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A new design of output-feedback repetitive control scheme for nonlinear minimumphase systems with arbitrary relative degree and globally Lipschitz nonlinearities is proposed. This work extends the recent results in Astolfi et al. [2021]. The delay of the repetitive control scheme is represented by a transport equation. A high-gain observer and a forwarding-based feedback law are employed to steer the desired output to zero in presence of periodic signals (references and/or perturbations) and model uncertainties.

INTRODUCTION

Repetitive control (RC) schemes are based on the main idea that a delay can be used to generate any periodic signal. RC schemes are therefore very popular in regulation problems of periodic signals, i.e. reference tracking and/or disturbance rejection, and used in many control applications in both continuous-time, [START_REF] Hara | Repetitive control system: A new type servo system for periodic exogenous signals[END_REF], and discrete-time domain, [START_REF] Tomizuka | Analysis and synthesis of discrete-time repetitive controllers[END_REF]. See, more recently, [START_REF] Mattavelli | Repetitive-based control for selective harmonic compensation in active power filters[END_REF], [START_REF] Kurniawan | A survey on robust repetitive control and applications[END_REF], [START_REF] Blanken | Multivariable repetitive control: Decentralized designs with application to continuous media flow printing[END_REF] and references therein. Although this vast success, from the theoretical point of view, few works addressed the problem of using RCschemes for continuous-time nonlinear systems. In view of the difficulties of dealing with infinite-dimensional systems (i.e., the delay), a common approach is to focus on some finite-dimensional RC approximation based on the use of low-pass filters (see, e.g., [START_REF] Weiss | Repetitive control of mimo systems using h ∞ design[END_REF]) or on its equivalent harmonic representation (see, e.g., [START_REF] Astolfi | Francis-wonham nonlinear viewpoint in output regulation of minimum phase systems[END_REF], [START_REF] Ghosh | Nonlinear repetitive control[END_REF]). Recently, a new stability analysis approach for an exact RC-scheme (i.e. infinite-dimensional) has been proposed in the context of nonlinear systems which are strictly dissipative, under the assumption that the relative degree between the control input and the regulated output is zero, see [START_REF] Califano | A stability analysis based on dissipativity of linear and nonlinear repetitive control[END_REF].

This work addresses the problem of designing an outputfeedback RC-scheme for minimum-phase nonlinear systems having a relative degree larger than one and with globally Lipschitz nonlinearities. It relies on the recent developments proposed in [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimumphase systems[END_REF] where the same class of systems is considered but with a partialstate feedback design. A new design is proposed, allowing to extend the class of systems to which RC-approaches apply. With respect to [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimumphase systems[END_REF], it is employed a different transport-equation design which is able to achieve an input-to-state stability property with respect to the estimation error. As a consequence, the state-feedback law, based on forwarding forwarding technique, can be turned into output-feedback by means of classical highgain observers, see, e.g., [START_REF] Atassi | A separation principle for the stabilization of a class of nonlinear systems[END_REF].

Notation. R denotes the space of real numbers and C the space of complex numbers, R + := [0, ∞) and N denotes the space of positive integers, i.e. N := {1, 2, . . . , ∞}. For a function w : (t, x) ∈ R + ×[0, 1] → w(t, x) ∈ R, the notation w t (respectively, w x ) denotes the partial derivative of w w.r.t the variable t (respectively, w.r.t. the variable x). When a function w depends only on the variable of the time t (resp. space x), its derivative is simply denoted by ẇ (resp. w ); L 2 (0, 1) denotes the Hilbert space of realvalued square-integrable functions over the interval (0, 1) and H1 (0, 1) ⊂ L 2 (0, 1) is the Hilbert space of real-valued absolutely continuous functions over [0, 1] with squareintegrable derivative; • L 2 and • H 1 denotes their repsectively induced norms (see, also, [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimumphase systems[END_REF]). A function α : R

