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Abstract 

A 1D cylindrical power-balance model of the radiation density limit gives a unified description of the 

phenomenon for stellarator, reversed field pinch and L-mode tokamak [P. Zanca et al, Nucl. Fusion 

59 (2019) 126011]. The density limit scaling laws for the three different configurations are all derived 

by combination of just two equations: i) single-fluid heat-transport equation; ii) on-axis Ohm’s law 

with Spitzer resistivity, taken in a suitable limit for the stellarator. Here, we present a refined version 

of the model, alongside further experimental evidences supporting its successful application.  

 

1. Introduction 

Density limit (DL) is ubiquitous in magnetic confinement fusion devices, and several processes can 

trigger this phenomenon. In particular, DL can take place as a radiation limit. In this regard, a 1D 

cylindrical power-balance model, matching fairly well experiments in the L-mode tokamak, in the 

reversed field pinch (RFP), and in the stellarator, derives a DL as bound of the equilibrium states 

characterized by realistic temperature profiles, i.e. with small values only at the edge, in the presence 

of radiation losses from impurities and edge neutrals [1, 2]. Differently from previous similar analyses 

[3-5], this model predicts the same DL expression for the tokamak and the RFP, without assumptions 

for the energy transport, but exploiting just two equations: i) single-fluid steady-state heat-transport 

equation; ii) on-axis Ohm’s law with Spitzer resistivity. Within this model, the stellarator is 

approximated by a pure additionally heated cylindrical configuration. Since Ohm’s law apparently 

does not apply to this case, the DL has been derived by the combination of i) with the International 

Stellarator Scaling 95 for the energy confinement time 𝜏𝐸 , as reported in [1, 2]. The expression 

obtained is very similar to the Sudo scaling [6], which represents the empirical reference for the 

stellarator, and it is also used for interpreting high-density experiments in Wendelstein 7-X [7]. 

However, in the present paper we will show that it is possible deriving an almost identical expression 

for the stellarator DL by combination of i) with a suitable limit of Ohm’s law, thus removing any 

transport input, as done for the tokamak and the RFP. By limiting to just the couple of equations i), 
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ii) we obtain an even deeper unification of the DL modelling in the three major configurations. The 

generality of the model stems also from the fact that equation i) is implemented by taking radial 

integrals, a procedure that smooths out the profile peculiarities of the different configurations. 

Moreover, equation i) itself can be regarded as the cylindrical approximation of a flux-surface 

averaged equation. Given the minimal 1D physics involved, the model may represent the ‘ultimate 

radiative DL’.  

The paper is organized as follows. In section 2, a new and simpler method to integrate equation i) is 

presented. The basic DL relation is further developed by equation ii), providing the DL scaling laws 

for the different configurations. In section 3 a previous numerical analysis [1] of the same model is 

discussed. In section 4, the model is compared to specific experiments: some of them, already 

considered in [1, 2], are here revisited. Conclusions are drawn in section 5.  

 

2. The model 

In cylindrical geometry, we take the single-fluid steady-state heat transport equation  

 

1)   
𝑑

𝑑𝑟
(𝑟 𝐾 

𝑑𝑇

𝑑𝑟
) + 𝑟(℘ − ℜ)  = 0;        ℜ =  𝑛𝑒

2 ℱ;          ℱ = [∑ 𝑓𝑗𝑅𝑎𝑑𝑗𝑗 (𝑇) + 𝑓0𝑅𝑎𝑑0(𝑇)] 

 

The single temperature approximation is justified by the strong coupling of ion and electron in the 

high density conditions we want to model ( 𝑇𝑖 ≈ 𝑇𝑒 = 𝑇). Here, K is an effective perpendicular 

conductivity, ℘(𝑟), ℜ(𝑟)  are respectively the heating power density (with ohmic and auxiliary 

components) and the radiated power density, 𝑛𝑒 is the electron density. Moreover, 𝑓𝑗, 𝑅𝑎𝑑𝑗 are the j-

th impurity concentration and radiation rate coefficient respectively, whereas 𝑓0, 𝑅𝑎𝑑0 are the same 

quantities for neutrals. The main ion emission is discarded, as minor effect in the plasmas here 

considered. Throughout this paper we use the International System of units (SI), but for the 

temperature, which is expressed in 𝑘𝑒𝑉. Therefore, K incorporates the numerical factor 1.6 × 10−16. 

The temperature profile satisfies the on-axis symmetry condition 𝑇′(0) = 0 (′ = 𝑑 𝑑𝑟⁄ ). Moreover, 

the request of ambient temperature value at r=a, location of the first material wall, is modelled by the 

constraint T(a)=0.  

Let’s take the integral of (1) over [0, 𝑎], after multiplying it by 𝑟𝐾 𝑑𝑇 𝑑𝑟⁄ : 

 

2)  
1

2
[𝑎 𝐾(𝑎) 

𝑑𝑇

𝑑𝑟
(𝑎)]

2
= − ∫ 𝑟( ℘ −  ℜ) 𝑟 𝐾 

𝑑𝑇

𝑑𝑟
 𝑑𝑟

𝑎

0
≥ 0 
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The inequality stems from the square in the l.h.s, and it will be transformed into a DL condition. We 

assume ℘ ≪ ℜ in the edge region, since both 𝑅𝑎𝑑𝑗 , for light impurities, and 𝑓0, for neutrals, are 

maximum there, due to the small temperature involved. We also assume that this is the only region 

where the above condition holds. The edge region is modelled by the radial and temperature intervals, 

[𝑟∗, 𝑎], [0, 𝑇∗ ≡ 𝑇(𝑟∗)], with 𝑟∗ close to 𝑎. Therefore, equation (2) can be approximated by  

 

3)  
1

2
[𝑎 𝐾(𝑎) 

𝑑𝑇

𝑑𝑟
(𝑎)]

2
≈ − ∫ 𝑟 (℘ −  ℜ)𝑟𝐾

𝑑𝑇

𝑑𝑟
 𝑑𝑟

𝑟∗

0
+ ∫  𝑟2𝐾 ℜ 

𝑑𝑇

𝑑𝑟
 𝑑𝑟

𝑎

𝑟∗
≥ 0 

 

Now, we transform the two integrals of (3) separately. Taking into account the integral version of (1), 

𝑟 𝐾 
𝑑𝑇

𝑑𝑟
= − ∫ 𝜌(℘ − ℜ)𝑑𝜌

𝑟

0
, the first integral over the plasma bulk [0, 𝑟∗]  (i.e. [𝑇0 = 𝑇(0),  𝑇∗]) 

becomes:  

 

