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INTRODUCTION

Due to the many applications in which agents interact in order to accomplish task and to achieve goals, the control community has devoted a huge attention to networks analysis and to the design of control architecture. For a network to achieve a certain task, we often require the agents to achieve an agreement and to this end, synchronization and consensus are the mathematical features to express such an agreement. For instance, this is the case for power networks [START_REF] Dörfler | Synchronization in complex oscillator networks and smart grids[END_REF], heat networks [START_REF] Scholten | Modeling and control of heat networks with storage: the single-producer multiple-consumer case[END_REF] and robot swarms Olfati-Saber [2006].

First, researchers focused on the problem of networks of linear systems and fundamental results for linear systems can be found in [START_REF] Scardovi | Synchronization in networks of identical linear systems[END_REF] for homogeneous systems and in [START_REF] Wieland | An internal model principle is necessary and sufficient for linear output synchronization[END_REF] for heterogeneous networks. Nowadays, the focus of the community is placed on networks of nonlinear systems. Many approaches have been considered in the literature of homogeneous nonlinear networks: among the may results, it is worth recalling passivity conditions in [START_REF] Arcak | Passivity as a design tool for group coordination[END_REF], dissipativity in [START_REF] Stan | Analysis of interconnected oscillators by dissipativity theory[END_REF] and ISS in Casadei et al. [2019a,b]. One of the most popular approaches is based on high-gain type arguments (see [START_REF] Isidori | Robust output synchronization of a network of heterogeneous nonlinear agents via nonlinear regulation theory[END_REF], [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF]) inherited from high-gain observers theory. This technique has however well known limits which brought researchers to investigate alternative tools such as nonlinear integral control [START_REF] Pavlov | Controlled synchronization via nonlinear integral coupling[END_REF][START_REF] Pavlov | Synchronization of networked oscillators under nonlinear integral coupling[END_REF] which incorporates both low and high gain arguments.

Naturally, a property associated to synchronization is incremental stability, namely the property that any two solutions of a system converge to each other (see, e.g., [START_REF] Lohmiller | On contraction analysis for non-linear systems[END_REF], [START_REF] Forni | A differential lyapunov framework for contraction analysis[END_REF], [START_REF] Angeli | A lyapunov approach to incremental stability properties[END_REF], [START_REF] Simpson-Porco | Contraction theory on riemannian manifolds[END_REF], [START_REF] Andrieu | On transverse exponential stability and its use in incremental stability, observer and synchronization[END_REF] and the references therein). By enforcing this for every system in a network, we will have the systems converge to each other and thus achieve synchronization. More recently, authors have focused on incremental stability as a framework to solve the problem of synchronization and contraction theory as tool for the design of control laws, see, e.g., [START_REF] Andrieu | On transverse exponential stability and its use in incremental stability, observer and synchronization[END_REF], [START_REF] Andrieu | LMI conditions for contraction and synchronization[END_REF], [START_REF] Yin | Pinning synchronization of heterogeneous multi-agent nonlinear systems via contraction analysis[END_REF].

In this work we investigate metric-based conditions for exponential synchronization of identical multi-agent systems described by nonlinear dynamics in presence of a leader. With respect to notable articles in the literature such as [START_REF] Scardovi | Synchronization in networks of identical linear systems[END_REF] (where the state synchronization problem via output exchange for linear systems is addressed with a dynamical regulator) and [START_REF] Pavlov | Controlled synchronization via nonlinear integral coupling[END_REF] (where incremental passivity conditions are proposed for nonlinear dynamics linear in the inputs and with linear outputs), our contribution is twofold. First, we consider input affine dynamics and the agents are allowed to exchange the full-state with their neighborhoods: we generalize the results in [START_REF] Andrieu | Some results on exponential synchronization of nonlinear systems[END_REF] in which the control was linear in the dynamics. Second, we consider the case in which agents are allowed to exchange only a nonlinear output with their neighborhoods while the control is linear in the state-dynamics: inspired by the observer construction given in [START_REF] Andrieu | Characterizations of global transversal exponential stability[END_REF], we generalize the results in [START_REF] Pavlov | Controlled synchronization via nonlinear integral coupling[END_REF] where the output was linear. This paper is organized as follows. In Section 2, we recall some preliminaries of graph theory and contraction theory. Then, we provide the main results in Section 3 concerning the sufficient conditions to achieve synchro-nization via static state-feedback and static output feedback distributed control laws. An illustration is provided in Section 4. Conclusions and future perspectives are drawn in Section 5.