+ → R + is said to be of class-K ∞ if α is continuous, increasing, α(0) = 0 and lim s→∞ α(s) = ∞. 2. MAIN MOTIVATION Consider a system of the form ẋ = f(x, d(t)) + g(x, d(t))u y = h(x, d(t)) (1) 
with system state x ∈ R nx , control input u ∈ R and output y ∈ R. The problem of periodic output regulation consists in designing a regulator for system (1) so that the output y satisfies lim (2) inside the control-feedback loop. The main purpose of (2), based on the so called internal-model principle [START_REF] Paunonen | On infinite-dimensional sylvester equation and the internal model principle[END_REF]), is to generate any desired periodic steadystate input, see for instance [START_REF] Hara | Repetitive control system: A new type servo system for periodic exogenous signals[END_REF]. However, the analysis and the design of a RC-based stabilizerfeedback for systems (1) is not straightforward since the Laplace transformation cannot be used in such a nonlinear framework, and different tools need to be used.

An alternatively approach, pursued in [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimumphase systems[END_REF], [START_REF] Califano | Stability analysis of nonlinear repetitive control schemes[END_REF], [START_REF] Califano | A stability analysis based on dissipativity of linear and nonlinear repetitive control[END_REF], consists in rewriting the scheme (2) by using an equivalent transport equation representation. In particular, the main result in [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimumphase systems[END_REF] is that of developing a new RC-feedback control law for systems (1) having a welldefined relative degree and that can be rewritten, after a change of coordinates, into the form

           ż = f (t, z, ξ 1 ), ξi = ξ i+1 , i = 1, . . . , r -1 ξr = q(t, z, ξ 1 , . . . , ξ r ) + u, e = ξ 1 , (3) 
where (z, ξ) ∈ R n × R r is the system state, with the z ∈ R n -dynamics being the so-called zero-dynamics and ξ := (ξ 1 , . . . , ξ r ) ∈ R r representing the derivatives of the output e ∈ R that we aim at regulating to zero, and u ∈ R the control input. Note that with respect to the representation (1), we have ξ 1 = h(x, d(t)) -r(t), and the explicit dependence on d, r in (3) is compactly substituted by the dependence on time t. Finally, the zerodynamics in (3) is supposed to possess some good inputto-state properties as specified later. The RC-design for system (3) proposed in [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimumphase systems[END_REF] has then the form

     η t (t, x) = -1 T η x (t, x) ∀ (t, x) ∈ R + × [0, 1], η(t, 0) = η(t, 1) + θ(t) ∀ t ∈ R + , u(t) = γ(θ(t), η(t, x)) ∀ (t, x) ∈ R + × [0, 1], (4) 
where (t, x) ∈ R + × [0, 1] and η ∈ L 2 (0, 1), the signal θ is a linear combination of the state variables ξ of the form

θ := ξ r + r-1 i=1 g r-i a i ξ i ,
and the feedback law γ : R × L 2 (0, 1) → R is designed according to the so-called forwarding approach. The drawback of such an approach is that the knowledge of θ, and therefore of the state components (ξ 1 , . . . , ξ r ), is required.

The objective of this work is to extend such an approach to the context of output feedback, in which the sole use of e = ξ 1 is employed for the RC-feedback law (4). To this end, recall that a common routine in output-feedback control is to replace the state information ξ by an estimate ξ provided by an observer. In the context of minimumphase systems, such an observer is typically chosen as a high-gain observer, see, e.g., [START_REF] Atassi | A separation principle for the stabilization of a class of nonlinear systems[END_REF]. However, for this to work, an input-to-state stability (ISS) with respect to estimation error is needed, see [START_REF] Andrieu | A unifying point of view on output feedback designs for global asymptotic stabilization[END_REF]. As a consequence, when considering the feedback (4), such an approach cannot be followed since simple computations can show that the ISS property with respect to estimation error acting at the boundary conditions η(t, 0) may not be verified, see, for instance [START_REF] Tanwani | Input-tostate stabilization in h 1-norm for boundary controlled linear hyperbolic pdes with application to quantized control[END_REF]. The main result of this work is therefore that of proposing a variation of the scheme (4) by developing a pure output feedback RC-scheme for systems of the form (3), with the signal θ acting in a distributed way and not at the boundary of the η-dynamics.

