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Abstract— An acknowledged interpretation of possibility dis-
tributions in quantitative possibility theory is in terms of families
of probabilities that are upper and lower bounded by the
associated possibility and necessity measures. This paper proposes
a likelihood function for possibility distributions that agrees with
the above-mentioned view of possibility theory in the continuous
and in the discrete cases. Especially, we show that, given a set
of data following a probability distribution, the optimal possi-
bility distribution with respect to our likelihood function is the
distribution obtained as the result of the probability-possibility
transformation that obeys the maximal specificity principle. It is
also shown that when the optimal distribution is not available,
a direct application of this possibilistic likelihood provides more
faithful results than approximating the probability distribution
and then applying the probability possibility transformation.
We detail the particular case of triangular and trapezoidal
possibility distributions and we show that any unimodal unknown
probability distribution can be faithfully upper approximated by
a triangular distribution obtained by optimizing the possibilistic
likelihood.

keywords : possibility theory, probability-possibility transfor-

mation, maximum-likelihood principle.

I. INTRODUCTION

Possibility theory, based on max-decomposable set-

functions, associated with possibility distributions, may have

either a qualitative or a quantitative understanding, depending

on the nature of the scales used for possibility degrees.

Quantitative possibility theory corresponds to the case where

the interval [0, 1] is a ratio scale. In qualitative possibility

theory, only the ordering of the possibility values makes

sense. In this paper, we deal with quantitative possibility

theory. Quantitative possibility measures can be viewed as

upper bound of probabilities. Then, a possibility distribution

represents a family of probability distributions [3]. This view

was first suggested by Zadeh [10] based on the idea that

what is probable must be possible. Following this intuition a

probability-possibility transformation has been proposed [5].

This transformation associates a probability distribution with

the maximally specific possibility distribution which is such

that the possibility of any event is indeed an upper bound of

the corresponding probability.

The maximum-likelihood principle is a basis for building

a probability distribution from a set of data. Given a set of

parameterized probability distributions and a set of data, a

likelihood function is used for optimizing the choice of the

parameters in order to determine the best suited distribution

with respect to the data. However, this approach supposes that

the shape of the distribution is apriori known or that we have

a large number of data at our disposal. Moreover, due to the

constraints on the probability distributions, induced by their

additive nature, there are no simple distribution that allows

for the faithful description of any set of data.

There exist different kinds of methods for eliciting

possibility distributions from data. For instance, some

approaches directly build the possibility distribution on the

basis of a proximity relation defined on the universe of the

data [4]. G. Mauris proposes a method for constructing a

possibility distribution when only very few pieces of data

are available (even only one or two) based on probability

inequalities [8]. This latter method is justified in the

probabilistic view of possibility theory. These methods, how

different they are, have in common to build the distributions

directly. In this paper, we investigate another road based on

the optimization of an appropriate likelihood function. The

proposed likelihood function is in agreement with the view

underlying the probability-possibility transformation.

The paper is organized as follows. Section 2 provides the

necessary background about possibility distributions and their

interpretation in terms of families of probabilities. Section 3

presents likelihood measures for probabilities and especially

a non-classical one, not based on logarithm, that can be

used for approximating unbounded distributions with bounded

ones. Sections 4 and 5 respectively deal with the discrete

and continuous definitions of possibilistic likelihood and the

specific cases of triangular or trapezoidal distributions. Finally,

we provide some examples of the construction of a possibility

distribution from data using the proposed possibilistic likeli-

hood, and we discuss the usability of the approach in Section

6.

II. BACKGROUND

A. Possibility distribution

Possibilty theory, introduced Zadeh [10], was initially cre-

ated in order to deal with imprecision and uncertainty due



to incomplete information. This kind of uncertainty may not

be handled by probability theory, especially when a priori

knowledge about the nature of the probability distribution is

lacking. A possibility distribution π is a mapping from Ω to

[0, 1] (Ω may be a discrete universe, i.e. Ω = {C1, . . . , Cq},

or a continuous one, i.e. Ω = R). The value π(x) is called

possibility degree. For any subset of Ω, the possibility measure

is defined as follows:

∀A ⊆ Ω,Π(A) = max{π(x), x ∈ A}.