4)   ∫  𝑟( ℘ −  ℜ)𝑟𝐾
𝑑𝑇

𝑑𝑟
 𝑑𝑟

𝑟∗

0
= −

1

2
∫  

𝑑

𝑑𝑟
[∫ 𝜌(℘ − ℜ)𝑑𝜌

𝑟

0
]

2
𝑑𝑟 = −

1

2
[∫ 𝑟 ℘ 𝑑𝑟

𝑟∗

0
− ∫ 𝑟 ℜ 𝑑𝑟

𝑟∗

0
]

2𝑟∗

0
 

 

Since ℘ is small in the complementary narrow edge region, we approximate the integral ∫ 𝑟 ℘ 𝑑𝑟
𝑟∗

0
 

by the volume-average 〈℘〉. Moreover, the integral ∫ 𝑟 ℜ 𝑑𝑟
𝑟∗

0
= ∫ 𝑟 𝑛𝑒

2 ℱ 𝑑𝑟
𝑟∗

0
 is approximated by 

representative average values for density and ℱ in the plasma bulk (𝑛𝑏𝑢𝑙𝑘, ℱ𝑏𝑢𝑙𝑘). Therefore  

 

5)  ∫  𝑟( ℘ −  ℜ)𝑟𝐾
𝑑𝑇

𝑑𝑟
 𝑑𝑟 ≈ −

1

2
[

𝑎2

2
〈℘〉 −

𝑎2

2
𝑛𝑏𝑢𝑙𝑘

2 ℱ𝑏𝑢𝑙𝑘]
2

;   
𝑟∗

0
 

〈℘〉 =
2

𝑎2
∫ 𝑟 ℘ 𝑑𝑟

𝑎

0

;        𝑛𝑏𝑢𝑙𝑘
2 =

2

𝑎2
∫ 𝑑𝑟 𝑟 𝑛𝑒

2 
𝑟∗

0

;         ℱ𝑏𝑢𝑙𝑘 = ∫ ℱ 𝑑𝑇
𝑇0

𝑇∗

(𝑇0 − 𝑇∗)⁄  

 

Now we address the edge integral of (3). Since 𝑟∗ is close to 𝑎, we factor outside the integral the 

square of the radius, the conductivity and the density, by taking representative edge values, 

respectively 𝑎2, 𝐾(𝑎), 𝑛∗: 

 

6)  ∫  𝑟2𝐾 ℜ 
𝑑𝑇

𝑑𝑟
 𝑑𝑟

𝑎

𝑟∗
≈ 𝑎2 𝐾(𝑎) 𝑛∗

2 ∫  ℱ
𝑑𝑇

𝑑𝑟
 𝑑𝑟

𝑎

𝑟∗
= −𝑎2 𝐾(𝑎) 𝑛∗

2 𝐺∗;       𝐺∗ = ∫  ℱ 𝑑𝑇
𝑇∗

0
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By replacing (5), (6) into (3) we obtain 

 

7)   
1

2
[𝑎 𝐾(𝑎) 

𝑑𝑇

𝑑𝑟
(𝑎)]

2
≈

1

2
[

𝑎2

2
〈℘〉 −

𝑎2

2
𝑛𝑏𝑢𝑙𝑘

2 ℱ𝑏𝑢𝑙𝑘]
2

 − 𝑎2 𝐾(𝑎) 𝑛∗
2 𝐺∗  ≥ 0 

 

This inequality provides the following DL condition  

 

8)   [8 𝐺∗  𝐾(𝑎) 𝑎2⁄  ]
1

2 𝑛∗ + 𝑛𝑏𝑢𝑙𝑘
2 ℱ𝑏𝑢𝑙𝑘 ≤ 〈℘〉 

 

The other possible solution, 〈℘〉 ≤ 𝑛𝑏𝑢𝑙𝑘
2 ℱ𝑏𝑢𝑙𝑘 − (8 𝐺∗  𝐾(𝑎) 𝑎2⁄  )

1

2 𝑛∗ < 〈ℜ〉 , with 〈ℜ〉 =

2 ∫ 𝑟 ℜ 𝑑𝑟
𝑎

0
𝑎2⁄ , is not physical for a steady state condition. Equation (8) is the same as equation (5) 

of [2], but here it has been derived by a simpler approach.  

Now, we develop (8) by introducing the profile factor 𝛿𝑛 = 𝑛𝑏𝑢𝑙𝑘 𝑛∗⁄ , and the two densities  

 

9)   𝑛1 = 〈℘〉 [8 𝐺∗ 𝐾(𝑎) 𝑎2⁄ ]
1

2⁄   ,          𝑛2 = (〈℘〉 ℱ𝑏𝑢𝑙𝑘⁄ )1/2  

 

with obvious meanings: 𝑛1 is the DL for 𝑛∗ neglecting bulk radiation (ℱ𝑏𝑢𝑙𝑘 = 0; the approximation 

adopted in [1]); 𝑛2 is the DL for 𝑛𝑏𝑢𝑙𝑘 neglecting edge radiation (𝐺∗ = 0). After little algebra, the DL 

condition can be cast into the following equivalent forms, respectively for 𝑛∗ and 𝑛𝑏𝑢𝑙𝑘: 

 

10)  𝑛∗ ≤ 𝑛1 × Θ(𝜄),    𝑛𝑏𝑢𝑙𝑘 ≤ 𝑛1 × Θ(𝜄) × 𝛿𝑛;          Θ(𝜄) = [(1 + 2𝜄)
1

2 − 1] 𝜄⁄ ,     𝜄 = 2𝛿𝑛
2𝑛1

2 𝑛2
2⁄     

 

The function Θ ≤ 1 weighs the contributions of edge and bulk radiations. At the typical temperatures 

of the plasma bulk, the emission is important only for heavy impurities: by keeping them to negligible 

concentration, we have 𝑛2 ≫ 𝑛1 and Θ~1. In this case, 𝑛1 is the fundamental quantity, whereas Θ 

can be regarded as a corrective factor.  

The density 𝑛1 contains an important dependence on 𝐾(𝑎), a quantity of not straightforward estimate. 

In the next paragraphs 𝐾(𝑎) will be replaced by global plasma parameters and a suitable profile 
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factor, by exploiting again equation (1) and the on-axis Ohm’s law. This will provide the final DL 

scaling laws for the different configurations. 

 

2.1 Tokamak and RFP expressions for 𝒏𝟏 

Letting, 𝜅𝑎 = 2 × 10−6  𝐾(𝑎) 𝑎2⁄ , �̂�∗ = 1035 × 𝐺∗, definition (9) for 𝑛1 simplifies into 

 

11)  𝑛1(1020𝑚−3) =
101/2

2
 〈℘(𝑀𝑊)〉  (𝜅𝑎 �̂�∗)

½
⁄  

 

Both 𝜅𝑎 and �̂�∗ are 𝑂(1) quantities: see following equations (20) and (28).  