MAIN RESULT

Following [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimumphase systems[END_REF], consider a system of the form (3) and suppose that the following assumptions hold. Assumption 1. The function q in (3) is globally Lipschitz, C 2 in its arguments and periodic with respect to the first argument.

Assumption 2. The zero-dynamics ż = f (t, z, 0) of system (3) admits a unique C 2 T -periodic bounded solution z(t) which is globally uniformly stable and input-to-state stable.

In particular, there exists a positive definite function

V : R × R n → R + and class K ∞ functions α, ᾱ and real numbers α, ρ > 0 satisfying α(|z -z(t)|) ≤ V (t, z -z(t)) ≤ ᾱ(|z -z(t)|) (5) for all (t, z) ∈ R + × R n and ∇V (t, z -z(t)), f (t, z, ξ 1 ) -f (t, z(t), 0) ≤ -α|z -z(t)| 2 + ρ|ξ 1 | 2 (6) for all (t, z, ξ 1 ) ∈ R + × R n × R.
Under previous assumptions, an output-feedback repetitivecontrol based regulator can be designing by combining the following elements.

• A high-gain observer of the form:

   ξi = ξi + i b i (e -ξ1 ), i = 1 . . . , r -1 ξr = u s + r b r (e -ξ1 ), ( 7a 
)
where ≥ 1 is the so-called high-gain parameter, the parameters b i > 0, i = 1, . . . , r have to be properly chosen and the term u s is an extra input to be defined. Note that following [START_REF] Wang | Output stabilization for a class of nonlinear systems via high-gain observer with limited gain power[END_REF], the high-gain observer (7a) could be also substituted by a low-power high-gain observer [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF]. • The core of the RC scheme, also denoted as internalmodel unit in output regulation theory, see, e.g., [START_REF] Astolfi | Francis-wonham nonlinear viewpoint in output regulation of minimum phase systems[END_REF], embedding a delay represented as a transport equation:

     η t (t, x) = -1 T η x (t, x) + exp(βx) θ η(t, 0) = η(t, 1) η(0, x) = η 0 (x) (7b) defined on (t, x) ∈ R + × [0, 1],
with β being a parameter to be chosen and θ a signal to be defined. • The forwarding-based (see, e.g., [START_REF] Marx | Forwarding design for stabilization of acoupled transport equation/ode with a cone-bounded input nonlinearity[END_REF][START_REF] Marx | Forwarding techniques for the global stabilization of dissipative infinitedimensional systems coupled with an ode[END_REF], [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimumphase systems[END_REF]) stabilizing feedback control law:

     u = u s + u im u s = -κ θ u im = µ 1 0 (η(t, x) -M (x) θ)M (x)dx, (7c) 
where µ > 0 is a positive parameters, θ is defined as

θ := ξr + r-1 i=1 g r-i a i ξi , (7d) 
with g > 0, a i > 0, i = 1, . . . , r -1, parameters to be defined, and the function M : [0, 1] → R is defined as the solution of the following two-boundary value problem

1 T M (x) = κM (x) + exp(βx), M (0) = M (1) (8) 
which can be explicitly computed as

M (x) = exp(kT x)M + T exp(βx)-exp(κT x) β-κT , β = κT, exp(kT x)M + xT exp(κT x), β = κT, M =    exp(β)+exp(κT ) (κT -β)(1-exp(κT )) , β = κT, T exp(κT ) 1-exp(κT ) , β = κT. (9) 
The following main result can be stated. Theorem 1. Suppose Assumptions 1 and 2 hold. Let the parameters a i , b i of the regulator (7) be such that the corresponding polynomial

p a (λ) := λ r-1 + a r-1 λ r-2 + • • • + a 2 λ + a 1 p b (λ) := λ r + b r λ r-1 + • • • + b 2 λ + b 1
are Hurwitz and let µ > 0 and β = 0 be fixed. Then, there exists g ≥ 1 and, for any g > g , there exists κ ≥ 1 such that, for any κ ≥ κ there exists ≥ 1 (the values of g , κ , depends only on the Lipschitz constants of f, q, the parameters α, ρ defined in Assumptions 1, 2, and the choice of a 1 , b i ) such that the following statements hold true for any ≥ .