If it exists a single value x ∈ Ω for which we have π(x) = 1,

the distribution is normalized. We can distinguish two extreme

cases of information situations:

• complete knowledge: ∃x ∈ Ω such as π(x) = 1 and

∀y ∈ Ω, y 6= x, π(y) = 0
• total ignorance: ∀x ∈ Ω, π(x) = 1.

The necessity is the dual measure of the possibility measure.

We have:

∀A ⊆ Ω, N(A) = 1−Π(A).

Finally, α-cuts of π are subsets of Ω such that:

Aα = {x ∈ Ω, π(x) ≥ α}.

It can be checked that, if Ω = R and the distribution is

continuous and normalized, we have ∀α ∈ [0, 1],Π(Aα) = 1
and N(Aα) = 1− α.

B. Possibility distribution as a family of probability distribu-

tions

Possibility distributions have two types of interpretations.

The first one, that is related to fuzzy set theory, is the

description of gradual properties. For instance, the definition

of linguistic expressions such that “long”, “old” or “expensive”

does not refer to a specific value, but to a set of possible values

in a particular context. For instance, a possibility distribution

may describe the concept “expensive” for an house in a given

area. In such a case, each price will be associated with a

possibility degree which quantifies how much this price is

typical with respect to this particular use of the concept

“expensive”.

Another type of interpretation is to consider a possibility

distribution as a family of probability distributions (see [1] for

an overview). Thus, a possibility distribution π will represent

the family of the probability distributions for which the mea-

sure of each subset of Ω will be bounded by its necessity and

its possibility measures. More formally, if P is the set of all

probability distributions defined on Ω, the family of probability

distributions Pπ associated with π is defined as follows:

Pπ = {p ∈ P, ∀A ∈ Ω, N(A) ≤ P (A) ≤ Π(A)}. (1)

In this scope, the situation of total ignorance corresponds to

the case where all probability distributions are possible. This

type of ignorance can not be described by a single probability

distribution. The case of complete knowledge corresponds to

the case where only one value is possible and then where there

are no randomness nor imprecision. Obviously, if π is not

normalized, Pπ is empty (since then N(A) ≤ Π(A) is no

longer guaranteed for any A).

When Ω = R, this family of probability distributions can

also be described in terms of confidence intervals. Given a

probability distribution p, a confidence interval Iα is a subset of

Ω such as P (Iα) = α. We define I∗α, also referred as quantile,

as the smallest confidence interval with probability measure

equal to α. Thus, when π is continuous, an alternative to the

equation (1) is:

Pπ = {p ∈ P, ∀I∗α ∈ Ω, I∗α ⊆ A1−α} (2)

where A1−α is the (1 − α)-cut of π. Thus, the possibility

distribution π contains the probability distributions for which

the confidence intervals associated to the α’s are bounded by

the (1− α)-cuts.

C. Probability to possibility transformation
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Fig. 1. probability to possibility transformation of a Gaussian distribution

According to this probabilistic interpretation, a method from

transforming probability distributions into possibility distribu-

tions has been proposed in [5]. The idea behind this proposal

is to consider the most informative possibility distribution,

i.e. the tightest one (i.e. the smallest one in each point)

that contains the probability distribution. Let us consider a

probability distribution p, the possibility distribution π∗ is

defined in the following way:

∀x ∈ Ω, π∗(x) = maxα,x∈Iα(1− α). (3)

Then, in the spirit of equation (2), given p and its transforma-

tion π∗ we have:

A∗
1−α = I∗α

where A∗
1−α is the (1 − α)-cut of π∗. Thus, if p has a finite

number of modes, π∗ is the possibility distribution for which

each (1− α)-cut corresponds to the quantile of p. When p is



unimodal, the unique value x such that π∗(x) = 1 is the mode

of p.

III. PROBABILISTIC LIKELIHOOD MEASURE

Likelihood measures have been introduced in order to eval-

uate the adequateness of a probability distribution with respect

to a set of data. Let us consider a set of data X = {x1, . . . , xn}
belonging to a discrete universe Ω = {C1, . . . , Cq}. We name

α1, . . . , αq the frequency of the elements of X that belong

respectively to {C1, . . . , Cq}. Given a probability distribu-

tion p on the discrete space Ω = {C1, . . . , Cq}, we define

p1, . . . , pq the probability of belonging to the unitary element

of Ω, i.e. p(x ∈ Ci) = pi. The values p1, . . . , pq entirely

define p, and are then the parameters of p. The maximum-

likelihood principle is used for estimating the parameters of

a probability distribution. In the continuous case, the shape

of the distribution has to be known, and the parameters are

obtained through an optimization procedure with respect to

the likelihood measure. In the discrete case, the parameters are

p1, . . . , pq , and obey the constraint
∑q

1 pi = 1. The most used

likelihood function is the logarithmic-based likelihood defined

as follows (under the strict constraint
∑q

1 pi = 1):

Llog(p|x1, . . . , xn) = −
n∑

i=1

log(p(xi))

or, when considering frequency directly

Llog(p|x1, . . . , xn) = −

q∑
i=1

αilog(pi).

