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Abstract—Hardware device identification has become an im-
portant feature for enhancing the security and the trust of
interconnected objects. In this paper, we present a device iden-
tification method based on measuring physical and electrical
properties of the device, while controlling its switching activity.
The method is general an applicable to a large range of devices
from FPGAs to processors, as long as they embed sensors (such as
temperature and voltage) and their measurements are available.
The method is enabled by the fact that both the sensors and
the effects of the switching activity on the circuit are uniquely
affected by manufacturing-induced process variability. The device
identification based on this method is made possible by the use of
machine learning. The efficiency of the method has been evaluated
by a preliminary study conducted on eleven FPGAs.

Index Terms—device fingerprinting, on-chip sensors,switching
activity, ring-oscillator, FPGA, neural network.

I. INTRODUCTION

Device fingerprinting, consisting on obtaining a set of at-
tributes from a device, can be a powerful mechanism for device
identification [1]. This identification technique is widely used
for Web tracking and fraud prevention and there are many
different hardware and software techniques described in the
literature. For device identification, the fingerprint should be as
immutable as possible and thus hardware-based solutions are
preferred. In this context, the use of sensors has emerged as an
attractive solution for different platforms. The greatest exponent
of this trend is the use of mobile phone sensors such as
accelerometers, gyroscopes or microphones [2]. These systems
need to generate a known stimulus and the response of the
sensors to that stimulus will identify the device. Nevertheless,
to the best of our knowledge, solutions based on sensors embed-
ded in microprocessors, FPGAs or GPUs (typically temperature
and voltage sensors) have not been explored.

In this paper, we propose a device identification method
based on measuring physical and electrical properties of the
device, while controlling its switching activity. The method is
enabled by the fact that both the sensors and the effects of
the switching activity on the circuit are uniquely affected by
manufacturing-induced process variability.

The rest of the paper is organised as follows. In Section
II, the proposed hardware device identification method is de-
scribed, while the experimental set-up used to demonstrate the
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feasibility of the proposed method is presented in Section III.
In Section IV are presented the experimental results, including
the results related to the identification accuracy on different
scenarios. Finally, some conclusions and recommendations are
drawn in Section V.

II. PROPOSED IDENTIFICATION SCHEME

On-chip sensors are embedded elements widely deployed
in many computing systems (e.g. MCUs, GPUs, FPGAs,etc.)
which allow self-regulation of operation conditions. Among the
most commonly used sensors are the temperature sensors and
the voltage sensors (core voltage, power supply noise, etc.). The
measurements recorded by these sensors are strongly dependent
on the electric activity of the hosting device. As a rule of thumb,
increased activity in the vicinity of the sensors can be observed
as a temperature increase, as disturbance in the core voltage,
etc. The exact values of these measurements are influenced
by the fabrication-induced process variability affecting the
sensors, which can induce effects like simple linear bias (like
offset) or more complex effects such as cross-dimensional
effects, clock-skew, tolerance or timing bias [3]. Moreover, the
electric activity of the hosting device depends on the switching
activity and it is highly affected by the fabrication-induced
parametric variations of the underling circuit. Therefore, the
measurements from the embedded sensors are doubly affected
by the fabrication-induced process variability.

The proposed identification method is based on this double
effect (variability on the circuit, plus variability on the sensors
measuring properties of the circuit), which results in unique
features that can be used to construct a reliable hardware
fingerprint of devices. In a nutshell, we generate a specific
workload using different elements of the system and we record
the measurements of the on-chip sensors of the system. This, in
turn, allows us to build a completely self-contained fingerprint-
ing scheme. Nevertheless, modeling the impact of the switching
activity on the on-chip sensor measurements is a very challeng-
ing task. Such a model depends on many factors, as the initial
state of the system, the workload, the physical location of the
switching elements and on-chip sensors, crosstalk effects and
the imperfections of the device. Because of the aforementioned
model complexity, we propose the use of an artificial neural
network (ANN) for device classification. The input of the ANN
will be the raw on-chip sensor measurements generated during
the application of a specific workload, while the output is the
device ID.



The above described identification method resembles a phys-
ical unclonable function (PUF) with an analogue response.
On the one hand, the method exploits the physical variations
due to manufacturing processes, which are unclonable. On the
other hand, the identification is based on a challenge-response
function (where the workloads are the challenges while the
sensor measurements are the responses). In fact, there already
exist some PUF schemes which exploit analog measurements
(called analog-PUF) but they are designed for analog-circuits
and require added circuit to generate the unclonable function.
In addition, they do not directly use the analog measurement
as a response, but include a final stage where a comparator
is used to generate a digital response [4] or a feature of the
analog waveform is extracted as the PUF response [5]. Our
proposed identification method is general and applicable to
a large range of devices from FPGAs to processors. It uses
the embedded sensors to generate the response, therefore no
hardware overhead is incurred.