The factor 𝜅𝑎  can be replaced by 𝑇0, by introducing an integral shape factor, which involves the 

normalized profiles �̂� = 𝐾 𝐾(𝑎)⁄ ,   ℘̂ = ℘ ℘(0)⁄ ,    ℜ̂ = ℜ ℜ(𝑟∗)⁄ . To this purpose, we take a 

double integration of (1):  

 

12)  𝜅𝑎 𝑇0 = 〈℘(𝑀𝑊)〉 ×  ℑ𝑝;                    ℑ𝑝 = ∫ 𝑑𝑟
1

𝑟 �̂�
(

∫ 𝑑𝑦 𝑦 ℘̂
𝑟

0

∫ 𝑑𝑦 𝑦 ℘̂
𝑎

0

−
∫ 𝑑𝑦 𝑦 ℜ̂

𝑟
0

∫ 𝑑𝑦 𝑦 ℜ̂
𝑎

0

)
𝑎

0
;    

 

When ℜ̂ is close to unity only at the edge, its contribution to ℑ𝑝 is minor. In (12) we also exploit the 

condition 〈ℜ〉 〈℘〉⁄ = 1, which holds at the DL, i.e. when equation (7) is satisfied as equality (see 

section 3).  

Then 𝑇0 is expressed by the on-axis ohm’s law with Spitzer resistivity [4] (neoclassical effects vanish 

at 𝑟 = 0). We take radially constant toroidal voltage 𝑉𝜙 = 2𝜋 𝑅0 𝐸𝜙 (i.e. steady-state conditions; 𝑅0  

is the simulated major axis), by including the current drive effect (tokamak) and the RFP dynamo 

term: 

 

13)   �̂�𝜙 = 𝑉𝜙 [𝜉(0) 𝐶(0)]⁄ = 2𝜋 𝑅0 𝜂(0) 𝐽𝜙(0) = 2𝜋 𝑅0 𝜂1 𝜁 𝑍𝑒𝑓𝑓 𝑇0

− 
3

2  𝐽𝜙(0) × 10−7,   

 

 𝜂1 = 0.0165 × 𝑙𝑛Λ,             𝜁 = 0.58 + 0.74 (0.76 + 𝑍𝑒𝑓𝑓)⁄  

 

𝑍𝑒𝑓𝑓 is the plasma effective charge, and 𝑙𝑛Λ is the Coulomb logarithm: hereafter, we will fix 𝑙𝑛Λ =

15, due to the weak dependence of the ensuing DL scaling laws on this quantity. The RFP anomaly 

function, 𝐶(𝑟) = 𝐸𝜙 𝐽𝜙 (𝜂 𝐽2)⁄ , encapsulates the axisymmetric component of the non-linear 

perturbation term �̃� × �̃� in ohm’s law (dynamo effect [8]). The current-drive function, 𝜉(𝑟) = 𝐽Ω 𝐽⁄ , 
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with 𝐽, 𝐽Ω the current density magnitude, total and ohmic respectively, is related to the additional 

heating. We take 𝐶 = 1 for the tokamak, and 𝜉 = 1 in the absence of current drive. Note that the 

renormalized loop voltage �̂�𝜙 remains finite even in the presence of substantial current drive (𝜉 ≪ 1, 

𝑉𝜙 ≪ 1).  

Finally, we replace the on-axis current density by the average current density, which is just the 

Greenwald parameter 𝑛𝐺 = 𝐼𝑃(𝑀𝐴) (𝜋𝑎2)⁄  [9]: 

 

14)  𝐽𝜙(0) = 106 × 𝐽𝜙(0) 〈𝐽𝜙〉⁄ × 𝑛𝐺 

  

This is convenient because the current profile factor 𝐽𝜙(0) 〈𝐽𝜙〉⁄  partially offsets the previous one ℑ𝑝.   

By combination of equations (11)-(14) we provide a family of four very similar 𝑛1 scaling laws, given 

by the product of a purely ohmic Greenwald-like expression 𝑛1,𝑜ℎ𝑚, with an additional heating factor 

Π:  

 

15)  𝑛1(1020𝑚−3) = Π
1

2 × 𝑛1,𝑜ℎ𝑚,       𝑛1,𝑜ℎ𝑚 ≅ 0.34 ×  𝑛𝐺

5

6   (𝜁 𝑍𝑒𝑓𝑓)
1

3   �̂�∗
−

1

2  Ψ𝐺1  (�̂�𝜙 𝑅0⁄ )
1/6

, 

 

16)  𝑛1(1020𝑚−3) = Π
1

2 × 𝑛1,𝑜ℎ𝑚,       𝑛1,𝑜ℎ𝑚 = 0.25 ×  𝑛𝐺   (𝜁 𝑍𝑒𝑓𝑓)
1/2

  �̂�∗
−1/2

  Ψ𝐺2  𝑇0
−1/4

, 

 

17)  𝑛1(1020𝑚−3) = Π2/5 × 𝑛1,𝑜ℎ𝑚,    𝑛1,𝑜ℎ𝑚 ≅ 0.36 × 𝑛𝐺

4

5   (𝜁 𝑍𝑒𝑓𝑓)
2

5  �̂�∗
−

1

2  Ψ𝐺3  𝜅𝑎

1

10, 

 

18)  𝑛1(1020𝑚−3) = Π4/9 × 𝑛1,𝑜ℎ𝑚,    𝑛1,𝑜ℎ𝑚 ≅ 0.23 ×  𝑛𝐺

8

9   (𝜁 𝑍𝑒𝑓𝑓)
4

9  �̂�∗
−

5

9  Ψ𝐺4  (Θ 𝜏𝐸⁄ )
1

9, 

 

with 

 

19)   Π = 𝑃 (�̂�𝜙𝐼𝑝)⁄ ,         𝑃 = 〈℘〉 × 2 𝜋2 𝑎2𝑅0   
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Equation (18) is derived from (17) by replacing 𝜅𝑎
1/10

 with the energy confinement time: 

 

20)  𝜅𝑎 = 0.048 × 𝑛∗(1020𝑚−3) 𝜏𝐸⁄ Ψ𝑝,       Ψ𝑝 = 𝛿𝑛𝑇ℑ𝑝,      𝛿𝑛𝑇 = 〈𝑛𝑒 𝑛∗ × 𝑇 𝑇0⁄⁄ 〉   

 

This relation stems from the operative definition of 𝜏𝐸 in stationary conditions, 𝜏𝐸 = 1.6 × 10−16 ×

3〈𝑛𝑒𝑇〉 〈℘〉⁄ , combined with (12). Equation (17) is approximately the scaling law considered in [1], 

(18) is exactly the scaling law obtained in [2], whereas (15), (16) are here presented for the first time. 

