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Abstract: We address the exponential synchronization problem of a leader-connected network
of identical nonlinear systems. We suppose that each system can be made contractive by a static
feedback law obtained via sufficient metric-based conditions. A distributed diffusive coupling
feedback is then designed in order to solve the problem in two frameworks: the case of input-
affine systems allowed to exchange all the state information to its neighbour; and the case of
nonlinear systems linear in the input allowed to exchange only a possibly nonlinear output.

Keywords: Synchronization, contraction, multi-agent systems, incremental stability.

1. INTRODUCTION

Due to the many applications in which agents interact in
order to accomplish task and to achieve goals, the control
community has devoted a huge attention to networks anal-
ysis and to the design of control architecture. For a net-
work to achieve a certain task, we often require the agents
to achieve an agreement and to this end, synchronization
and consensus are the mathematical features to express
such an agreement. For instance, this is the case for power
networks Dörfler et al. [2013], heat networks Scholten et al.
[2016] and robot swarms Olfati-Saber [2006].

First, researchers focused on the problem of networks of
linear systems and fundamental results for linear systems
can be found in Scardovi and Sepulchre [2008] for homo-
geneous systems and in Wieland et al. [2011] for heteroge-
neous networks. Nowadays, the focus of the community is
placed on networks of nonlinear systems. Many approaches
have been considered in the literature of homogeneous
nonlinear networks: among the may results, it is worth
recalling passivity conditions in Arcak [2007], dissipativity
in Stan and Sepulchre [2007] and ISS in Casadei et al.
[2019a,b]. One of the most popular approaches is based on
high-gain type arguments (see Isidori et al. [2014], Pante-
ley and Loŕıa [2017]) inherited from high-gain observers
theory. This technique has however well known limits
which brought researchers to investigate alternative tools
such as nonlinear integral control Pavlov et al. [2009, 2018]
which incorporates both low and high gain arguments.

Naturally, a property associated to synchronization is in-
cremental stability, namely the property that any two
solutions of a system converge to each other (see, e.g.,
Lohmiller and Slotine [1998], Forni and Sepulchre [2013],

Angeli [2002], Simpson-Porco and Bullo [2014], Andrieu
et al. [2013] and the references therein). By enforcing this
for every system in a network, we will have the systems
converge to each other and thus achieve synchronization.
More recently, authors have focused on incremental sta-
bility as a framework to solve the problem of synchro-
nization and contraction theory as tool for the design of
control laws, see, e.g., Andrieu et al. [2013], Andrieu and
Tarbouriech [2019], Yin et al. [2021].

In this work we investigate metric-based conditions for
exponential synchronization of identical multi-agent sys-
tems described by nonlinear dynamics in presence of a
leader. With respect to notable articles in the literature
such as Scardovi and Sepulchre [2008] (where the state syn-
chronization problem via output exchange for linear sys-
tems is addressed with a dynamical regulator) and Pavlov
et al. [2009] (where incremental passivity conditions are
proposed for nonlinear dynamics linear in the inputs and
with linear outputs), our contribution is twofold. First, we
consider input affine dynamics and the agents are allowed
to exchange the full-state with their neighborhoods: we
generalize the results in Andrieu et al. [2018] in which the
control was linear in the dynamics. Second, we consider
the case in which agents are allowed to exchange only
a nonlinear output with their neighborhoods while the
control is linear in the state-dynamics: inspired by the
observer construction given in Andrieu et al. [2020], we
generalize the results in Pavlov et al. [2009] where the
output was linear.

This paper is organized as follows. In Section 2, we re-
call some preliminaries of graph theory and contraction
theory. Then, we provide the main results in Section 3
concerning the sufficient conditions to achieve synchro-



nization via static state-feedback and static output feed-
back distributed control laws. An illustration is provided in
Section 4. Conclusions and future perspectives are drawn
in Section 5.

Notation. R denotes the set of real numbers and | · | the
standard Euclidean norm. Given a C1 function P : Rn →
Rn×n and a C1 vector field ζ : Rn 7→ Rn, we define the
Lie derivative of P along ζ as

LζP (x) := dζP (x)+P (x)
∂ζ

∂x
(x) +

∂ζ

∂x
(x)>P (x)

where

dζP (x) := lim
h→0

P (x+ hζ(x))− P (x)

h
for all x ∈ Rn.