III. EXPERIMENTAL SETUP

To show the feasibility of the proposed method and to
perform a preliminary analysis of its efficiency, an experimental
set-up was devised. For simplicity and speedy results, we
have chosen to perform a first demonstration and analysis
on FPGAs. In this section, the experimental setup for our
proposed identification method tailored for FPGA identification
is presented.

The two main FPGA manufacturers in terms of market share
(Xilinx and Intel) embed a variety of sensors that are easily
accessible using ad-hoc IPs. In this work, we have used 11
evaluation boards Basys3, which are based on the latest Artix-
7 FPGA from Xilinx. Each FPGA includes 32.280 Logic Cells
in 5200 slices, 90 DSP slices and the XADC that is the basic
building block that enables analog mixed signal functionality.
The XADC includes a dual 12-bit, 1 Mega sample per second
(MSPS) ADC and on-chip sensors [6]. The XADC includes
one temperature sensor and three power supply voltage sensors:
core voltage (VCCrnr), auxiliary voltage (VCC4yx) and
the block RAM voltage (VCCppran)- The measurements of
these sensors generated during the application of a specific
workload will be periodically acquired by using the XADC-
IP block provided by Xilinx.

To emulate the behaviour of a device containing multiple
hardware functions (located in different places of the circuit)
which can be activated with different workloads, we designed
a circuit having multiple ring oscillators (ROs), distributed
across the target FPGA. A RO comprises an odd number of
inverters following a ring configuration and its output oscillates
at a specific frequency depending on several factors such
as number of stages, place route, hardware imperfections,
operation conditions, etc. In this work, we have implemented
5-stage ROs consisting of 4 inverters and a NAND gate that
will be used to enable the RO. The ROs have been manually
placed in the FPGA by using relatively placed macros (RPM).
More specifically, we have evenly distributed 2025 ROs, in a
grid of 15x15 ROs, in 9 different zones (225 ROs/zone) of the

Fig. 1. 9-zone RO Distribution on the FPGA

FPGA as depicted in Figure 1. The different zones are labeled
from A to L.

We have created four different workloads that will be gener-
ated by turning on and off the ROs, to emulate different work-
loads for a real application. For completeness, the workloads
have been applied at different speeds, with activation delays
between consecutive ROs of 0, 10, 20, 50, and 100 ms).

o Workload 1: All ROs Off —+ Zone A— Turn On ROs 1-
by-1— 224 ROs On— Turn Off ROs 1-by-1— 224 ROs
Off — Next zone.

o« Workload 2: All ROs Off — Zone A— Turn On ROs
1-by-1— 224 ROs On— Next zone.

o Workload 3: All ROs On — Zone A— Turn Off ROs 1-
by-1— 224 ROs Off— Turn On ROs 1-by-1— 224 ROs
On — Next zone.

o« Workload 4: All ROs On — Zone A— Turn Off ROs
1-by-1— 224 ROs Off— Next zone.

Each of the four sensors is sampled up to 4050 times during
the application of the possible workloads.

To achieve the device identification, we have used the neural
network pattern recognition feature provided by Matlab 2018.
It facilitates the creation of a neural network for pattern
classification. We have built a neural network which correlates
the sensor measurements with the physical device.

The input layer of the neural network has 16200 neurons
corresponding to the number of measurement points acquired
by the four sensors when a specific workload is applied. For the
hidden layers, we have used a variable number of neurons that
have been modified upwards from 10 to 100 neurons, setting
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Fig. 2. Sensor responses for FPGA 1 and Workload 1

a final configuration of 50-25 neurons in the hidden layers to
maximize the recognition accuracy. The output layer has 11
neurons, corresponding to the number of FPGAs under analysis.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results used to
evaluate the suitability of the proposed identification system.

The FPGA population to be identified is composed of 11
Artix-7 from Xilinx. We have acquired a total of 660 FPGA
fingerprints corresponding to all the measurements from the
on-chip sensor, under the 4 different workloads and 5 dif-
ferent delays, in three different days. The signatures have
been generated at room temperature using always the same
configuration for the power supply. In Figure 2 are depicted the
measurements of the four on-chip sensors when the Workload
1 is applied. We have computed the correlation between the
different sensors and depicted in Figure 3. A high positive or
negative correlation means that some sensors could be removed
from the configuration. In this case, there is no correlation on
the sensors obtaining values close to 0.

