξ1)
to converge asymptotically to zero. Such a modification is
however not trivial to analyze as one has to prove that
the internal-model property of (7b) is still verified, i.e. the
system

ηt(t, x) = − 1
T ηx(t, x), η(t, 0) = η(t, 1),

ussim = µ
∫ 1

0
η(t, x)M(x)dx,

(10)

is such that the output ussim can generate any arbitrarily
periodic signal.

Finally, note that for unitary systems of the form{
ż = f(t, z, e)
ė = q(t, z, e) + u

the proposed control law (7) reads
ηt(t, x) = − 1

T ηx(t, x) + exp(βx)e,

η(t, 0) = η(t, 1), η(0, x) = η0(x),

u = −κe+ µ
∫ 1

0
M(x)(η(t, x)−M(x)e)dx,

with M chosen as in (8).

4. PROOF OF THEOREM 1

The proof is organized as follows. First, it is shown
that system (7b) possesses the so-called “internal-model
property”, i.e. system (10) can generate any periodic
signal. Then, a suitable change of coordinates for the
closed-loop dynamics is proposed. Existence of solution is
briefly discussed and the stability and convergence analysis
is finally addressed. Fundamental properties developed in
the works Astolfi et al. [2021], Marx et al. [2020] and Marx
et al. [2021] will be used throughout the proof.

4.1 Internal Model Property

Consider system (7b), (7c). When needed, it will be used
the following equivalent operator-form (see, e.g. Tucsnak
and Weiss [2009]) given by{

η̇ = Sη + Gθ̂
u = −κθ̂ + µM∗(η −Mθ̂)

(11)

where S = − 1
T ∂x, G = exp(βx) and with M∗ denoting

the adjoint of M so that M∗η =
∫ 1

0
η(t, x)M(x)dx.

The representation (11) can be be obtained following for
instance [Marx et al., 2021, Example 2,4].

The following results, concerning some observability and
stability properties of the operators in (11), are stated.

Lemma 1. For any β 6= 0, the pair (S∗,G∗) defined in (11)
is approximately observable in infinite time 2 .
2 See, e.g., [Tucsnak and Weiss, 2009, Definition 6.1.1] for a precise
definition of approximate observability.



Proof. In order to prove the desired result it suffices to
check that the adjoint system, namely

Tηt(t, x) + ηx(t, x) = 0

η(t, 0) = η(t, 1)

y(t) =
∫ 1

0
exp(βx)η(t, x)dx

is approximately observable from the output y. To this
end, suppose that y is constantly equal to zero. Then, by
computing an integration by parts, this implies

y(t) =
∫ 1

0
exp(βx)η(t, x)dx

= 1
β

[
exp(βx)η(t, x)

]1
0
− 1

β

∫ 1

0
exp(βx)ηx(t, x)dx

= 1
β (exp(β)− 1)η(t, 0) + T

β y(t).

If β = T , it yields

0 = y(t) = 1
β (exp(β)− 1)η(t, 0) + y(t)

for all t ≥ 0. Otherwise, for β 6= T ,

0 = y(t) =
∫ 1

0
exp(βx)η(t, x)dx = exp(β)−1

β−T η(t, 0)

for all t ≥ 0. In both cases, one obtain η(t, 0) = 0 for
all t ≥ 0. Therefore, following the proof in [Marx et al.,
2020, Theorem 2], the latter implies that η(t, x) = 0 for
all (t, x) ∈ R+ × [0, 1] concluding the desired result. More
details are given also in [Marx et al., 2021, Example 5].
An alternative proof consists in following [Russell, 1978,
Section 4] and using an eigenfunction decomposition of
the operators S,G. �

Lemma 2. For any β 6= 0, the pair (S,M∗) defined in (11)
is approximately observable in infinite time.

Proof. The definition of M given in (8) is solution of the
Sylvester equation

−κM = SM+ G. (12)

Indeed, the spectrum of −κ and S is disjoint and the
solution is unique. In particular, it is given by (9). Recall
that by Lemma 1, the pair (S∗,G∗) is approximately
observable, the operator S is skew-adjoint, and the matrix(

−κ+ λ 1
1 0

)
is full rank for any λ in the spectrum of S. Hence one can
apply Proposition 1 of Marx et al. [2021] to conclude the
proof. �

Lemma 3. For any β 6= 0, µ > 0, the operator

Acl =

(
−κ− µM∗M M∗

G S

)
generates a strongly stable C0 semigroup.