If the model was a perfect description of the reality, the above relations would be identical. Of course, 

this is not the case, and they can be taken separately, as different approximations of the DL. However, 

they compare almost in the same way to the experimental data.  

For the additionally heated tokamak, Π is the power enhancement with respect to the ohmic heating. 

Obviously, Π = 1 for the ohmic tokamak. Though ohmic as well, Π is not exactly 1 for the RFP, due 

to the anomaly, defined below equation (13), which relates current and electric field:  

 

21)   𝑃 = 4𝜋2𝑅0 ∫ 𝜂 𝐽2𝑎

0
𝑟𝑑𝑟 = 4𝜋2𝑅0 ∫ 𝐸𝜙 𝐽𝜙 𝐶⁄

𝑎

0
𝑟 𝑑𝑟 = �̂�𝜙 𝐼𝑝 × Π;     Π = ∫

𝑑

𝑑𝑟

𝑎

0
(

𝑟𝐵𝜃

𝑎 𝐵𝜃(𝑎)
) �̂�−1 𝑑𝑟 

 

Therefore, Π has the meaning of shape factor (close to unity) of the normalized anomaly profile �̂� =

𝐶 𝐶(0)⁄ . The shape factors Ψ𝐺𝑖 are similar combinations of those defined in (12) and (14): 

 

22) Ψ𝐺1 = [𝐽𝜙(0) 〈𝐽𝜙〉⁄ ]
1/3

 ℑ𝑝
−1/2

,   Ψ𝐺2 =   [𝐽𝜙(0) 〈𝐽𝜙〉⁄ ]
1/6

 Ψ𝐺1 , Ψ𝐺3 = Ψ𝐺1
6/5 , Ψ𝐺4 =

Ψ𝐺1
4/3 Ψ𝑝

1/9
 

 

They can be estimated by computing normalized profiles for temperature and current with a scan of 

input profiles for thermal conductivity, additional heating and radiation, and then fitting the results 

by means of the measurable profile factors for temperature, 𝛿𝑇 = 〈𝑇 𝑇0⁄ 〉 , and density, 𝛿𝑛  (see 

appendix B of [2]). This analysis shows that 𝐽𝜙(0) 〈𝐽𝜙〉⁄  and ℑ𝑝 balance to some extent within Ψ𝐺𝑖.  
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Expressions (15)-(18) have been obtained without any modelling of transport: its effect has been 

encapsulated into global parameters by equations (12)-(14). In doing this, the linear 𝑃 dependence of 

the initial equation (11) has been transformed into: i) a quasi-linear dependence on current, 

𝑛1,𝑜ℎ𝑚~𝑛𝐺, for an ohmic device; ii) a mixed power-current dependence, 𝑛1~[𝑃 𝜋𝑎2⁄ ]1/2  𝑛𝐺
1/2

 for 

the additionally heated tokamak. The residual transport dependence of the final scaling laws is 

expressed by the weak confinement terms 𝑉𝜙
1/6, 𝑇0

−1/4, 𝜅𝑎

1

10, 𝜏𝐸
−1/9

, by the integral of the 

normalized conductivity radial profile within Ψ𝐺𝑖 , and by �̂�𝜙  within Π  (anyway, �̂�𝜙  has limited 

variations with respect to those of 𝑃, 𝐼𝑝, in the tokamak).  

Scaling laws (15)-(18) are quantitatively similar for the tokamak and the RFP: besides the comparable 

estimate of the shape terms Ψ𝐺𝑖  (as expected, involving integrals of normalized profiles), the 

difference in the confinement order of magnitude of the two configurations is cancelled by the small 

exponents of the confinement terms: roughly speaking, passing from the tokamak to the RFP, 𝑉𝜙,

𝑇0,  𝜅𝑎, 𝜏𝐸 vary by factors, 20, 10−1, 102, 10−2 respectively, but 𝑉𝜙
1/6

, 𝑇0
−1/4

, 𝜅𝑎
1/10, 𝜏𝐸

−1/9 all vary 

only by a factor 1.6 ÷ 1.8. Finally, we note that (15)-(18) do not depend neither on 𝑅0, nor on the 

toroidal field 𝐵𝜙. 

 

2.2 𝒏𝟏 for the stellarator 

Semi-empirical, Sudo-like expressions for 𝑛1 have been obtained for the stellarator, approximated by 

a pure additionally heated cylindrical configuration [1, 2]. In particular, the one reported in [2] stems 

from the initial DL relation (11), with 𝜅𝑎 replaced by 𝜏𝐸 (by means of (20)), and 𝜏𝐸 specified by the 

empirical International Stellarator scaling 95 [10], suitable to L-mode plasmas. It is  

 

23)  𝑛1,𝐼𝑆𝑆95(1020𝑚−3) ≅ 0.257 × 𝑃(𝑀𝑊)0.57 𝐵𝜙
0.33 𝑅0

−0.54 𝑎−0.72 𝜄2/3
0.16  [�̂�∗ Ψ𝑝 ]

−0.4
[𝛿𝑛 Θ⁄ ]0.2 

 

with 𝜄2/3 is the rotational transform at 𝑟 = 2 3⁄ 𝑎. 

Here, we obtain an almost identical expression by a suitable limit 𝑉𝜙 → 0, 𝐼𝑝 → 0  of the tokamak 

case discussed in the previous paragraph. This approach removes any empirical input. In the place of 

(14) we now use the standard relation  
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24)  𝐽𝜙(0) =
2

𝜇0 𝑅0 𝑞0
𝐵𝜙 

 

with  𝑞0 the on-axis safety factor. Combination of (13), (24) gives 

 

25)   0.25 × 𝜁  𝑍𝑒𝑓𝑓 𝑇0

− 
3

2  𝐵𝜙 ≅  �̂�𝜙 𝑞0 ≡ 𝜆𝑡𝑜𝑘   

 

Both 𝑞0, �̂�𝜙 are close to unity for a tokamak, hence 𝜆𝑡𝑜𝑘~1. Now, we decrease �̂�𝜙, 𝐼𝑝 towards zero at 

constant  𝐵𝜙, at the same time increasing the additional heating to maintain 𝑇0 constant. With the 

mild assumption that even 𝑍𝑒𝑓𝑓 does not vary in this process, we can get arbitrarily close to a pure 

additionally heated cylindrical configuration, keeping (25) unaltered with the initial value 𝜆𝑡𝑜𝑘~1. 