(1) For any initial condition (z 0 , ξ 0 , ξ0 , η 0 ) ∈ R n × R r × L2 (0, 1), the closed-loop system (3), ( 7), ( 8), admits a unique solution (z, ξ, ξ, η) ∈ C 0 ([0, ∞); R n+2r × L 2 (0, 1)), which is bounded forward in time, namely

|z(t)| + |ξ(t)| + | ξ(t)| + η(t, •) L 2 ≤ δ, ∀ t ≥ 0
for some δ > 0.

(2) Any solution of the closed-loop system the closed-loop system (3), ( 7), ( 8), starting from R n × R r × L 2 (0, 1) satisfies lim t→∞ e(t) = 0.

The result of Theorem 1 mainly states that the proposed design (7) guarantees asymptotic regulation to zero of the error e, namely periodic reference tracking and disturbance rejection is achieved for systems (1) that can be rewritten, via a change of coordinates, in the form (3), with a pure output-feedback design which uses only the regulated output e. Furthermore, the proposed design is robust with respect to model uncertainties. Indeed, the control law ( 7) is parametrized by some parameters. and their values depend only on the Lipschitz constants of the functions f, q and the ISS-properties α, ρ of the zero-dynamics (see Assumption 2). In other words, the exact knowledge of the function f, q characterizing system (3), and so of f, g, h of system (1), is not needed for the design of the proposed RC-scheme.

As one can see comparing equations (7b) with (4), the main difference with respect to the design proposed in [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimumphase systems[END_REF] is that the driving term of the transport equation is acting in a distributed fashion and not at the boundary. This, in turns, is able to guarantee some ISS properties with respect to the estimated θ. In practice, once the high-gain observer (7a) is converged, one recovers a state-feedback equation η t (t, x) = -1 T η x (t, x) + exp(βx)θ which in turns guarantee the signal θ (and therefore ξ 1 ) to converge asymptotically to zero. Such a modification is however not trivial to analyze as one has to prove that the internal-model property of (7b) is still verified, i.e. the system

η t (t, x) = -1 T η x (t, x), η(t, 0) = η(t, 1), u ss im = µ 1 0 η(t, x)M (x)dx, (10) 
is such that the output u ss im can generate any arbitrarily periodic signal.

Finally, note that for unitary systems of the form ż = f (t, z, e) ė = q(t, z, e) + u the proposed control law (7) reads

     η t (t, x) = -1 T η x (t, x) + exp(βx)e, η(t, 0) = η(t, 1), η(0, x) = η 0 (x), u = -κe + µ 1 0 M (x)(η(t, x) -M (x)e)dx,
with M chosen as in (8).

PROOF OF THEOREM 1

The proof is organized as follows. First, it is shown that system (7b) possesses the so-called "internal-model property", i.e. system (10) can generate any periodic signal. Then, a suitable change of coordinates for the closed-loop dynamics is proposed. Existence of solution is briefly discussed and the stability and convergence analysis is finally addressed. Fundamental properties developed in the works [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimumphase systems[END_REF], [START_REF] Marx | Forwarding design for stabilization of acoupled transport equation/ode with a cone-bounded input nonlinearity[END_REF] and [START_REF] Marx | Forwarding techniques for the global stabilization of dissipative infinitedimensional systems coupled with an ode[END_REF] will be used throughout the proof.

Internal Model Property

Consider system (7b), (7c). When needed, it will be used the following equivalent operator-form (see, e.g. [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF]) given by

η = Sη + G θ u = -κ θ + µM * (η -M θ) ( 11 
)
where S = -1 T ∂ x , G = exp(βx) and with M * denoting the adjoint of M so that M * η = 1 0 η(t, x)M (x)dx. The representation (11) can be be obtained following for instance [Marx et al., 2021, Example 2,4].