Proof. The proof is a direct application of Theorems 1, 2
and Proposition 1 of Marx et al. [2021] and it is therefore
just sketched. As noted in the previous lemma, M given
in (8) is solution of the Sylvester equation (12). Indeed,
the spectrum of −κ and S is disjoint and the solution is
unique, as given by (9). Hence, the system{

˙̂
θ = −κθ̂ + µM∗(η −Mθ̂)

η̇ = Sη + Gθ̂
is transformed, by using the change of coordinates

η 7→ η̃ := η −Mθ̂

into a system in triangular form

χ̇ = Ãclχ, Ãcl :=

(
−κ µM∗
0 (S − µMM∗)

)
,

where χ := (θ̂, η̃). Now, by Lemma 1, the pair (S∗,G∗)
is approximately observable in infinite time and therefore,
in view of Proposition 1 of Marx et al. [2021], also the
pair (S,M∗) is approximately observable. As a conse-
quence, since the operator S is skew-adjoint, the operator
(S − µMM∗) is dissipative. Furthermore using LaSalles
Invariance Principle for infinite-dimensional systems (see,
e.g., Theorem 3.1 in Slemrod [1989]) and the lower trian-

gular structure of Ãcl, one can conclude that the origin
of χ is globally asymptotically stable, i.e., the operator
Acl generates a strongly stable semigroup, concluding the
proof. Technical details follow from Marx et al. [2021]. �

Finally, similarly to [Astolfi et al., 2021, Lemma 1], the
following result concerning the internal-model property of
the feedback regulator (7) can be stated.

Lemma 4. For any C2 T -periodic function ψ : R+ → R
and any µ, β 6= 0, there exists η̄0 ∈ L2(0, 1), such that the
solution to the system

η̄t(t, x) = − 1
T η̄x(t, x), η̄(t, 0) = η̄(t, 1), η̄(0, x) = η̄0(x),

y(t) = µ
∫ 1

0
η̄(t, x)M(x)dx (13)

defined on (t, x) ∈ R+ × [0, 1], with M defined by (8),
satisfies y(t) ≡ ψ(t) for all t ∈ R+.

Proof. Since the function ψ is periodic and C2, the signal
ψ can thought as generated by an autonomous infinite-
dimensional system of the form

wt(t, x)− 1
T wx(t, x) = 0, w(t, 1) = w(t, 0),

w(0, x) = w0(x), ψ(t) = w(t, 1),

with (t, x) ∈ R+ × [0, 1] and suited initial conditions
w0(x) ∈ L2(0, 1). Equivalently, it is represented with the
operator form

ẇ = Sw, ψ = Ew.
Now, by using the operator-form introduced above, con-
sider the following system

ẇ = Sw
˙̂
θ = −κθ̂ − Ew +M∗(η̄ −Mθ̂)
˙̄η = S η̄ + Gθ̂

Let study now the existence of a solution Πθ,Πη to the
following infinite-dimensional Sylvester equation

ΠθS = −(κ+M∗M)Πθ +M∗Πη − E
ΠηS = SΠη + GΠθ .

(14)

Since the operator Acl defined in Lemma 3 generates a
strongly stable semigroup, the Sylvester equation (14) is
well defined, see Lemma 1 in Paunonen et al. [2008] and
the existence of a solution is ensured. Furthermore, it is
possible to verify that the conditions of Theorem 6 in
Paunonen et al. [2008] are verified. Therefore, by Theo-
rem 5 in Paunonen et al. [2008], one can conclude from
the second equation of (14) that Πθ = 0, and thus from
the first equation of (14) that M∗Πη − E = 0. Selecting
η̄(0) = Πηw(0) and coming back in the explicit form (13)
yields the desired result since y =M∗Πηw = Ew = ψ. �



4.2 Change of coordinates

Given z̄ from Assumption 2, let ψ(t) := −q(t, z̄(t), 0, . . . , 0)
and let µ > 0 be fixed. In view of Assumptions 1 and 2, ψ
is C2 and T -periodic. Then, let η̄0 be the initial conditions
given by Lemma 4 so that

µ

∫ 1

0

η̄(t, x)M(x)dx = ψ(t) = −q(t, z̄(t), 0). (15)