It is equivalent to compute the joint probability of the elements

of x with respect to p. This definition of the likelihood has

a strong limitation, since it gives a very high weight to the

error when probability is very low. This is especially true when

Ω is continuous. Since Llog is not defined when p(xi) = 0,

an unbounded density cannot be approximated by a bounded

one by optimization of Llog . We propose another likelihood

function that overcomes these limitations:

Lsurf (p|x1, . . . , xn) = (
n∑

i=1

p(xi))−
1

2
∗

q∑
i=1

p2i

or, when considering frequency directly

Lsurf (p|x1, . . . , xn) = (

q∑
i=1

αi ∗ pi)−
1

2
∗

p∑
i=1

p2i .

Roughly speaking, Lsurf favors the probability distributions

that are close to the optimal one in terms of surface. Thus,

when, Ω is continuous, it allows for the approximation of

unbounded densities by bounded ones.

Proposition 1: Given a set of data X = {x1, . . . , xn}
belonging to a discrete universe Ω = {C1, . . . , Cq}, we have

argmaxp∈P(Llog(p|x1, . . . , xn))

= argmaxp∈P(Lsurf (p|x1, . . . , xn)).

Proof: Let plog = argmaxp∈P(Llog(p|x1, . . . , xn)) be the

optimal probability distribution given X . This distribution is

such as the probability of an event Ci is equal to the frequency

of element of X in Ci, i.e. plog(x ∈ Ci) = pi = αi. We

now look for the probability distribution psurf that maximizes

Lsurf . We have:

∀i = 1 . . . q,
δLsurf (p|x1, . . . , xn)

δpi
= αi − pi

thus

∀i = 1 . . . q,
δLsurf (p|x1, . . . , xn)

δpi
= 0 ⇔ pi = αi.

Since the derivative of Lsurf (p|x1, . . . , xn) with respect

to pi (the parameters of p) does not depend on the other

parameters pj , j 6= i, we obtain psurf (x ∈ Ci) = pi = αi.

Thus psurf = plog �
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Fig. 2. Approximation of a Gaussian density with a triangular density by
maximization of Lsurf

This proposition shows that, given X , the probability dis-

tribution that maximizes Llog is the same as the one that

maximizes Lsurf .

Lsurf can be extended to the case of Ω = R in the following

way:

Lsurf (p|x1, . . . , xn) = (

n∑
i=1

p(xi))−
1

2
∗

∫
R

p(t)2dt.

Proposition 1 remains true when Ω = R. Figure 2 shows

the triangular density that maximizes Lsurf given a set of

3000 values that are generated by a Gaussian distribution

with mean equal to 0 and standard derivation equal to 1.

This triangular probability distribution is parametrized by m,



l and r which are respectively the mode, the left and the

right spread of the probability distribution. We have used an

optimization procedure in order to find the parameters that

maximizes Lsurf . What we obtain is the triangular probability

distribution that shares the maximum of surface with the

histogram computed from the sample set. If we have used Llog ,

the support of the triangle would have grow to infinity as the

number of values increases.

IV. POSSIBILISTIC LIKELIHOOD: DISCRETE CASE

In this section we show how to use the Lsurf likeli-

hood function in order to define a likelihood function for

a possibility distribution that supports the interpretation of

a possibility distribution in terms of a family of probability

distributions. Roughly speaking, the idea is to have a likelihood

function that is maximal for the result of the probability-

possibility transformation of the distribution and that favors the

approximations of the distribution that share the maximum of

surface with the optimal one (as for Lsurf in the probabilistic

case). We first consider the case of a discrete universe, i.e.

Ω = {C1, . . . , Cq}.