2. PRELIMINARIES

2.1 Graph Theory

In a general framework, a communication graph is de-
scribed by a triplet G = {V, E , A} in which V is a set of N
nodes V = {v1, v2, . . . , vN}, E ⊂ V ×V is a set of edges ejk
that models the interconnection between nodes with the
flow of information from node j to node k weighted by the
(k, j)-th entry akj ≥ 0 of the adjacency matrix A ∈ RN×N .
We denote by L ∈ RN×N the Laplacian matrix of the
graph, defined as

`kj = −akj for k 6= j, `kj =

N∑
i=1

aki for k = j,

where `j,k is the (j, k)-th entry of L.

In this work we will consider a network of N homogeneous
multi-agent systems, i.e. described by identical dynamics,
which are connected according to a directed graph G =
{V, E , A}, fulfilling the following assumption.

Assumption 1. The graph G is leader connected, namely
it contains at least one spanning tree with the leader as a
root. Furthermore, its Laplacian L is diagonalizable.

As a consequence, according to Assumption 1, the Lapla-
cian matrix L can be partitioned as

L =

(
0 0
L21 L22

)
(1)

where the matrix L22 is a positive definite matrix satisfy-
ing (see Godsil and Royle [2001])

L22 ≥ µI , (2)

for some µ > 0 satisfying µ ≤ λ(L22), where λ(L22)
denotes the smallest eigenvalue of L22.

2.2 Metric conditions for contraction

Consider a system
ẋ = f(x) (3)

where f : Rn 7→ Rn is a C1 vector field. We indicate with
X (x◦, t) the trajectory of the system with initial condition
x◦ ∈ Rn evaluated at time t.

Definition 1. We say that system (3) is Incrementally
Globally Exponentially Stable (δGES in short) if there exist
positive real numbers k, c such that

|X (x1, t)−X (x2, t)| ≤ k|x1 − x2| exp(−c t)

for all t ≥ 0 in the time domain of existence of the solution
and for all initial conditions x1, x2 ∈ Rn.

A sufficient condition for (3) to be δGES, is the existence
of a metric for with the associated distance is decreasing
along trajectories, as stated in the following proposition.
For a proof, see Theorem 1 in Giaccagli et al. [2020] and
references therein.

Proposition 1. Consider system (3) and assume there ex-
ists a symmetric and positive definite matrix function
P : Rn 7→ Rn×n, and positive real numbers p, p̄, q > 0
satisfying the following

pI ≤ P (x) ≤ p̄I
LfP (x) ≤ −qP (x)

for all x ∈ Rn. Then, system (3) is δGES.

To conclude the section, we recall the definition of Killing
vector field.

Definition 2. Consider a C1 functions P : Rn 7→ Rn×n,
and g : Rn → Rn. We say that g is a Killing vector field
for P if LgP (x) = 0 for all x ∈ Rn.

Note that, if both P and g are constant matrices, the
Killing vector field conditions is trivially satisfied.

3. MAIN RESULTS

3.1 Synchronization via State-feedback

In this section we consider a network of N identical agents
described by the following dynamics

ẋi = f(xi) + g(xi)ui i = 1, . . . , N, (4)

in which xi ∈ Rn is the state and ui ∈ R is the control
input. We denote

x := col(x1, . . . , xN ) ∈ RNn.
Our objective is to design a distributed control law stabi-
lizing the dynamics (4) on the synchronization manifold D
defined by

D = {x ∈ RNn | x1 = x2 = · · · = xN}, (5)

where the state variables of different systems agree with
each other. For every x in RNn, we denote the Euclidean
distance to the set D by |x|D. We define our synchroniza-
tion problem as follows.

Problem 1. The control laws ui = φi(x), i = 1 . . . , N solve
the uniform exponential synchronization problem for (4)
if the following conditions hold:

(1) For all non-communicating pair (i, j) (i.e., (i, j) /∈
E),

∂φi
∂xj

(x) =
∂φj
∂xi

(x) = 0 , ∀x ∈ RNn.