Now, consider the following changes of coordinates for the
closed-loop system dynamics (3)-(7)

z 7→ ζ := z − z̄(t)
ξi 7→ X i := gr−iξi, i = 1, . . . , r − 1,

ξr 7→ θ := ξr +
∑r−1
i=1 `

r−iaiξi,

ξ̂i 7→ εi := `(r−i)(ξ̂i − ξi), i = 1, . . . , r,

η 7→ φ := η(·, x)− η̄(·, x)−M(x)θ̂

and denote X := (X1, . . . ,Xr−1) ∈ Rr−1, ε := (ε1, . . . , εr) ∈
Rr. First, note that θ̂ reads

θ̂ = θ + εr +

r−1∑
i=1

ai

(g
`

)r−i
εi = θ + Ψε

with

Ψ :=
(
a1
(
g
`

)r−1
, . . . , ar−1

(
g
`

)
, 1
)
. (16)

The input u is then transformed into

u = −κθ + µ
∫ 1

0
φ(t, x)M(x)dx− (κ+ µm)Ψε+ ψ(t)

with m :=
∫ 1

0
M(x)2dx. in light of (15). As a consequence,

the closed-loop system dynamics reads

ζ̇ = F (t, ζ, g1−rCr−1X)

Ẋ = g(Ar−1 −Br−1Ka)X + gBr−1θ

θ̇ = ∆(t, ζ,X , θ)− (κ+ µm)Ψε− κθ + y

ε̇ = `(Ar −KbCr)ε−Br[∆(t, ζ,X , θ) + y]

y = µ
∫ 1

0
φ(t, x)M(x)dx

(17a)

where the triplet (Ai, Bi, Ci) is in prime form, i.e.,

Ai :=

(
0i−1,1 Ii−1

0 0 · · · 0

)
, Bi := (0i−1,1 1)

>
,

Ci := (1 01×i−1) ,

Ka = (a1, . . . , ar−1), Kb = (b1, . . . , br), the function F,∆
are defined as

F (t, ζ, g1−rCr−1X) := f(t, ζ + z̄(t), g1−rCr−1X)

− f(t, z̄(t), 0),

∆(t, ζ,X , θ) :=

q(t, ζ + z̄(t), g1−rX1, . . . , g
−1Xr−1, θ −KaX)

−q(t, z̄(t), 0) + g

r−2∑
i=1

aiX i+1 + gar−1(θ −
r−1∑
i=1

aiX i),

and the φ-dynamics is given by
φt(t, x) = − 1

T φx(t, x)−M(x)y

−M(x)
(
∆(t, ζ,X , θ)− (κ+ µm)Ψε

)
φ(t, 0) = φ(t, 1)

φ(0, x) = φ0(x)

(17b)

defined on (t, x) ∈ R+ × [0, 1], with

φ0(x) = η0(x)− η̄0(x)−M(x)θ̂(0) ∈ L2(0, 1).

Recall that the function q is globally Lipschitz by Assump-
tion 1. Furthermore, ∆(t, 0, 0, 0) = 0. As a consequence, by
using the definition of the matrix Ψ in (16), there exists
a L > 0, independent of g, `, κ such that the following
inequalities hold

|Ψa| ≤ L, |(κ+ µm)Ψε| ≤ Lκ|ε|,
|∆(t, ζ,X , θ)| ≤ L

(
|ζ|+ g|X |+ g|θ|

)
,

(18)

for all (ζ,X , θ, ε) ∈ Rn+2r and for any g ≥ 1 and ` ≥
max{g, 1}. Finally, system (17) can be also compactly
written as

ṗ = F(t, p) (19)
with p = (ζ,X , θ, ε, φ) ∈ Rn+2r × L2(0, 1), and associated
norm |p| := |ζ|+ |X |+ |θ|+ |ε|+ |φ|L2(0,1).

4.3 Existence of solutions

The following lemma concerning the existence of solutions
to (17) is stated. Its proof is similar to Lemma 2 in Astolfi
et al. [2021]. Details are omitted for space reasons.

Lemma 5. (Well-posedness of (19)). For any t0 > 0 and
any initial conditions p0 ∈ Rn+2r × L2(0, 1), respectively
p0 ∈ Rn+2r × H1(0, 1), with the compatibility condition
φ0(0) = φ0(1)), there exists a sufficiently small constant
τ > 0 such that system (19) admits a unique solution
satisfying p ∈ C0([t0, t0+τ ];Rn+2r×L2(0, 1)), respectively
p ∈ C1([t0, t0+τ ];Rn+2r×L2(0, 1))∩C0([t0, t0+τ ];Rn+2r×
H1(0, 1)).