The following results, concerning some observability and stability properties of the operators in (11), are stated.

Lemma 1. For any β = 0, the pair (S * , G * ) defined in (11) is approximately observable in infinite time 2 . Proof. In order to prove the desired result it suffices to check that the adjoint system, namely

     T η t (t, x) + η x (t, x) = 0 η(t, 0) = η(t, 1) y(t) = 1 0 exp(βx)η(t, x)
dx is approximately observable from the output y. To this end, suppose that y is constantly equal to zero. Then, by computing an integration by parts, this implies

y(t) = 1 0 exp(βx)η(t, x)dx = 1 β exp(βx)η(t, x) 1 0 -1 β 1 0 exp(βx)η x (t, x)dx = 1 β (exp(β) -1)η(t, 0) + T β y(t). If β = T , it yields 0 = y(t) = 1 β (exp(β) -1)η(t, 0) + y(t) for all t ≥ 0. Otherwise, for β = T , 0 = y(t) = 1 0 exp(βx)η(t, x)dx = exp(β)-1 β-T η(t, 0)
for all t ≥ 0. In both cases, one obtain η(t, 0) = 0 for all t ≥ 0. Therefore, following the proof in [Marx et al., 2020, Theorem 2], the latter implies that η(t, x) = 0 for all (t, x) ∈ R + × [0, 1] concluding the desired result. More details are given also in [Marx et al., 2021, Example 5]. An alternative proof consists in following [Russell, 1978, Section 4] and using an eigenfunction decomposition of the operators S, G.

Lemma 2. For any β = 0, the pair (S, M * ) defined in ( 11) is approximately observable in infinite time.

Proof. The definition of M given in ( 8) is solution of the Sylvester equation -κM = SM + G.

(12) Indeed, the spectrum of -κ and S is disjoint and the solution is unique. In particular, it is given by ( 9). Recall that by Lemma 1, the pair (S * , G * ) is approximately observable, the operator S is skew-adjoint, and the matrix

-κ + λ 1 1 0
is full rank for any λ in the spectrum of S. Hence one can apply Proposition 1 of [START_REF] Marx | Forwarding techniques for the global stabilization of dissipative infinitedimensional systems coupled with an ode[END_REF] to conclude the proof. Lemma 3. For any β = 0, µ > 0, the operator

A cl = -κ -µM * M M * G S
generates a strongly stable C 0 semigroup.

Proof. The proof is a direct application of Theorems 1, 2 and Proposition 1 of [START_REF] Marx | Forwarding techniques for the global stabilization of dissipative infinitedimensional systems coupled with an ode[END_REF] and it is therefore just sketched. As noted in the previous lemma, M given in ( 8) is solution of the Sylvester equation ( 12). Indeed, the spectrum of -κ and S is disjoint and the solution is unique, as given by ( 9). Hence, the system θ = -κ θ + µM * (η -M θ) η = Sη + G θ is transformed, by using the change of coordinates

η → η := η -M θ into a system in triangular form χ = Ãcl χ, Ãcl := -κ µM * 0 (S -µMM * )
,

where χ := ( θ, η). Now, by Lemma 1, the pair (S * , G * ) is approximately observable in infinite time and therefore, in view of Proposition 1 of [START_REF] Marx | Forwarding techniques for the global stabilization of dissipative infinitedimensional systems coupled with an ode[END_REF], also the pair (S, M * ) is approximately observable. As a consequence, since the operator S is skew-adjoint, the operator (S -µMM * ) is dissipative. Furthermore using LaSalles Invariance Principle for infinite-dimensional systems (see, e.g., Theorem 3.1 in [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF]) and the lower triangular structure of Ãcl , one can conclude that the origin of χ is globally asymptotically stable, i.e., the operator A cl generates a strongly stable semigroup, concluding the proof. Technical details follow from [START_REF] Marx | Forwarding techniques for the global stabilization of dissipative infinitedimensional systems coupled with an ode[END_REF].