(2) For all x ∈ D, φi(x) = 0 (i.e., φi is zero on D).
(3) The manifold D of the closed-loop system

ẋi = f(xi) + g(xi)φi(x), i = 1, . . . , N

is uniformly exponentially stable, i.e., there exist pos-
itive constants k and c > 0 such that for all x◦ in
RNn and for all t in the time domain of existence of
solution

|X (x◦, t)|D ≤ k exp(−c t) |x◦|D, (6)

where X (x◦, t) denotes the solution of (4) initiated
from x◦.



We can now state the first main result of this work.

Theorem 1. Suppose Assumption 1 holds and assume that
there exists a C1 function P : Rn → Rn×n taking
symmetric positive definite values such that the following
conditions hold.

• The Control Matrix Function (CMF) condition holds:

LfP (x)− ρP (x)g(x)g(x)>P (x) ≤ −qP (x) ,

p I ≤ P (x) ≤ p I ,
(7)

for all x ∈ Rn and for some positive real numbers
p, p, q, ρ > 0.

• g is a Killing vector field for P , i.e.,

LgP (x) = 0 , ∀x ∈ Rn . (8)

• There exists α : Rn → R such that
∂α

∂x
(x)> = P (x)g(x) , ∀x ∈ Rn . (9)

Then, the distributed control law ui = φi(x) with

φi(x) = −κ
N∑
j=1

`ijα(xj) , (10)

solves the global uniform exponential synchronization prob-
lem for (4), for any κ ≥ ρ

µ , with ρ satisfying (7) and µ

satisfying (2).

Proof. Consider, without loss of generality, that x1 is the
leader node in the network,

i.e., its dynamics is given by ẋ1 = f(x1). Define n − 1
error coordinates e := (e2, . . . , eN ) with ei := xi − x1 and
z = x1. These errors display the following dynamics

ėi = f(z + ei)− f(z)− κ

 N∑
j=1

`ijg(z + ei)α(z + ej)

 .
Using the fact that

N∑
j=1

`ijg(z + ei)α(z) = g(z + ei)α(z)

N∑
j=1

`ij = 0 ,

such a term can be added to the ei dynamics to obtain

ėi = f(z + ei)− f(z)

−κ
N∑
j=1

`ijg(z + ei)
[
α(z + ej)− α(z)

]
for all i = 2, . . . , N . Note that in this new error coordi-
nates, the manifold D defined in (5) corresponds simply
to the origin of the e-dynamics, i.e.

D = {(z, e) ∈ RNn : e = 0}.
Consider the function Γ(s, t) defined as

Γ(1, 0) = e , Γ(0, 0) = 0 , Γ(s, 0) = γ(s) ,

where γ is any C1 with its i-th component Γi defined as
solution of the following ordinary differential equation

∂Γi
∂t

(s, t) = f(Z(t) + Γi(s, t))− f(Z(t))

−κ
N∑
j=1

`ijg(Z(t)+Γi(s, t))(α(Z(t)+Γj(s, t))−α(Z(t))).

where Z(t) is the solution at time t of ż = f(z) initiated
from z. For each path γ, we consider the function Vi,
i = 2, . . . , N , defined by

Vi(t) =

∫ 1

0

∂Γi
∂s

(s, t)>P (Z(z, t) + Γi(s, t))
∂Γi
∂s

(s, t)ds .

Note that we have for all (k, l) in {1, . . . , n}2

d

dt
(P (Z(t) + Γi(s, t))kl =

∂Pkl
∂z

(Z(t) + Γi(s, t))

[
f(Z(t) +

∂Γi
∂t

(s, t)

]
.