440 FPGA signatures corresponding to two different days
have been used for the training of the neural network. The rest
of the signatures (220) have been used for validation purposes.
Figure 4 depicts the confusion matrix for the 220 signatures
(20 per FPGA) where a 99.1% of accuracy is reached in
the FPGA identification. It is noteworthy that the number of
observations in different classes does not vary greatly so there
are no misleading results regarding the accuracy.

We have also carried out several experiments in order to
evaluate the robustness of the method.

A. Sensor removal

We have removed the information of some sensors from the
signature and retrained the NN using the new 440 signatures.
After that, we have used a set of 220 signatures to validate
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Fig. 3. Correlation matrix of sensor responses for Workload 1
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Fig. 4. Confusion Matrix for the FPGA recognition using the proposed method.

the system. In Table I are depicted the general accuracy for the
different combination of sensors. It can be seen that the features
extracted from the VCC sy x are the most important for the
identification. Nevertheless, it is shown that the combination
of all sensors is necessary to obtain enough accuracy on the
identification.

B. Workload removal

In this experiment, we have removed one of the workloads
during the training of the NN, and then we have tried to
identify the FPGAs by using the excluded patterns. The average
identification accuracy obtained in this experiment is 39 % with
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an identification accuracy maximum of 67.3 % for workload
4. Tt is important to remark that the different workloads are
not quite different between themselves so the identification
accuracy could be even worse for workloads with more dif-
ferences. These preliminary results show how difficult is to
model the system and opens the doors to exploit this feature
as an interesting countermeasure against some attacks that will
be explained in the discussion section.

C. Delay removal

In this experiment, we have evaluated the impact of removing
some delays from the training of the NN and then try to
identify those workloads that have been removed. In general,
the result of removing each of the delays from the training has a
small impact on the identification accuracy obtaining an average
result on the identification accuracy of 90%. These preliminary
results indicate that the delays do not play a key role during the
identification. Nevertheless, further analysis should be carried
out to determine the impact of this feature on the fingerprinting
of the devices.

V. DISCUSSION FUTURE WORK

The preliminary experimental results presented in the previ-
ous section are very promising. Nevertheless, some issues are
still open, in particular:

o Scalability of the system: if the population of devices
is increased to a thousand of them, with the previous
results, we cannot conclude that there is a unique fin-
gerprint for each device. Experiments shall be performed
on thousands of devices in order to study the suitability
of the identification method for a large device population.
These new experiments will include not only more devices
but also will explore a wider range of switching patterns
and new architectures for the NN that could improve the
identification accuracy.

o Versatility: the experimental setup uses ad-hoc elements
(i.e., ROs) to generate different workloads, and to emulate
real circuit behavior. Future research will also include
the adaptation of the proposed identification to other
platforms, such as microprocessors or GPUs, by activating

[1

[2

3

[4

[5

[6

—

—

—

]

—_

[}

elements existing in the system (e.g., use of an AES
module to generate different switching activities).
Operating conditions and aging: the results have shown
the effectiveness of the proposed identification method at
room temperature and normal operating conditions. It is
necessary to conduct further experiments using different
workloads and operating conditions. As we have access
to the information of the sensors, we will normalize the
measurements taking into account the initial operating
conditions (voltage and temperature) in order to reduce the
complexity of the training and facilitate the identification.
Aging of different elements could be modeled in order to
take into account their effects on the identification. Other
solutions could include the retraining of the NN during
the lifetime of the different devices.

Security: from this perspective, the main question to be
answered is related to the clonability of the system. In
other words, is it possible to impersonate a legitimate
device and replicate their outputs? At a first glance, the
proposed system seems to be secure. Indeed, we have
stated the difficulty of modeling the behavior of the entire
system due to its complexity. Moreover, the unlimited
number of possible workloads that can be applied makes
very difficult for an adversary to predict all sensor mea-
surements. In addition, the preliminary results presented
on the subsection Workload removal are very promising
because according to these results, the workload used to
the identification must be used during the training. Thus,
it will be quite difficult for an adversary to produce the
correct response in an identification system where the
server asks for the response of a specific workload. Other
future lines could include the use of masks that select a
subset of measurement points, unknowns for the adversary,
for the identification. This idea is based on the fact that it is
easier to obtain a higher average accuracy when replicating
a large number of points than a subset of them.
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