Notation. R denotes the set of real numbers and | • | the standard Euclidean norm. Given a C 1 function P : R n → R n×n and a C 1 vector field ζ : R n → R n , we define the Lie derivative of P along ζ as

L ζ P (x) := d ζ P (x)+P (x) ∂ζ ∂x (x) + ∂ζ ∂x (x) P (x)
where

d ζ P (x) := lim h→0 P (x + hζ(x)) -P (x) h for all x ∈ R n .

PRELIMINARIES

Graph Theory

In a general framework, a communication graph is described by a triplet G = {V, E, A} in which V is a set of N nodes V = {v 1 , v 2 , . . . , v N }, E ⊂ V × V is a set of edges e jk that models the interconnection between nodes with the flow of information from node j to node k weighted by the (k, j)-th entry a kj ≥ 0 of the adjacency matrix A ∈ R N ×N . We denote by L ∈ R N ×N the Laplacian matrix of the graph, defined as

kj = -a kj for k = j, kj = N i=1 a ki for k = j,
where j,k is the (j, k)-th entry of L.

In this work we will consider a network of N homogeneous multi-agent systems, i.e. described by identical dynamics, which are connected according to a directed graph G = {V, E, A}, fulfilling the following assumption. Assumption 1. The graph G is leader connected, namely it contains at least one spanning tree with the leader as a root. Furthermore, its Laplacian L is diagonalizable.

As a consequence, according to Assumption 1, the Laplacian matrix L can be partitioned as

L = 0 0 L 21 L 22 (1) 
where the matrix L 22 is a positive definite matrix satisfying (see [START_REF] Godsil | Algebraic graph theory[END_REF])

L 22 ≥ µI ,
(2) for some µ > 0 satisfying µ ≤ λ(L 22 ), where λ(L 22 ) denotes the smallest eigenvalue of L 22 .

Metric conditions for contraction

Consider a system ẋ = f (x)

(3) where f : R n → R n is a C 1 vector field. We indicate with X (x • , t) the trajectory of the system with initial condition x • ∈ R n evaluated at time t. Definition 1. We say that system (3) is Incrementally Globally Exponentially Stable (δGES in short) if there exist positive real numbers k, c such that

|X (x 1 , t) -X (x 2 , t)| ≤ k|x 1 -x 2 | exp(-c t)
for all t ≥ 0 in the time domain of existence of the solution and for all initial conditions x 1 , x 2 ∈ R n .

A sufficient condition for (3) to be δGES, is the existence of a metric for with the associated distance is decreasing along trajectories, as stated in the following proposition. For a proof, see Theorem 1 in [START_REF] Giaccagli | Sufficient conditions for output reference tracking for nonlinear systems: a contractive approach[END_REF] and references therein. Proposition 1. Consider system (3) and assume there exists a symmetric and positive definite matrix function P : R n → R n×n , and positive real numbers p, p, q > 0 satisfying the following

pI ≤ P (x) ≤ pI L f P (x) ≤ -qP (x) for all x ∈ R n . Then, system (3) is δGES.
To conclude the section, we recall the definition of Killing vector field. Definition 2. Consider a C 1 functions P : R n → R n×n , and g : R n → R n . We say that g is a Killing vector field for P if L g P (x) = 0 for all x ∈ R n .

Note that, if both P and g are constant matrices, the Killing vector field conditions is trivially satisfied.

MAIN RESULTS

Synchronization via State-feedback

In this section we consider a network of N identical agents described by the following dynamics ẋi = f

(x i ) + g(x i )u i i = 1, . . . , N, (4) 
in which x i ∈ R n is the state and u i ∈ R is the control input. We denote

x := col(x 1 , . . . , x N ) ∈ R N n . Our objective is to design a distributed control law stabilizing the dynamics (4) on the synchronization manifold D defined by

D = {x ∈ R N n | x 1 = x 2 = • • • = x N }, (5) 
where the state variables of different systems agree with each other. For every x in R N n , we denote the Euclidean distance to the set D by |x| D . We define our synchronization problem as follows. Problem 1. The control laws u i = φ i (x), i = 1 . . . , N solve the uniform exponential synchronization problem for (4) if the following conditions hold:

(1) For all non-communicating pair (i, j) (i.e., (i, j) / ∈ E),

∂φ i ∂x j (x) = ∂φ j ∂x i (x) = 0 , ∀x ∈ R N n .
(2) For all x ∈ D, φ i (x) = 0 (i.e., φ i is zero on D).

(3) The manifold D of the closed-loop system ẋi = f (x i ) + g(x i )φ i (x), i = 1, . . . , N is uniformly exponentially stable, i.e., there exist positive constants k and c > 0 such that for all x • in R N n and for all t in the time domain of existence of solution

|X (x • , t)| D ≤ k exp(-c t) |x • | D , (6 
) where X (x • , t) denotes the solution of (4) initiated from x • .