4.4 Stability of the origin of the closed-loop system

Once the existence of solutions has been established thanks
to Lemma 5, it is possible to prove that the origin of (19)
is globally asymptotically stable. To this end, consider the
Lyapunov functional

W (t, p) = g2U1(t, ζ,X) + U2(θ, ε) + U3(φ)
U1(t, ζ,X) = V (t, ζ) + X>PaX ,

U2(θ, ε) = θ2 + ε>Pbε, U3(φ) = 2µ
∫ 1

0
φ(t, x)2dx,

where the matrices Pa, Pb are defined as solution of the
following Lyapunov matrix equations

Pa(Ar−1 −Br−1Ka) + (Ar−1 −Br−1Ka)>Pa = −2I,
Pb(Ar −KbCr) + (Ar −KbCr)

>Pb = −2I,

since the matrices (Ar−1−Br−1Ka) and (Ar −KbCr) are
Hurwitz due to the choice of the parameters ai, bi in the
statement of the theorem. In view of Assumption 2, the
function W satisfies, for all (t, p) ∈ R+×Rn+2r×L2(0, 1),

αW (|p|) ≤W (t, p) ≤ ᾱW (|p|), (20)

for some class K∞ functions αW , ᾱW . Then, compute the
time derivative of U1. Using Assumption 2, it yields

U̇1 ≤− α|ζ|2 + ρg1−r|Cr−1X |2 − 2g|X |2 + 2gX>PaBr−1θ

≤− α|ζ|2 − (g − ρ)|X |2 + g|Pa|2θ2

for all g ≥ 1, where in the second step it is used the Young’s
inequality and the fact that g1−r ≤ 1 for all g ≥ 1. Then,
consider the time derivatives of U2. By using the Lipschitz
inequalities in (18), it gives

U̇2 =− 2κθ2 + 2θy + 2θ∆(t, ζ,X , θ)− 2θ(κ+ µm)Ψε

− 2`|ε| − 2ε>Br
(
∆(t, ζ,X , θ) + y

)
≤− (2κ− c1(g))θ2 − (2`− c2(g, κ))|ε|

+ 2y2 + 2|ζ|2 + 2|X |2



with c1(g) = 2 + 2L2 + L2g2 + 2Lg, and c2(g, κ) = 1 +
κ2 + L2 + 2L2g2. Finally, following similar computations
in [Marx et al., 2021, Appendix], and using the property∫ 1

0
φx(t, x)φ(t, x)dx = 0, due to the boundary conditions

φ(t, 1) = φ(t, 0), and recalling the definition of y in (17),
the time-derivative of U3 gives

U̇3 = −4y2 − 2y
(
∆(t, ζ,X , θ)− (κ+ µm)Ψε

)
≤ −3y2 + 2L2

(
|ζ|2 + g2|X |2 + g2|θ|2 + κ2|ε|2).

Finally, by combining all previous inequalities together,
the time derivative of W gives

Ẇ ≤− (g2α− 2L2 − 2)|ζ|2 − (g3 − ρg2 − 2L2g2 − 2)|X |2

− (2κ− c1(g)− g3|Pa|2 − 2L2g2)θ2

− (2`− c2(g, κ)− 2L2κ2)|ε|2 − y2.
Hence, since c1(g) depends only g and c2(κ) on κ, it is
always possible to select g, κ and ` large enough so that
there exists a positive number ε > 0 such that

Ẇ ≤− ε
[
|ζ|2 + |X |2 + |θ|2 + |ε|2 − (

∫ 2

0
φ(t, x)M(x)dx)2

]
≤0.

Asymptotic stability of p = 0 in the Rn+2r × L2(0, 1)-
topology can be therefore proved following [Marx et al.,
2021, Theorem 1] and in particular by using the following
arguments: completness of solutions, applying Barbalat’s
lemma, precompactness of solutions and LaSalle’s invari-
ance principle arguments for infinite-dimensional systems
(see [Slemrod, 1989, Theorem 3.1]). The proof concludes
by noting that the origin of (17) implies X = 0 and
therefore e = X1 = 0. �

5. CONCLUSIONS

A new output-feedback RC-scheme for minimum-phase
nonlinear systems with arbitrarily relative degree is pro-
posed. This work is cast into a global context (i.e. with
globally Lipschitz nonlinearities) but similar results could
be proved into a semi-global framework by relaxing these
assumptions. Future works envision also to enlarge the
class of nonlinear systems by considering systems in the
original coordinates with sector-bounded or monotonic
nonlinearities.
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