We now assume that the frequencies of examples in the

different classes Ci are put in increasing order (α1 ≥ . . . ≥
αq). In this case, the probability distribution p∗ that maximizes

the likelihood is such that p(x ∈ Ci) = pi = αi. In

the following, given a possibility distribution π, we note πi

the value π(x ∈ Ci). It has been shown in [5] that the

transformation of p∗ into a possibility distribution π∗ that

satisfies the maximal specificity requirement, is:

∀i ∈ {1, . . . , q}, π∗
i =

q∑
j=i

αj . (4)

This possibility distribution is one of the cumulated func-

tions of p∗. It is worth noticing that it is the tightest one. What

we expect from possibility likelihood is that the maximum of

this function is reached for π∗. In the following, we assume

that π1 ≥ . . . ≥ πq (and not necessarily α1 ≥ . . . ≥ αq). We

propose the following function:

Lpos(π|x1, . . . , xn) =(

q∑
i=1

(1− πi) ∗ (1− (

q∑
j=i

αi)))

−

q∑
i=1

(1− πi)
2

2

(5)

which can be rewritten as this:

Lpos(π|x1, . . . , xn) =

q∑
i=1

(−αi ∗

i∑
j=1

(1− πj))

−

q∑
i=1

(1− πi)
2

2

+

q∑
i=1

(1− πi)

(6)

If we only consider one piece of data, we obtain:

Lpos(π|x) =

i|x∈Ci∑
j=1

(1− πj))

− C ∗

q∑
i=1

(1− πi)
2

2

+ C ∗

q∑
i=1

(1− πi)

(7)

where C is a constant (usually 1
n , where n is the number of

independent data considered). The rationale behind this is to

evaluate the cumulated distribution in the spirit of Lsurf . Thus,

the terms ((1 − πi) ∗ (1 − (
∑q

j=i αi))) −
(1−πi)

2

2 correspond

to the evaluation of Lsurf for the set Ci ∪ . . . ∪ Cq . Note

that, if you consider Ci ∪ . . . ∪ Cq instead of Ci ∪ . . . ∪ Cq ,

what is obtained is the largest cumulative distribution instead

of the tightest one.

Proposition 2: Given a set of data X = {x1, . . . , xn}
belonging to a discrete universe Ω = {C1, . . . , Cq}, the

possibility distribution π∗ that maximizes the function

Lpos is the transformation of the probability distribution

p∗, according to equation (4), which maximizes Lsurf

(∀i ∈ {1, . . . , q}, p∗i = αi).

Proof: We look for the probability distribution π∗ that

maximizes Lsurf .

We have:

∀i = 1 . . . q,
δLpos(π|x1, . . . , xn)

δπi
= −1 +

q∑
j=i

αi − πi + 1

thus

∀i = 1 . . . q,
δLpos(π|x1, . . . , xn)

δπi
= 0 ⇔ pi =

q∑
j=i

αi.

Since the derivative of Lpos(π|x1, . . . , xn) with respect to πi

(the parameters of π) does not depend on the other operator

πj , j 6= i, we obtain π∗
i = pi =

∑q
j=i αi which exactly

corresponds to Equation (4). �

This proposition shows that Lpos is an acceptable likelihood

function for possibility distributions viewed as families of

probabilities. As for Lsurf the likelihood depends on the

surface shared between the considered possibility distribution

and the optimal one.

It is worth noticing that, when optimal distributions can

only be approximated, finding the best approximation with

respect to Lpos is not equivalent to find the best probability

approximation with respect to Lsurf and then turn it into a

possibility distribution. For instance, we consider X that leads

to the frequency α1 = 0.5, α2 = 0.3, α3 = 0.2. We know

require that p3 = 0 and π3 = 0. In this context, the optimal p

with respect to Lsurf (Llog is not applicable here) is p1 = 0.6,

p2 = 0.4, p3 = 0. The optimal π with respect to Lposs is



π1 = 1, π2 = 0.5, π3 = 0. The transformation π′ of p is

π′
1 = 1, π′

2 = 0.4, π′
3 = 0. We observe that π′ is different

than π and that π is a better approximation of the optimal

possibility distribution.

This result is fundamental since it illustrates that using a

probabilistic likelihood and then the probability-possibility

transformation is not an effective approach for constructing

a possibility distribution from data. The maximization of Lpos

is more adapted in this scope.

V. POSSIBILISTIC LIKELIHOOD: CONTINUOUS CASE

We now consider the continuous case where Ω = R.