Finally, similarly to [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimumphase systems[END_REF], Lemma 1], the following result concerning the internal-model property of the feedback regulator ( 7) can be stated. Lemma 4. For any C 2 T -periodic function ψ : R + → R and any µ, β = 0, there exists η0 ∈ L 2 (0, 1), such that the solution to the system

ηt (t, x) = -1 T ηx (t, x), η(t, 0) = η(t, 1), η(0, x) = η0 (x), y(t) = µ 1 0 η(t, x)M (x)dx (13) defined on (t, x) ∈ R + × [0, 1], with M defined by (8), satisfies y(t) ≡ ψ(t) for all t ∈ R + .
Proof. Since the function ψ is periodic and C 2 , the signal ψ can thought as generated by an autonomous infinitedimensional system of the form w t (t, x) -1 T w x (t, x) = 0, w(t, 1) = w(t, 0), w(0, x) = w 0 (x), ψ(t) = w(t, 1), with (t, x) ∈ R + × [0, 1] and suited initial conditions w 0 (x) ∈ L 2 (0, 1). Equivalently, it is represented with the operator form ẇ = Sw, ψ = Ew. Now, by using the operator-form introduced above, consider the following system

   ẇ = Sw θ = -κ θ -Ew + M * (η -M θ) η = S η + G θ
Let study now the existence of a solution Π θ , Π η to the following infinite-dimensional Sylvester equation

Π θ S = -(κ + M * M)Π θ + M * Π η -E Π η S = SΠ η + GΠ θ . (14) 
Since the operator A cl defined in Lemma 3 generates a strongly stable semigroup, the Sylvester equation ( 14) is well defined, see Lemma 1 in [START_REF] Paunonen | On infinite-dimensional sylvester equation and the internal model principle[END_REF] and the existence of a solution is ensured. Furthermore, it is possible to verify that the conditions of Theorem 6 in [START_REF] Paunonen | On infinite-dimensional sylvester equation and the internal model principle[END_REF] are verified. Therefore, by Theorem 5 in [START_REF] Paunonen | On infinite-dimensional sylvester equation and the internal model principle[END_REF], one can conclude from the second equation of ( 14) that Π θ = 0, and thus from the first equation of ( 14) that M * Π η -E = 0. Selecting η(0) = Π η w(0) and coming back in the explicit form (13) yields the desired result since y = M * Π η w = Ew = ψ.

Change of coordinates

Given z from Assumption 2, let ψ(t) := -q(t, z(t), 0, . . . , 0) and let µ > 0 be fixed. In view of Assumptions 1 and 2, ψ is C 2 and T -periodic. Then, let η0 be the initial conditions given by Lemma 4 so that

µ 1 0 η(t, x)M (x)dx = ψ(t) = -q(t, z(t), 0). ( 15 
)
Now, consider the following changes of coordinates for the closed-loop system dynamics (3)-( 7)

z → ζ := z -z(t) ξ i → X i := g r-i ξ i , i = 1, . . . , r -1, ξ r → θ := ξ r + r-1 i=1 r-i a i ξ i , ξi → ε i := (r-i) ( ξi -ξ i ), i = 1, . . . , r, η → φ := η(•, x) -η(•, x) -M (x) θ and denote X := (X 1 , . . . , X r-1 ) ∈ R r-1 , ε := (ε 1 , . . . , ε r ) ∈ R r . First, note that θ reads θ = θ + ε r + r-1 i=1 a i g r-i ε i = θ + Ψε with Ψ := a 1 g r-1 , . . . , a r-1 g , 1 . (16) 
The input u is then transformed into 15). As a consequence, the closed-loop system dynamics reads

u = -κθ + µ 1 0 φ(t, x)M (x)dx -(κ + µm)Ψε + ψ(t) with m := 1 0 M (x) 2 dx. in light of (
                   ζ = F (t, ζ, g 1-r C r-1 X ) Ẋ = g(A r-1 -B r-1 K a )X + gB r-1 θ θ = ∆(t, ζ, X , θ) -(κ + µm)Ψε -κθ + y ε = (A r -K b C r )ε -B r [∆(t, ζ, X , θ) + y] y = µ 1 0 φ(t, x)M (x)dx (17a)
where the triplet (A i , B i , C i ) is in prime form, i.e.,