For such a configuration, a crude approximation of the stellarator, 𝑛1 is then obtained by combination 

of (11), (12), (25): 

 

26)  𝑛1(1020𝑚−3) = 0.223 × 𝑃(𝑀𝑊)1/2 𝐵𝜙
1/3

𝑅0
−0.5𝑎−1 (

𝜁𝑍𝑒𝑓𝑓

𝜆𝑡𝑜𝑘
)

1/3

[�̂�∗ ℑ𝑝 ]
−1/2

 

 

The similarity of (23) and (26) is striking. Moreover, they are both very similar to the empirical Sudo-

edge scaling 𝑛𝑆𝑢𝑑𝑜_𝑒𝑑𝑔𝑒(1020𝑚−3) = 0.2 × 𝑃(𝑀𝑊)1/2 𝐵𝜙
1/2

𝑅0
−0.5𝑎−1, proposed in [11] for the edge 

DL of LHD. Note that, (23), (26) depend on 𝑅0, unlike (15)-(18). 

 

2.3 The edge radiation term 

The quantity �̂�∗, present in all the above DL scaling laws, can be given a simple approximate form 

[2]. First, denoting 𝑍𝑖  the main ion charge, we factor 𝑍𝑒𝑓𝑓 − 𝑍𝑖 , taken radially constant, in the 

impurity term of ℱ (see equation (1)): 
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27)  �̂�∗ = 1035 × ∫  ℱ 𝑑𝑇
𝑇∗

0
= 𝑔𝐼∗ × (𝑍𝑒𝑓𝑓 − 𝑍𝑖) + 1035 × 𝑓0 ∫  𝑅𝑎𝑑0 𝑑𝑇

𝑇∗

0
;      𝑔𝐼∗(𝑇∗) = 1035 ×

∫
∑ �̂�𝑗𝑅𝑎𝑑𝑗(𝑇)𝑗

∑ �̂�𝑗[𝑍𝑗
2(𝑇)−𝑍𝑗(𝑇)𝑍𝑖]𝑗

 𝑑𝑇
𝑇∗

0
 

 

𝑍𝑗(𝑇) are the impurity charges, and 𝑓𝑗are the relative impurity concentrations (i.e. normalized to that 

of the dominant impurity). For light impurities, the integral function 𝑔𝐼∗(𝑇∗) saturates quickly with 

𝑇∗, approximately for 𝑇∗ ≳ 30𝑒𝑉. The dependence of 𝑔𝐼∗ on the (light) impurity species is not strong, 

because 𝑅𝑎𝑑𝑗(𝑇) is divided by  𝑍𝑗
2(𝑇) − 𝑍𝑗(𝑇)𝑍𝑖 within the integrand, and the impurities with wider 

principal maximum in 𝑅𝑎𝑑𝑗(𝑇) also feature higher charge. For example, we estimate 𝑔𝐼∗~4 for 

Carbon and 𝑔𝐼∗~4.8 for Beryllium (we refer to the FLYCHK code [12, 13], for 𝑍𝑗(𝑇)), 𝑅𝑎𝑑𝑗(𝑇), as 

well as for 𝑅𝑎𝑑0(𝑇)). Therefore, in (27) the impurity species dependence is mainly transformed into 

the charge dependence 𝑍𝑒𝑓𝑓 − 𝑍𝑖. Second, we consider atomic line emission of Deuterium (D) to 

have a correct order of magnitude of 𝑅𝑎𝑑0 : taking 𝑇∗ ≈ 50𝑒𝑉 , one gets 1035 × ∫ 𝑅𝑎𝑑0 𝑑𝑇
𝑇∗

0
≈

400 ≈ 100 × 𝑔𝐼∗. Therefore, (27) can be approximated by  

 

28)   �̂�∗ ≈ 𝑔𝐼∗ ×  [𝑍𝑒𝑓𝑓 − 𝑍𝑖 + 𝑓0(%)],        𝑔𝐼∗~4 ÷ 5  

 

Here, 𝑓0(%) has the meaning of effective concentration, and weighs, by comparison with 𝑍𝑒𝑓𝑓 − 𝑍𝑖, 

the relative contributions of impurities and neutrals to the edge emission. Hereafter, approximation 

(28) will be adopted within all the scaling laws of the model. 

 

3. Comparison with numerical analyses 

A numerical analysis of the above set of equations, which improves some of the unavoidable 

approximations of the analytical approach (in particular 𝑇(𝑟) is computed from (1) self-consistently 

with 𝑅𝑎𝑑𝑗(𝑇)), has been presented in [1] for the tokamak case. The DL is there identified by the 

boundary dividing the solutions with standard temperature profiles decreasing to small value at 𝑟 =

𝑎 , from the unphysical solutions featuring oscillating non-monotonic temperature profiles. The 

numerical DL agrees very well with the analytical DL, even though they somehow differ as far as the 

radiated power fraction, namely the ratio 〈ℜ〉 〈℘〉⁄ , is concerned. In fact, the analytical DL, defined 
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by (7) taken as equality, corresponds to 𝑇′(𝑎) = 0, which implies 〈ℜ〉 〈℘〉⁄ = 1, as can be seen by 

the integral of (1) over [0, 𝑎]:  

 

29)   𝑎 𝐾(𝑎) 
𝑑𝑇

𝑑𝑟
(𝑎) = −

𝑎2

2
(〈℘〉 − 〈ℜ〉) 

 

Instead the numerical DL relaxes appreciably this condition, covering the interval 〈ℜ〉 〈℘〉⁄ ≳ 0.5 

(see figure 7 of [1]). This seeming contradiction is resolved by the non-linear relationship between 

〈ℜ〉 〈℘〉⁄  and the proximity to the DL, namely the ratio 𝑛∗ (𝑛∗)𝐷𝐿⁄ . To illustrate this, let’s assume that 

the radiation in the plasma bulk is negligible, namely 𝑛𝑏𝑢𝑙𝑘
2 ℱ𝑏𝑢𝑙𝑘 ≪ 〈℘〉 in equation (7). Therefore, 

(𝑛∗)𝐷𝐿 ≅ 𝑛1, and by combination of (7), (9), (29) we get 

 

30)   𝑛∗ 𝑛1⁄ ≅ √1 − (1 − 〈ℜ〉 〈℘〉⁄ )2 

 

Owing to the non-linearity of (30), the narrow interval about the analytical DL 𝑛∗ 𝑛1⁄ = 1, covered 

by the numerical DL, corresponds to a significant range in 〈ℜ〉 〈℘〉⁄  (for example, taking 𝑛∗ 𝑛1⁄ ≳

0.9 one gets 〈ℜ〉 〈℘〉⁄ ≳ 0.5). In other words: the condition 𝑛∗ 𝑛1⁄ = 1 = 〈ℜ〉 〈℘〉⁄  of the analytical 

approach gives a good approximation of the more realistic numerical DL, which corresponds to an 

interval for 〈ℜ〉 〈℘〉⁄ . 