A. Definition

In the continuous case, the assumption of the values put

in an increasing order of π is naturally replaced by the

consideration of α-cuts. We adapt the equation (6) as follows:

Lpos(π|x1, . . . , xn) =− (

n∑
i=1

∫
Aπ(xi)

(1− π(t))dt)

−

∫
R

(1− π(t))2

2
dt

+

∫
R

(1− π(t))dt

(8)

where Aπ(xi) is the π(xi)-cut of π. If we only consider one

piece of data, we obtain:

Lpos(π|x) = −

∫
Aπ(x)

(1− π(t))dt

+C ∗ (−

∫
R

(1− π(t))2

2
dt+

∫
R

(1− π(t))dt)

(9)

where C is a constant (usually 1
n , where n is the number

of independent data considered). Property 2 remains true in

the continuous case. The possibilistic counterpart of likelihood

being defined, we will now considered the particular cases of

triangular and trapezoidal distributions.

B. Triangular distribution

We define a triangular possibility distribution as the triple

πtri = (m, l, r) where m is the mode of the triangle and

l and r the left and the right spread respectively. Since the

0-cut is infinite for a triangular distribution, we assume that

X is bounded and has a maximal size equal to the constant

MAXsize.

We consider a piece of data x ∈ X . We note µ = πtri(x)
the possibility degree of x and [a, b] the µ-cut of πtri. There

are two cases for the term that depends on πtri(x) in (9). We

consider the case of x ∈]m− l,m+ r[. We have:

MemSurf(πtri|x) = −

∫
Aπtri(x)

(1− πtri(t))dt

= −

∫ b

a

(1− πtri(t))dt

= −

∫ m

a

(1− πtri(t))dt+

∫ b

m

(1− πtri(t))dt

= −

∫ m

a

(1− (1−
m− t

l
))dt−

∫ b

m

(1− (1−
t−m

r
))dt

= −

∫ m

a

m− t

l
dt−

∫ b

m

t−m

r
dt

= −(1− µ)2 ∗
l

2
− (1− µ)2 ∗

r

2

= −(1− µ)2 ∗
l + r

2
.

In the case of x 6∈]m−l,m+r[, with the bounding assumption,

we obtain:

MemSurf(πtri|x) = −MAXsize +
l + r

2
.

Note that a more flexible approach on the bounding can be

used, for instance by considering that the weight MAXsize

depends on the distance between x and the triangle. The other

part of the equation (9) is computed such as:

−

∫
R

(1− πtri(t))
2

2
dt+

∫
R

(1− π(t))dt =

∫ m+r

m−l

−
(1− πtri(t))

2

2
+ (1− πtri(t))dt

+

∫
R/[ml,m+r]

−
(1− πtri(t))

2

2
+ (1− πtri(t))dt =

−
l + r

6
−

MAXsize

2
.

The terms MAXsize depends neither on πtri and nor on x

and can then be omitted. Finally, we obtain:

Lpos(πtri|x) = MemSurf(πtri|x)− C ∗
l + r

6
. (10)

C. trapezoidal distribution

We define a trapezoidal possibility distribution as the

quadruple πtrap = (a, b, c, d) where [a, d] and [b, c] are

respectively the support and the core of the distribution. As

in the triangular case, we assume that X is bounded and

has a maximal size equal to the constant MAXsize. We note

µ = πtrap(x) the possibility degree of x. There are three cases

for the term that depends on πtri(x) in Equation (9).

• x ∈]b, c[:

MemSurf(πtrap|x) = 0

• x ∈]a, b[ or x ∈]c, d[:

MemSurf(πtrap|x) = −(1− µ)2 ∗
b− a+ d− c

2



• x 6∈]a, d[:

MemSurf(πtrap|x) = −MAXsize +
−b− a+ d+ c

2
.

The other part of the equation (9) is computed such as:

−

∫
R

(1− πtrap(t))
2

2
dt+

∫
R

(1− π(t))dt =

−
b− a+ d− c

6
−

c− b

2
−

MAXsize

2
.

As in the triangular case, the terms −MAXsize

2 can be omitted.

Finally, we obtain:

Lpos(πtrap|x) = MemSurf(πtri|x)−C∗(
b− a+ d− c

6
−
c− b

2
).