This implies for all vector ν in Rn

d

dt
ν>P (Z(t) + Γi(s, t))v = ν>dfP (Z(t) + Γi(t))ν

− κ(α(Z(t) + Γj(s, t))− α(Z(t)))

×
N∑
j=1

`ijν
>dgP (Z(t) + Γi(t))ν

By using the Killing vector field (8) and the integrability
assumption (9), the time-derivative of Vi can be computed
as follows

V̇i(t) =

∫ 1

0

∂Γi
∂s

(s, t)>LfP (Z(t) + Γi(s, t))
∂Γi
∂s

(s, t)

− κ∂Γi
∂s

(s, t)>
N∑
j=1

`ijP (Z(t) + Γi(s, t))g(Z(t) + Γi(s, t))

× g(Z(t) + Γj(s, t))
>P (Z(t) + Γj(s, t))

∂Γj
∂s

(s, t)ds.

Note that
N∑
i=2

V̇i(t) = −κv(t)>L22v(t)

∫ 1

0

N∑
i=2

∂Γi
∂s

(s, t)>LfP (Z(t) + Γi(s, t))
∂Γi
∂s

(s, t)ds,

where v is defined as

v(t)=

 g(Z(t) + Γ2(s, t))>P (Z(t) + Γ2(s, t))∂Γ2

∂s (s, t))
...

g(Z(t) + ΓN (s, t))>P (Z(t) + ΓN (s, t))∂ΓN

∂s (s, t))

.
Hence, by using (2), we get,

N∑
i=2

V̇i(t) ≤ −µκv(t)>v(t)

∫ 1

0

N∑
i=2

∂Γi
∂s

(s, t)>LfP (z + Γi(s, t)
∂Γi
∂s

(s, t)ds,

which implies

N∑
i=2

V̇i(t) ≤
N∑
i=2

∫ 1

0

∂Γi
∂s

(s, t)>[LfP (z + Γi(s, t))

− µκP (Z(t) + Γi(s, t))g(Z(t) + Γi(s, t))
>

g(Z(t) + Γi(s, t))P (Z(t) + Γi(s, t))]
∂Γi
∂s

(s, t)ds .

Selecting any κ ≥ ρ
µ and employing the CMF condition

(7), we obtain
N∑
i=2

V̇i(t) ≤ −q
N∑
i=2

Vi(t)



and therefore
N∑
i=2

Vi(t) ≤ exp(−qt)
N∑
i=2

Vi(0) .

Note that
N∑
i=2

Vi(t) ≥ p
n∑
i=2

ei(t)
2

which yields exponential convergence to D. Furthermore,
to obtain inequality (6), we follow [Andrieu et al., 2020,
Proposition 4] and consider a sequence of minimizing paths
(γk)k∈N such that γk(1) = e, γk(0) = 0. This concludes the
proof. �

Remark 1. In the case of a network of linear systems of
the form

ẋi = Axi +Bui,
the conditions of Theorem 1 reduces to the following
Riccati-like inequality PA> + A>P − ρPBB>P ≤ −qP ,
with the function α(x) := B>Px, and the Killing vector
condition (8) automatically satisfied. In other words, we
find the conditions in [Li et al., 2009, Section II.C].
Unfortunately, unlike the linear case, the extension of the
proposed conditions to the non-leader case are non-trivial
due to the presence of the state-dependent metric P . When
P is constant, state-synchronization without leader can
be achieved by following for instance Zhang et al. [2014],
Andrieu et al. [2018] or Andrieu and Tarbouriech [2019].

3.2 Synchronization via Output-Feedback

We suppose now that the dynamics of the agents are
described by

ẋi = f(xi) + ui i = 1, . . . , N,
yi = h(xi),

(11)

in which xi ∈ Rn is the state and ui ∈ Rn is the control
input, and yi ∈ R is the exchange output. We denote

x := col(x1, . . . , xN ) ∈ RNn, y := col(y1, . . . , yN ) ∈ Rn.
Similarly to the previous section, our objective is to design
a distributed control law stabilizing the synchronization
manifold D defined in (5). However, we restrict in this
section to the case of output synchronization laws, i.e. the
agents cannot exchange with their neighbors the full state
information xi but only the output yi. In particular, we
define such a problem as follows.

Problem 2. The control laws ui = φi(xi,y), i = 1 . . . , N
solve the uniform exponential synchronization problem for
(11) if the following conditions hold:

(1) For all non-communicating pair (i, j) (i.e., (i, j) /∈
E),

∂φi
∂yj

(xi,y) =
∂φj
∂yi

(xj ,y) = 0 , ∀xi ∈ Rn,y ∈ RN .