 

4. Comparison with experimental data 

The model is now validated against data from several experiments, all obtained in conditions with 

negligible content of heavy impurities. Some of them have been already discussed in [1, 2], but they 

are presented again in a slightly refined form.  

  

4.1 RFX-mod 

The RFX-mod DL [14, 15] is taken as a term of comparison for the RFP. Since the line-average 

density �̅�𝑒 is the customary quantity stored in the RFX-mod databases, we estimate the correspondent 

DL, (�̅�𝑒)𝐷𝐿 = 𝑛1 × Θ × 𝛿̅, by supplying the experimental peaking factor 𝛿̅ = (�̅�𝑒 𝑛∗⁄ )𝑒𝑥𝑝. In RFX-

mod (𝑅0 = 2, 𝑎 = 0.46), the density profile is rather flat, with a tendency to become hollow at high 

density: by taking 𝑟∗ = 0.9𝑎, inversion of interferometric data [16] provides the approximate trend 
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𝛿̅ ≈ 0.73 × �̅�𝑒(1020𝑚−3)−0.68. The ensuing DL scaling, (�̅�𝑒)𝐷𝐿 ≅ 0.83 × (𝑛1 × Θ)0.6, features a 

very weak parametric dependence, when taking any of the expressions (15)-(18) for 𝑛1. Therefore, 

we can safely replace all these parameters, but 𝑛𝐺, with typical, or at least reasonable values for RFX-

mod. As an example, we specify 𝑛1 by (18), and we set: 𝑍𝑖 = 1; 𝑔𝐼∗ = 4 (Carbon); 𝜏𝐸 = 10−3𝑠; Θ =

1  (given the flat/hollow density profile, we estimate Θ(2 𝛿𝑛
2 𝑛1,𝑜ℎ𝑚

2 𝑛2
2⁄ )~1 ; ℱ𝑏𝑢𝑙𝑘  within 𝑛2  is 

computed for 𝑇0 = 0.2𝑘𝑒𝑉, 𝑇∗ = 0.075𝑘𝑒𝑉, according to the typical profile close to DL shown in 

figure C1 of [1]); with the definition (21) for Π, the global shape factor is estimated as Π
4

9 Ψ𝐺4~3.8 

(see appendix B of [2] and appendix C of [1]). We approximately get a square root dependence on 

𝑛𝐺: 

 

31)   (�̅�𝑒)𝐷𝐿(1020𝑚−3) ≈ 0.764 × (𝜁 𝑍𝑒𝑓𝑓)
0.26

 [𝑓0(%) + 𝑍𝑒𝑓𝑓 − 1]
−0.33

  𝑛𝐺
0.53  

 

The trend 𝑍𝑒𝑓𝑓 = 1 + 0.5 �̅�𝑒(1020𝑚−3)⁄  is a reasonable assumption for RFX-mod [17], considering 

also the weak dependence of (31) on this parameter. Figure 1 shows that (31) delimits fairly well the 

upper boundary of the RFX-mod operative (𝑛𝐺 , �̅�𝑒) space (the database is the union of the two 

ensembles used for figures 1 of [14] and [15]). Instead, the �̅�𝑒(1020𝑚−3) = 𝑛𝐺  criterion leaves a 

significant gap for 𝑛𝐺 > 1. Note also that the experimental points tend to become sparse when 

approaching the boundary (31). In agreement with the general premise of the introduction, this 

suggests the interpretation of (31) as ‘ultimate DL’ (replacing the ‘standard’ 𝑛𝐺 reference), but in the 

presence of other mechanisms, which hinder or prevent the density increase towards that limit. In 

fact, saturation of the density build-up due to high edge transport [18], and radiative instabilities 

related to the 3D magnetic topology [15], play a significant role. 
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Figure 1. RFX-mod operative (𝑛𝐺 , �̅�𝑒) space. Predicted DL (31) is given for two values of 𝑓0. The dashed line 

corresponds to �̅�𝑒 = 𝑛𝐺 . 

 

4.2 FTU 

The FTU ( 𝑅0 = 0.935, 𝑎 = 0.28 ) ohmic tokamak experiments [19] are particularly relevant, 

because the edge DL (𝑟∗ 𝑎⁄ ~0.8), which is straightforwardly compared to our model, is characterized 

there. The experimental densities reported in figure 11 of [19] are now compared to the prediction of 

the model, (𝑛∗)𝐷𝐿 = 𝑛1,𝑜ℎ𝑚 × Θ, taking (16) for 𝑛1,𝑜ℎ𝑚. We set 𝑔𝐼∗ ≈ 4.7, assuming Boron as the 

dominant impurity (clean machine conditions are obtained by boronization), and 𝑇0 ≈ 1 (see figure 

2 of [19]). The shape factor Ψ𝐺2 is replaced by the average value (~2.68) estimated on the JET 

database discussed in the next paragraph, where we have access to profile information: this value is 

assumed to be representative of the L-mode tokamak. One gets  

 

32)  (𝑛∗)𝐷𝐿(1020𝑚−3)  ≈ 0.3 × (𝜁 𝑍𝑒𝑓𝑓)
1/2

  [𝑓0(%) + 𝑍𝑒𝑓𝑓 − 𝑍𝑖]
−1/2

 𝑛𝐺 × Θ   
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The compatibility between (32) and the empirical scaling (𝑛∗)𝐷𝐿,𝑒𝑥𝑝(1020𝑚−3) ≈ 0.34 × 𝑛𝐺 

proposed in [19] is self-evident. Therefore, we compute (32) with 𝑍𝑖 = 1, 𝑍𝑒𝑓𝑓 = 1.25 (it is reported 

𝑍𝑒𝑓𝑓 < 1.5 ), 𝑓0(%) = 0.5  (a value suggested by the above mentioned JET analysis), and with 

Θ(2 𝛿𝑛
2 𝑛1,𝑜ℎ𝑚

2 𝑛2
2⁄ ) properly taken into account, since these discharges are characterized by a large 

variation of 𝛿𝑛  ( ℱ𝑏𝑢𝑙𝑘  within 𝑛2  is computed for 𝑇0 = 1, 𝑇∗ = 0.075 ). One gets 