(11)

Note that, having the likelihood function defined for triangular

(resp. trapezoidal) distribution, we can obtain the optimal

triangular (resp. trapezoidal) by finding the parameters that

maximizes Lpos. Since this problem cannot be solved ana-

lytically, we have to use a meta heuristic such as simulated

annealing [7] or particle swarm optimization [6].

VI. ILLUSTRATIONS AND DISCUSSION
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Fig. 3. Possibility transformation that maximizes Lpos with respect to a set
of data that follows a Gaussian distribution

In this section, we will use possibilistic likelihood in

order to build a possibility distribution from a set of data.

Figure 3 represents the triangular possibility distribution

obtained from a set of 3000 data that obey a Gaussian

distribution with a mean equal 0 and a standard deviation

equals to 1. The possibility distribution obtained from a

probability-possibility transformation of the histogram is in

red. It corresponds to the optimal possibility distribution with

respect to data. The triangular possibility distribution that

maximizes Lpos is in blue. We can first notice that the mode

of the triangular distribution corresponds to the mode of

the Gaussian distribution. The triangular distribution is very

close to the optimal one and dominates its on the majority

of the data. The support contains 96% of the data. Figure 4
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Fig. 4. Possibility transformation that maximize Lpos with respect to a set
of data that follow a Student distribution

represents the triangular possibility distribution obtained from

a set of 3000 data that follow a non central student distribution

with 5 degrees of freedom. Although the distribution is not

symmetric, we can observe similar results to the one observed

with the Gaussian distribution. The support contains 96% of

the data. In Figure 5, the distribution is multi modal. Here

9
:

;
<
=>
?

+./

+.4

+.5

+.6

84 8/ + / 4 5

Fig. 5. Possibility transformation that maximizes Lpos with respect to a set
of data that follows a multimodal distribution



we can observe that the mode of the triangular distribution

is the highest mode of the probability distribution. However,

it underestimates the second mode. The support still contains

96% of the data.

These results illustrates the following property, proved in

[2]:

Proposition 3: The triangular symmetric possibility distri-

bution of support [x1, x2] and of mode x1+x2

2 is the least upper

bound of all the possibility transforms of symmetric probability

distributions of support [x1, x2] and of mode x1+x2

2 .

This proposition shows that triangular distributions may

approximate any possibility transformation of bounded sym-

metric unimodal distributions. We have shown in Section 4 that

approximating a possibility distribution by maximizing Lpos is

more efficient that approximating the probability distribution

and then turning it into a possibility distribution. It validates

the use of possibilistic likelihood for building triangular distri-

butions from data. Even Proposition 3 is not always true if the

distribution is asymmetric, triangular possibilistic distribution

performs well in general for any type of unimodal distribution.

Thus, the use of triangular possibility distributions and of Lpos

is a good alternative for bounding densities when the shape of

the probability distribution is not known. Results are less good

if the distribution is multimodal, but the mode of the triangular

possibilistic distribution always identifies the highest mode of

the probability distribution. Note that we do not present a result

with a trapezoidal distribution because triangular distributions

(which are a particular case of trapezoidal distributions) are

always obtained.

VII. CONCLUSION

In this paper we have proposed a definition of possibilistic

likelihood that agrees with the view of possibility distributions

as families of probability distributions and with the probability-

possibility transformation based on the maximum-specificity

principle. This function can be used for evaluating and com-

paring a possibility distribution with respect to data or can

be embedded into an optimization process in order to build

a possibility distribution from a set of data. We have defined

the possibilistic likelihood function both for discrete and for

continuous universes. In the continuous case, we have shown

that, in spite of its sophisticated definition, it is easy to compute

for triangular and trapezoid distributions. Lastly, the good

properties of triangular possibility distributions for bounding

unimodal probability distributions make the building of possi-

bility distributions by optimization of Lpos a good approach

when no a priori information on the type of distribution is

available. This optimization approach may be interesting in a

machine learning context, for instance for Bayesian learning or

for a k-nearest neighbor approach where distributions have to

be computed from data. It can be also used as quality function

for imprecise regression [9].

In the future, it may be interesting to define a possibilistic

likelihood that allows us to obtain genuine trapezoidal distri-

butions. Moreover, the proposed approach does not take into

account the quantity of data available. Indeed, if only one value

is available, the best possibility distribution is a Dirac, and

there will be no difference with the case where a thousand of

identical values are available. Less data should lead to less

specific distributions. This should be taken into account in

representations.
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