(2) For all X ∈ D, φ(xi,y) = 0 (i.e., φ is zero on D).
(3) The manifold D of the closed-loop system

ẋi = f(xi) + φi(xi,y), i = 1, . . . , N,

is uniformly exponentially stable, i.e., there exist posi-
tive constants k and λ > 0 such that for all X◦ ∈ RNn

|X (x◦, t)|D ≤ k exp(−ct) |x◦|D,
where X (x◦, t) denotes the solution initiated from x◦,
holds for all t in the time domain of existence of
solution.

For a leader-connected network of agents described by
(11), we have the following set of sufficient conditions to
solve the previous problem.

Theorem 2. Suppose Assumption 1 holds and suppose that
there exists a C1 function P : Rn → Rn×n taking
symmetric positive definite values such that the following
conditions hold.

• The Control Matrix Function (CMF) condition holds:

LfP (x)− ρ∂h
∂x

(x)>
∂h

∂x
(x) ≤ −qP (x) ,

p I ≤ P (x) ≤ p I ,
(12)

for all x ∈ Rn and for some positive constants
p, p, q, ρ.

• The vector field α : Rn → Rn defined as

α(x) = P−1(x)
∂h

∂x
(x)> (13)

is a Killing vector for P , i.e.

LαP (x) = 0 ∀x ∈ Rn. (14)

Then the distributed control law ui = φi(xi,y) with

φi(xi,y) = −κ
N∑
j=1

`ijα(xi)yj (15)

solves the global uniform exponential synchronization prob-
lem for system (11) for any κ ≥ ρ

µ , with ρ satisfying (12)

and µ satisfying (2).

Proof. Consider, without loss of generality, that x1 is
the leader node in the network. We define n − 1 error
coordinates e := (e2, . . . , eN ) with ei := xi − x1 and
z := x1. The dynamics of these errors reads

ėi = f(ei + z)− f(z)

− κ
N∑
j=1

`ijα(ei + z)(h(ej + z)− h(z))

for all i = 2, . . . , N . Consider now the function Γ(s, t)
defined as

Γ(1, 0) = e , Γ(0, 0) = 0 , Γ(s, 0) = γ(s)

where γ is any C1 path with its i-th component Γi defined
as solution of the following ordinary differential equation

∂Γi
∂t

(s, t) = f(Z(t) + Γi(s, t))− f(Z(t))

−κ
N∑
j=1

`ijα(Γi(s, t)+Z(t))(h(Γj(s, t)+Z(t))−h(Z(t))).

Consider the function Vi, i = 2, . . . , N , defined by

Vi(t) =

∫ 1

0

∂Γi
∂s

(s, t)>P (Z(t) + Γi(s, t))
∂Γi
∂s

(s, t)ds .

Employing the Killing vector field assumption (14) and the
definition of α in (13), we compute the time-derivative of
Vi as

V̇i(t) =

∫ 1

0

∂Γ>i
∂s

(s, t)

[
LfP (Z(t) + Γi(s, t))

− κ
N∑
j=1

`ij
∂h>

∂z
(Z(t))

∂h

∂z
(Z(t))

]
∂Γ>i
∂s

(s, t)ds



Hence
N∑
i=2

V̇i(t) =

∫ 1

0

N∑
i=2

∂Γ>i
∂s

(s, t)

[
LfP (Z(t) + Γi(s, t))

− κ
N∑
j=1

`ij
∂h>

∂z
(Z(t))

∂h

∂z
(Z(t))

]
∂Γ>i
∂s

(s, t)ds

=

∫ 1

0

N∑
i=2

∂Γ>i
∂s

(s, t)LfP (Z(t) + Γi(s, t))
∂Γi

∂s
(s, t)

− κµv(t)>v(t) ds

where we defined

v(t) =


∂h
∂z (Z(t))∂Γ2

∂s (s, t)
...