We can now state the first main result of this work. Theorem 1. Suppose Assumption 1 holds and assume that there exists a C 1 function P : R n → R n×n taking symmetric positive definite values such that the following conditions hold.

• The Control Matrix Function (CMF) condition holds:

L f P (x) -ρP (x)g(x)g(x) P (x) ≤ -qP (x) , p I ≤ P (x) ≤ p I , (7) 
for all x ∈ R n and for some positive real numbers p, p, q, ρ > 0. • g is a Killing vector field for P , i.e.,

L g P (x) = 0 , ∀x ∈ R n . (8) • There exists α : R n → R such that ∂α ∂x (x) = P (x)g(x) , ∀x ∈ R n . ( 9 
)
Then, the distributed control law u i = φ i (x) with

φ i (x) = -κ N j=1 ij α(x j ) , (10) 
solves the global uniform exponential synchronization problem for (4), for any κ ≥ ρ µ , with ρ satisfying (7) and µ satisfying (2).

Proof. Consider, without loss of generality, that x 1 is the leader node in the network, i.e., its dynamics is given by ẋ1 = f (x 1 ). Define n -1 error coordinates e := (e 2 , . . . , e N ) with e i := x i -x 1 and z = x 1 . These errors display the following dynamics

ėi = f (z + e i ) -f (z) -κ   N j=1 ij g(z + e i )α(z + e j )   .
Using the fact that

N j=1 ij g(z + e i )α(z) = g(z + e i )α(z) N j=1 ij = 0 ,
such a term can be added to the e i dynamics to obtain ėi

= f (z + e i ) -f (z) -κ N j=1 ij g(z + e i ) α(z + e j ) -α(z)
all i = 2, . . . , N . Note that in this new error coordinates, the manifold D defined in (5) corresponds simply to the origin of the e-dynamics, i.e. D = {(z, e) ∈ R N n : e = 0}. Consider the function Γ(s, t) defined as Γ(1, 0) = e , Γ(0, 0) = 0 , Γ(s, 0) = γ(s) , where γ is any C 1 with its i-th component Γ i defined as solution of the following ordinary differential equation

∂Γ i ∂t (s, t) = f (Z(t) + Γ i (s, t)) -f (Z(t)) -κ N j=1 ij g(Z(t)+Γ i (s, t))(α(Z(t)+Γ j (s, t))-α(Z(t))).
where Z(t) is the solution at time t of ż = f (z) initiated from z. For each path γ, we consider the function V i , i = 2, . . . , N , defined by This implies for all vector

V i (t) = 1 0 ∂Γ i ∂s (s,
ν in R n d dt ν P (Z(t) + Γ i (s, t))v = ν d f P (Z(t) + Γ i (t))ν -κ(α(Z(t) + Γ j (s, t)) -α(Z(t))) × N j=1 ij ν d g P (Z(t) + Γ i (t))ν
By using the Killing vector field (8) and the integrability assumption ( 9), the time-derivative of V i can be computed as follows

Vi (t) = 1 0 ∂Γ i ∂s (s, t) L f P (Z(t) + Γ i (s, t)) ∂Γ i ∂s (s, t) -κ ∂Γ i ∂s (s, t) N j=1 ij P (Z(t) + Γ i (s, t))g(Z(t) + Γ i (s, t)) × g(Z(t) + Γ j (s, t)) P (Z(t) + Γ j (s, t)) ∂Γ j ∂s (s, t)ds. Note that N i=2 Vi (t) = -κv(t) L 22 v(t) 1 0 N i=2 ∂Γ i ∂s (s, t) L f P (Z(t) + Γ i (s, t)) ∂Γ i ∂s (s, t)ds,
where v is defined as

v(t) =    g(Z(t) + Γ 2 (s, t)) P (Z(t) + Γ 2 (s, t)) ∂Γ2 ∂s (s, t)) . . . g(Z(t) + Γ N (s, t)) P (Z(t) + Γ N (s, t)) ∂Γ N ∂s (s, t))   .
Hence, by using (2), we get,

N i=2 Vi (t) ≤ -µκv(t) v(t) 1 0 N i=2 ∂Γ i ∂s (s, t) L f P (z + Γ i (s, t) ∂Γ i ∂s (s, t)ds, which implies N i=2 Vi (t) ≤ N i=2 1 0 ∂Γ i ∂s (s, t) [L f P (z + Γ i (s, t)) -µκP (Z(t) + Γ i (s, t))g(Z(t) + Γ i (s, t)) g(Z(t) + Γ i (s, t))P (Z(t) + Γ i (s, t))] ∂Γ i ∂s (s, t)ds .
Selecting any κ ≥ ρ µ and employing the CMF condition (7), we obtain

N i=2 Vi (t) ≤ -q N i=2 V i (t) and therefore N i=2 V i (t) ≤ exp(-qt) N i=2 V i (0) . Note that N i=2 V i (t) ≥ p n i=2 e i (t) 2
which yields exponential convergence to D. Furthermore, to obtain inequality (6), we follow [Andrieu et al., 2020, Proposition 4] and consider a sequence of minimizing paths (γ k ) k∈N such that γ k (1) = e, γ k (0) = 0. This concludes the proof.