A i := 0 i-1,1 I i-1 0 0 • • • 0 , B i := (0 i-1,1 1) , C i := (1 0 1×i-1
) , K a = (a 1 , . . . , a r-1 ), K b = (b 1 , . . . , b r ), the function F, ∆ are defined as

F (t, ζ, g 1-r C r-1 X ) := f (t, ζ + z(t), g 1-r C r-1 X ) -f (t, z(t), 0), ∆(t, ζ, X , θ) := q(t, ζ + z(t), g 1-r X 1 , . . . , g -1 X r-1 , θ -K a X ) -q(t, z(t), 0) + g r-2 i=1 a i X i+1 + ga r-1 (θ - r-1 i=1 a i X i ),
and the φ-dynamics is given by

           φ t (t, x) = -1 T φ x (t, x) -M (x)y -M (x) ∆(t, ζ, X , θ) -(κ + µm)Ψε φ(t, 0) = φ(t, 1) φ(0, x) = φ 0 (x) (17b) defined on (t, x) ∈ R + × [0, 1], with φ 0 (x) = η 0 (x) -η0 (x) -M (x) θ(0) ∈ L 2 (0, 1).
Recall that the function q is globally Lipschitz by Assumption 1. Furthermore, ∆(t, 0, 0, 0) = 0. As a consequence, by using the definition of the matrix Ψ in ( 16), there exists a L > 0, independent of g, , κ such that the following inequalities hold

|Ψ a | ≤ L, |(κ + µm)Ψε| ≤ Lκ|ε|, |∆(t, ζ, X , θ)| ≤ L |ζ| + g|X | + g|θ| , (18) 
for all (ζ, X , θ, ε) ∈ R n+2r and for any g ≥ 1 and ≥ max{g, 1}. Finally, system (17) can be also compactly written as ṗ = F(t, p) (19) with p = (ζ, X , θ, ε, φ) ∈ R n+2r × L 2 (0, 1), and associated norm |p|

:= |ζ| + |X | + |θ| + |ε| + |φ| L 2 (0,1) .

Existence of solutions

The following lemma concerning the existence of solutions to ( 17) is stated. Its proof is similar to Lemma 2 in [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimumphase systems[END_REF]. Details are omitted for space reasons. Lemma 5. (Well-posedness of ( 19)). For any t 0 > 0 and any initial conditions p 0 ∈ R n+2r × L 2 (0, 1), respectively p 0 ∈ R n+2r × H 1 (0, 1), with the compatibility condition φ 0 (0) = φ 0 (1)), there exists a sufficiently small constant τ > 0 such that system (19) admits a unique solution satisfying p ∈ C 0 ([t 0 , t 0 +τ ]; R n+2r ×L 2 (0, 1)), respectively p ∈ C 1 ([t 0 , t 0 +τ ]; R n+2r ×L 2 (0, 1))∩C 0 ([t 0 , t 0 +τ ]; R n+2r × H 1 (0, 1)).

Stability of the origin of the closed-loop system

Once the existence of solutions has been established thanks to Lemma 5, it is possible to prove that the origin of ( 19) is globally asymptotically stable. To this end, consider the Lyapunov functional

W (t, p) = g 2 U 1 (t, ζ, X ) + U 2 (θ, ε) + U 3 (φ) U 1 (t, ζ, X ) = V (t, ζ) + X P a X , U 2 (θ, ε) = θ 2 + ε P b ε, U 3 (φ) = 2µ
1 0 φ(t, x) 2 dx, where the matrices P a , P b are defined as solution of the following Lyapunov matrix equations

P a (A r-1 -B r-1 K a ) + (A r-1 -B r-1 K a ) P a = -2I, P b (A r -K b C r ) + (A r -K b C r ) P b = -2I, since the matrices (A r-1 -B r-1 K a ) and (A r -K b C r ) are
Hurwitz due to the choice of the parameters a i , b i in the statement of the theorem. In view of Assumption 2, the function W satisfies, for all (t, p)