∂h
∂z (Z(t))∂ΓN

∂s (s, t)

 .
Consequently, we obtain

N∑
i=2

V̇i(t) ≤ −q
N∑
i=2

Vi(t)

for any κ ≥ %
µ . Finally, since

N∑
i=2

Vi(t) ≥ p
n∑
i=2

ei(t)
2 ,

it yields the result following the same arguments of the
proof of Theorem 1. �

Remark 2. In the case of a network of linear systems of
the form

ẋi = Axi + ui, yi = Cxi
the conditions of Theorem 1 reduces to the following
Riccati-like inequality PA> +A>P − ρC>C ≤ −qP with
the function α(x) := P−1C>, and the Killing vector
condition (8) automatically satisfied. In other words, we
find the conditions in [Li et al., 2009, Section II.B].

Remark 3. The conditions of Theorem 2 are inspired by
the conditions for observer design based on Riemannian
distances, see, e.g., Sanfelice and Praly [2012], Andrieu
et al. [2018]. Furthermore, for a constant metric P and
systems dynamics (11) in the so-called prime form (or
observability canonical form), we recover the conditions
of Proposition 1 in Isidori et al. [2014], based on high-gain
observer theory.

4. ILLUSTRATION

Consider the multiagent network system with 5 nodes
described in Figure 1 and represented by the Laplacian
matrix

L =


0 0 0 0 0
−1 3 −1 0 −1
0 −1 2 −1 0
0 0 −1 1 0
0 −1 0 0 1

 ,
with µ = 0.18. Each agent dynamics is described by (11)
with xi ∈ R2, and the functions f, h defined as

f(z) =

(
z2 + ε sin(z1)

−z1 + εz2 cos(zi) + ε2 cos(z1) sin(z1)

)
,

h(z) = (z2 + ε sin(z1))

(16)

for any z = (z1, z2) ∈ R2 and for some 0 < ε < 1. It can be

Fig. 1. Network structure

Fig. 2. Dynamics of the first state of node i

verified that the conditions (12) of Theorem 2 are satisfied
with the metric P defined as

P (z) =

(
2[1− ε cos(z1) + ε2 cos2(z1)] 1− 2ε cos(z1)

1− 2ε cos(z1) 2

)
,

and constants p = 1, p̄ = 3, q = 3, any % ≥ 2. Moreover, the
Killing vector property (14) is verified with the function α
defined as

α(z) =
1

3

(
−1 + 4ε cos(z1)

4ε2 cos2(z1)− 3ε cos(z1) + 2

)
.

Therefore, all conditions of Theorem 2 are satisfied and the
control law (15) is able to achieve state synchronization of
the network with κ ≥ %

µ = 11.12. The rate of convergence

c in item (3) of Problem 2 is approximately computed as

c = qµ
√
p/p̄, corresponding to c = 0.18

√
3 in our example.

Figures 2, 3 show respectively the trajectories of the
first and second state of each node i = 1, . . . , 5 of
the system (11), (16) where ε = 1

2 and with the
control law (15) with κ = 12 and initial condition
x(0) = [[(2,−1), (15, 5), (−7, 16), (8, 14), (−10,−16)]]. Af-
ter the transient behaviour of the first seconds of the
simulation, state-synchronization is achieved to a unique
oscillating mode, corresponding to the first node of the
graph.

5. CONCLUSION

We proposed a set of sufficient conditions to solve the
problem of state synchronization for a leader-connected
network of homogeneous agents described by a nonlinear
dynamics into two scenarios: the case of input-affine non-
linear systems in which the agents exchange the full state
to their neighbours, and the case of nonlinear systems
dynamics linear in the inputs in which the agents are
allowed to exchange only a certain nonlinear output. The
conditions are based on a metric analysis and guarantees
exponential synchronization of the network.



Fig. 3. Dynamics of the second state of node i

This paper is a preliminary work in order to extend of
the results in Scardovi and Sepulchre [2008] and in Pavlov
et al. [2009] to the case of input-affine nonlinear systems
with nonlinear outputs. Future works will consider also
the case of non-leader connected networks and potentially
heterogeneous dynamics as in Isidori et al. [2014].
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