Remark 1. In the case of a network of linear systems of the form ẋi = Ax i + Bu i , the conditions of Theorem 1 reduces to the following Riccati-like inequality P A + A P -ρP BB P ≤ -qP , with the function α(x) := B P x, and the Killing vector condition (8) automatically satisfied. In other words, we find the conditions in [Li et al., 2009, Section II.C]. Unfortunately, unlike the linear case, the extension of the proposed conditions to the non-leader case are non-trivial due to the presence of the state-dependent metric P . When P is constant, state-synchronization without leader can be achieved by following for instance [START_REF] Zhang | Fully distributed robust synchronization of networked lur'e systems with incremental nonlinearities[END_REF], [START_REF] Andrieu | Some results on exponential synchronization of nonlinear systems[END_REF] or [START_REF] Andrieu | LMI conditions for contraction and synchronization[END_REF].

Synchronization via Output-Feedback

We suppose now that the dynamics of the agents are described by ẋi = f (x i ) + u i i = 1, . . . , N, y i = h(x i ), (11) in which x i ∈ R n is the state and u i ∈ R n is the control input, and y i ∈ R is the exchange output. We denote x := col(x 1 , . . . , x N ) ∈ R N n , y := col(y 1 , . . . , y N ) ∈ R n .

Similarly to the previous section, our objective is to design a distributed control law stabilizing the synchronization manifold D defined in (5). However, we restrict in this section to the case of output synchronization laws, i.e. the agents cannot exchange with their neighbors the full state information x i but only the output y i . In particular, we define such a problem as follows.

Problem 2. The control laws u i = φ i (x i , y), i = 1 . . . , N solve the uniform exponential synchronization problem for (11) if the following conditions hold:

(1) For all non-communicating pair (i, j) (i.e., (i, j) / ∈ E),

∂φ i ∂y j (x i , y) = ∂φ j ∂y i (x j , y) = 0 , ∀x i ∈ R n , y ∈ R N .
(2) For all X ∈ D, φ(x i , y) = 0 (i.e., φ is zero on D).

(3) The manifold D of the closed-loop system ẋi = f (x i ) + φ i (x i , y), i = 1, . . . , N, is uniformly exponentially stable, i.e., there exist positive constants k and λ > 0 such that for all

X • ∈ R N n |X (x • , t)| D ≤ k exp(-ct) |x • | D
, where X (x • , t) denotes the solution initiated from x • , holds for all t in the time domain of existence of solution.

For a leader-connected network of agents described by (11), we have the following set of sufficient conditions to solve the previous problem. Theorem 2. Suppose Assumption 1 holds and suppose that there exists a C 1 function P : R n → R n×n taking symmetric positive definite values such that the following conditions hold.

• The Control Matrix Function (CMF) condition holds:

L f P (x) -ρ ∂h ∂x (x) ∂h ∂x (x) ≤ -qP (x) , p I ≤ P (x) ≤ p I , (12) 
for all x ∈ R n and for some positive constants p, p, q, ρ. • The vector field α : R n → R n defined as

α(x) = P -1 (x) ∂h ∂x (x) (13) 
is a Killing vector for P , i.e.

L α P (x) = 0 ∀x ∈ R n . ( 14 
)
Then the distributed control law u i = φ i (x i , y) with

φ i (x i , y) = -κ N j=1 ij α(x i )y j (15)
solves the global uniform exponential synchronization problem for system (11) for any κ ≥ ρ µ , with ρ satisfying (12) and µ satisfying (2).