(𝑛∗)𝐷𝐿 (𝑛∗)𝐷𝐿,𝑒𝑥𝑝⁄ = 1.05 ± 0.28 (average and standard deviation). Same result with the empirical 

scaling: 0.34 𝑛𝐺 (𝑛∗)𝐷𝐿,𝑒𝑥𝑝⁄ = 1.06 ± 0.28 

 

4.3 L-mode additionally heated JET experiments 

The model prediction (𝑛𝑏𝑢𝑙𝑘)𝐷𝐿 = 𝑛1 × Θ × 𝛿𝑛, with (18) for 𝑛1, has been compared in [2] to a set 

of about 40 high density disrupted, L-mode, JET discharges in divertor configuration (𝑅0 = 2.98,

𝑎 = 0.95), both with Carbon wall (CW), and ITER-like wall (ILW: Beryllium for the first-wall, 

Tungsten for the divertor). Most of the shots feature NBI heating (up to 11MW), seven are purely 

ohmic, whereas ICRH (~4 ÷ 6 𝑀𝑊) is present only in a couple of shots, in combination with the 

NBI. The experimental signals for many of the needed quantities (in particular 𝑍𝑒𝑓𝑓  and 𝑉𝜙) are 

available. Apart one shot, which required the inclusion of a small amount of Tungsten, it was 

sufficient to restrict to light impurities and neutral Deuterium to make the model compatible with the 

maximum experimental volume-average densities 〈𝑛𝑒〉𝐷𝐿,𝑒𝑥𝑝. A slightly better agreement was also 

obtained by replacing some uncertain terms, such as the profile factors and the renormalized voltage 

�̂�𝜙 = 𝑉𝜙 𝜉(0)⁄ , with typical estimated values, possibly removing some noise in the prediction, thus 

highlighting the most important dependences. This model reduction is presented again, going deeper 

in the comparison with the database. Starting from (𝑛𝑏𝑢𝑙𝑘)𝐷𝐿 = 𝑛1 × Θ × 𝛿𝑛, with 𝑛1 given by (18), 

we replace the product  �̂�𝜙
−4/9

 Ψ𝐺4  Θ10/9 𝛿𝑛 by its average value over the whole database (since the 

density profiles are weakly peaked, it is not crucial to take into account the exact shot by shot variation 

of 𝛿𝑛), taking only the last 200𝑚𝑠 before the disruption. We get: 

 

33)  (𝑛𝑏𝑢𝑙𝑘)𝐷𝐿(1020𝑚−3)  ≈ ∁ ×  
(𝜁 𝑍𝑒𝑓𝑓)

4
9

 [𝑓0(%)+𝑍𝑒𝑓𝑓−𝑍𝑖]
 
5
9

  [
𝑃(𝑀𝑊)

𝜋𝑎2 ]
4/9

 𝑛𝐺
4/9

  𝜏𝐸

−
1

9;        ∁=
1.07±0.32

𝑔∗
5/9     
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A tolerance deriving from the standard deviations of the above product is reported in ∁. Since 𝑔∗~4 

for Carbon and 𝑔∗~4.8  for Beryllium, we expect ∁~0.45 ± 0.15 . Note that, both 𝑃  and 𝐼𝑝  are 

divided by 𝜋𝑎2 in (33). Expression (33) with ∁≈ 0.4, 𝑓0(%) = 0.5 (a choice compatible with the 

typical relative contributions of impurity and neutrals to the edge radiation [20]) and approximation 

𝜏𝐸
−1 9⁄

≈ 1 (suitable for JET), was the reduced scaling considered in [2]. Here instead, ∁ and 𝑓0(%) 

are optimized by a fit (in doing this we exclude the above mentioned peculiar shot). After dividing 

the experimental 〈𝑛𝑒〉𝐷𝐿,𝑒𝑥𝑝  by [𝑃(𝑀𝑊) (𝜋𝑎2)⁄ ]4/9 𝑛𝐺
4/9

, we take a two-parameters fit with the 

function 𝑚1 × 𝑍
𝑒𝑓𝑓

4

9   [𝑚2 + 𝑍𝑒𝑓𝑓 − 𝑍𝑖]
− 

5

9, representing the 𝑍𝑒𝑓𝑓 dependence in (33) (all values are 

time-averaged over the last 200𝑚𝑠 before the disruption; the weak factor 𝜁 is discarded here, since 

its inclusion does not modify the result). The data, displayed in figure 2a), follows a weak decreasing 

trend with 𝑍𝑒𝑓𝑓, compatible with the model’s prediction (a power law fit would be slightly worse). 

Since the optimum values, 𝑚1 = ∁ × 𝜏𝐸

−
1

9~0.37, 𝑚2 = 𝑓0(%)~0.46, are in the expected range for 

these parameters, the fit gives a confirmation of the model. The JET DL increased of about 20% when 

CW was replaced by ILW [21]: from figure 2a) this may be interpreted as an effect of the smaller 

𝑍𝑒𝑓𝑓, which according to (28) implies lower edge radiation, passing from Carbon to Beryllium as 

dominant impurity. The model (33), with the fitted values for ∁ × 𝜏𝐸

−
1

9, 𝑓0(%) is compared to the 

experimental DL in figure 2b). The vertical bars give the sensitivity from 𝑓0(%) (upper and lower 

extremes correspond to 0.2 and 1 respectively): this is relevant for ILW discharges, due to their small 

𝑍𝑒𝑓𝑓 − 𝑍𝑖 . In any case, it is clear that the model aligns the disruptions, whereas the Greenwald 

parameter absolutely does not.   
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Figure 2. Data taken close to the disruptions. a) 〈𝑛𝑒(1020𝑚−3)〉[𝑃(𝑀𝑊) (𝜋𝑎2)⁄ ]−4/9 𝑛𝐺
−4/9

 against 𝑍𝑒𝑓𝑓 : 

ILW (blue triangles), CW (black triangles), fit (red line). b) scaling (33) (red diamond) and 𝑛𝐺  (squares) 

against experimental 〈𝑛𝑒〉𝐷𝐿,𝑒𝑥𝑝; vertical bars gives the interval of model prediction for 𝑓0(%) = 0.2 ÷ 1. 

 

The DL of our model does not depend on the additional heating system: any difference in the power 

deposition profile from one heating method to another is smoothed out by the double radial integration 

of the shape term ℑ𝑝 in equation (12). In the above database, no appreciable dependence of DL on 

the heating technique is found (see figure 9 of [2]), but too few shots with ICRH are there to draw a 

sound conclusion.  

After publication of [2], we considered previous L-mode JET experiments in limiter configuration, 

which demonstrate the complete equivalence of ICRH and NBI as far as DL is concerned [22, 23]. 