∈ R + × R n+2r × L 2 (0, 1), α W (|p|) ≤ W (t, p) ≤ ᾱW (|p|), ( 20 
) for some class K ∞ functions α W , ᾱW . Then, compute the time derivative of U 1 . Using Assumption 2, it yields U1 ≤ -α|ζ| 2 + ρg 1-r |C r-1 X | 2 -2g|X | 2 + 2gX P a B r-1 θ ≤ -α|ζ| 2 -(g -ρ)|X | 2 + g|P a | 2 θ 2 for all g ≥ 1,
where in the second step it is used the Young's inequality and the fact that g 1-r ≤ 1 for all g ≥ 1. Then, consider the time derivatives of U 2 . By using the Lipschitz inequalities in (18), it gives U2 = -2κθ 2 + 2θy + 2θ∆(t, ζ, X , θ) -2θ(κ + µm)Ψε with c 1 (g) = 2 + 2L 2 + L 2 g 2 + 2Lg, and c 2 (g, κ) = 1 + κ 2 + L 2 + 2L 2 g 2 . Finally, following similar computations in [Marx et al., 2021, Appendix], and using the property 1 0 φ x (t, x)φ(t, x)dx = 0, due to the boundary conditions φ(t, 1) = φ(t, 0), and recalling the definition of y in (17), the time-derivative of U 3 gives U3 = -4y 2 -2y ∆(t, ζ, X , θ) -(κ + µm)Ψε ≤ -3y 2 + 2L 2 |ζ| 2 + g 2 |X | 2 + g 2 |θ| 2 + κ 2 |ε| 2 ). Finally, by combining all previous inequalities together, the time derivative of W gives Ẇ ≤ -

(g 2 α -2L 2 -2)|ζ| 2 -(g 3 -ρg 2 -2L 2 g 2 -2)|X | 2 -(2κ -c 1 (g) -g 3 |P a | 2 -2L 2 g 2 )θ 2 -(2 -c 2 (g, κ) -2L 2 κ 2 )|ε| 2 -y 2 .
Hence, since c 1 (g) depends only g and c 2 (κ) on κ, it is always possible to select g, κ and large enough so that there exists a positive number > 0 such that Ẇ ≤ -|ζ|

2 + |X | 2 + |θ| 2 + |ε| 2 -( 2 0 φ(t, x)M (x)dx) 2 ≤0.
Asymptotic stability of p = 0 in the R n+2r × L 2 (0, 1)topology can be therefore proved following [Marx et al., 2021, Theorem 1] and in particular by using the following arguments: completness of solutions, applying Barbalat's lemma, precompactness of solutions and LaSalle's invariance principle arguments for infinite-dimensional systems (see [Slemrod, 1989, Theorem 3.1]). The proof concludes by noting that the origin of ( 17) implies X = 0 and therefore e = X 1 = 0.

CONCLUSIONS

A new output-feedback RC-scheme for minimum-phase nonlinear systems with arbitrarily relative degree is proposed. This work is cast into a global context (i.e. with globally Lipschitz nonlinearities) but similar results could be proved into a semi-global framework by relaxing these assumptions. Future works envision also to enlarge the class of nonlinear systems by considering systems in the original coordinates with sector-bounded or monotonic nonlinearities.

  r(t) = 0 for some T -periodic reference r ∈ R and in presence of possible T -periodic disturbances d ∈ R n d . In Repetitive-Control design, the solution to such a problem is typically pursued by including a regulator of the form 1 R(s) := exp(-T s) 1 -exp(-T s)

-

  2 |ε| -2ε B r ∆(t, ζ, X , θ) + y ≤ -(2κ -c 1 (g))θ 2 -(2 -c 2 (g, κ))|ε| + 2y 2 + 2|ζ| 2 + 2|X | 2

Here s ∈ C represents the Laplace variable.

See, e.g.,[Tucsnak and Weiss, 2009, Definition 6.1.1] for a precise definition of approximate observability.
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