Proof. Consider, without loss of generality, that x 1 is the leader node in the network. We define n -1 error coordinates e := (e 2 , . . . , e N ) with e i := x i -x 1 and z := x 1 . The dynamics of these errors reads ėi = f (e i + z) -f (z)

-κ N j=1 ij α(e i + z)(h(e j + z) -h(z))
for all i = 2, . . . , N . Consider now the function Γ(s, t) defined as Γ(1, 0) = e , Γ(0, 0) = 0 , Γ(s, 0) = γ(s) where γ is any C 1 path with its i-th component Γ i defined as solution of the following ordinary differential equation

∂Γ i ∂t (s, t) = f (Z(t) + Γ i (s, t)) -f (Z(t)) -κ N j=1 ij α(Γ i (s, t)+Z(t))(h(Γ j (s, t)+Z(t))-h(Z(t))).
Consider the function V i , i = 2, . . . , N , defined by Consequently, we obtain

V i (t) = 1 0 ∂Γ i ∂s (s,
N i=2 Vi (t) ≤ -q N i=2 V i (t)
for any κ ≥ µ . Finally, since

N i=2 V i (t) ≥ p n i=2 e i (t) 2 ,
it yields the result following the same arguments of the proof of Theorem 1.

Remark 2. In the case of a network of linear systems of the form ẋi = Ax i + u i , y i = Cx i the conditions of Theorem 1 reduces to the following Riccati-like inequality P A + A P -ρC C ≤ -qP with the function α(x) := P -1 C , and the Killing vector condition (8) automatically satisfied. In other words, we find the conditions in [Li et al., 2009, Section II.B].

Remark 3. The conditions of Theorem 2 are inspired by the conditions for observer design based on Riemannian distances, see, e.g., [START_REF] Sanfelice | Convergence of nonlinear observers on R n with a riemannian metric (part i)[END_REF], [START_REF] Andrieu | Some results on exponential synchronization of nonlinear systems[END_REF]. Furthermore, for a constant metric P and systems dynamics (11) in the so-called prime form (or observability canonical form), we recover the conditions of Proposition 1 in [START_REF] Isidori | Robust output synchronization of a network of heterogeneous nonlinear agents via nonlinear regulation theory[END_REF], based on high-gain observer theory.

ILLUSTRATION

Consider the multiagent network system with 5 nodes described in Figure 1 and represented by the Laplacian matrix

L =      0 0 0 0 0 -1 3 -1 0 -1 0 -1 2 -1 0 0 0 -1 1 0 0 -1 0 0 1     
, with µ = 0.18. Each agent dynamics is described by (11) with x i ∈ R 2 , and the functions f, h defined as

f (z) = z 2 + sin(z 1 ) -z 1 + z 2 cos(z i ) + 2 cos(z 1 ) sin(z 1 ) , h(z) = (z 2 + sin(z 1 )) (16) 
for any z = (z 1 , z 2 ) ∈ R 2 and for some 0 < < 1. It can be 

P (z) = 2[1 -cos(z 1 ) + 2 cos 2 (z 1 )] 1 -2 cos(z 1 ) 1 -2 cos(z 1 ) 2 ,
and constants p = 1, p = 3, q = 3, any ≥ 2. Moreover, the Killing vector property ( 14) is verified with the function α defined as

α(z) = 1 3 -1 + 4 cos(z 1 ) 4 2 cos 2 (z 1 ) -3 cos(z 1 ) + 2 .
Therefore, all conditions of Theorem 2 are satisfied and the control law ( 15) is able to achieve state synchronization of the network with κ ≥ µ = 11.12. The rate of convergence c in item (3) of Problem 2 is approximately computed as c = qµ p/p, corresponding to c = 0.18 √ 3 in our example.

Figures 2, 3 show respectively the trajectories of the first and second state of each node i = 1, . . . , 5 of the system (11), ( 16) where = 1 2 and with the control law (15) with κ = 12 and initial condition x(0) = [[(2, -1), (15, 5), (-7, 16), (8, 14), (-10, -16)]]. After the transient behaviour of the first seconds of the simulation, state-synchronization is achieved to a unique oscillating mode, corresponding to the first node of the graph.

CONCLUSION

We proposed a set of sufficient conditions to solve the problem of state synchronization for a leader-connected network of homogeneous agents described by a nonlinear dynamics into two scenarios: the case of input-affine nonlinear systems in which the agents exchange the full state to their neighbours, and the case of nonlinear systems dynamics linear in the inputs in which the agents are allowed to exchange only a certain nonlinear output. The conditions are based on a metric analysis and guarantees exponential synchronization of the network. This paper is a preliminary work in order to extend of the results in [START_REF] Scardovi | Synchronization in networks of identical linear systems[END_REF] and in [START_REF] Pavlov | Controlled synchronization via nonlinear integral coupling[END_REF] to the case of input-affine nonlinear systems with nonlinear outputs. Future works will consider also the case of non-leader connected networks and potentially heterogeneous dynamics as in [START_REF] Isidori | Robust output synchronization of a network of heterogeneous nonlinear agents via nonlinear regulation theory[END_REF].
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