This result is achieved by some optimizations which minimize the impurity production specific to 

ICRH. In figure 3 model (33) is compared to three examples of these experiments, taken from figure 

2 of [22], all with 𝐼𝑝 = 3𝑀𝐴 and similar 𝑍𝑒𝑓𝑓 (see figure 4 of [22]), but featuring different heating 

methods. A scan with 𝑓0(%) is performed with 𝑎 = 1.2 (limiter configuration), 𝜏𝐸
−1 9⁄

≈ 1, 𝑔∗ = 4 

(Carbon), and respectively 𝑃(𝑀𝑊) = 2.5, 11.5, 12,  𝑍𝑒𝑓𝑓 = 1.5, 1.6, 1.4 for the ohmic, ICRH, NBI 

cases. The model well predicts the increase of the ohmic DL obtained with the addition of ICRH and 

NBI, equivalently. On the contrary, the 𝑛𝐺 criterion cannot explain such a large difference of the DL 

in shots that share the same 𝐼𝑝 . We also mention figure 161 of [23], referring to this kind of 
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experiments, where a clear trend 𝑃0.5 is observed for the edge DL: this confirms that the phenomenon 

occurs at the edge, as predicted by (15)-(18). In conclusion, our model describes quite well the JET 

L-mode DL.  

 

Figure 3. Scan with 𝑓0(%)  of model (33) (continuous lines; parameter setting in the text), alongside 

experimental 〈𝑛𝑒〉𝐷𝐿 (dashed lines). The value 𝑛𝐺 ≅ 0.66 of these experiments is also reported. 

 

4.4 Further L-mode tokamak experiments 

An inter-machines analysis, collecting together published DL data from several L-mode, NBI 

experiments is shown in figure 4. The data scattering is substantially reduced when replacing, as order 

parameter, 𝑛𝐺  by model (33) (we take ∁= 0.45 ), even further reducing it to just the 𝑃, 𝐼𝑝 

dependences, the only choice, since 𝑍𝑒𝑓𝑓 is not given on a shot-by-shot basis. Compared to the similar 

analysis reported in [2], here we add a further TEXTOR experiment, and we include the 𝜏𝐸
−1/9

 factor 

within model (33), by taking representative values of 𝜏𝐸 for each device as given by the standard 

thermal L-mode scaling law [4]. A power-law fit of these data also confirms the model (33): 

 

34)  (�̅�𝑒)𝐷𝐿(1020𝑚−3) ≈ 0.58 × [𝑃(𝑀𝑊) (𝜋 𝑎2)⁄ ]0.49±0.02 𝑛𝐺
0.44±0.04 𝐵𝜙

−0.12±0.04,  
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The three variables in (34) have a weak linear Pearson correlation (|𝑟| = 0.2, 0.26, 043 respectively 

for the first two, the first and the third, the last two). The dependence on the toroidal field is found 

almost negligible, as in the model.     

 

 

Figure 4. Maximum published line-average densities obtained in several L-mode NBI experiments. The 

legend reports the data source. They are plotted vs. 𝑛𝐺  in (a), and vs (33) w/o the 𝑍𝑒𝑓𝑓 term in (b). 

 

To our knowledge, the only published result against the 𝑃 dependence of the tokamak L-mode DL, 

or at least of the ‘detachment DL’, is figure 9a of [29], referring to DIII-D experiments (𝑎 = 0.63, 

𝑅0 = 1.66) and showing the densities at the plasma detachment (�̅�𝑒)𝑑𝑒𝑡, in both ohmic and NBI 

discharges. A criticism has been raised in [2] to that figure: here, we present again our counter 

analysis, with some new elements. An unbiased look at the plotted data suggests an inverse 

dependence on 𝐵𝜙 . In fact, we get (�̅�𝑒)𝑑𝑒𝑡(1020𝑚−3) ≈ 0.64 ×

[𝑃(𝑀𝑊) (𝜋 𝑎2)⁄ ]0.31±0.07 𝑛𝐺
0.74±0.09 𝐵𝜙

−0.45±0.09  for the NBI subset, and (�̅�𝑒)𝑑𝑒𝑡(1020𝑚−3) ≈

0.84 ×  𝑛𝐺
1.45±0.11 𝐵𝜙

−0.37±0.14  for the ohmic subset. In the latter, 𝑃  is not considered as fitting 

variable, being strongly linearly correlated with 𝐼𝑝. Note that the 𝐵𝜙 exponent is the same in the two 

subsets, supporting a real physical dependence. Detachment is not necessarily close to the DL in these 

experiments: it is qualitatively reported that (�̅�𝑒)𝑑𝑒𝑡 ≅ (�̅�𝑒)𝐷𝐿 at low/moderate edge safety factor 
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𝑞95, whereas (�̅�𝑒)𝑑𝑒𝑡 < (�̅�𝑒)𝐷𝐿 at high 𝑞95. Since 𝑞95 plays a role, in the previous two fits we replace 

𝐵𝜙 by the cylindrical approximation of the edge safety factor: 𝐵𝜙 = 𝜋 𝑅0 𝑛𝐺  𝑞𝑎 5⁄ . For the NBI and 

the ohmic subsets we get respectively    

 

35)    (�̅�𝑒)𝑑𝑒𝑡(1020𝑚−3) ≈ 0.43 × [𝑃(𝑀𝑊) (𝜋 𝑎2)⁄ ]0.31±0.07 𝑛𝐺
0.29±0.17 (𝑞𝑎 𝑞𝑎̅̅ ̅⁄ )−0.45±0.09 

 

36)    (�̅�𝑒)𝑑𝑒𝑡(1020𝑚−3) ≈ 0.66 ×  𝑛𝐺
1.1±0.15 (𝑞𝑎 𝑞𝑎̅̅ ̅⁄ )−0.37±0.14 

 

with 𝑞𝑎̅̅ ̅ the shot-average value in each of the two subsets. Apart from the 𝑞𝑎 dependence, possibly 

related to the fact of considering (�̅�𝑒)𝑑𝑒𝑡 instead of (�̅�𝑒)𝐷𝐿, and the unknown 𝑍𝑒𝑓𝑓 dependence, (35) 

is similar to the model (33), and (36) to the ohmic version (𝑃~𝐼𝑝) of the same. In any case, the NBI 

scaling (35) is much closer to the previous fit (34) than to the 𝑛𝐺 criterion. We draw the conclusion 

that these data indeed support the 𝑃  dependence of the tokamak L-mode DL. The comparison 

between (34), (35) also suggests that the ‘ultimate DL’ has a simpler form than the ‘detachment DL’, 

in consonance with the general premise stated in the introduction. 

 

4.5 Wendelstein 7-X 

Scaling laws similar to (23) and based on the present model have been successfully compared to LHD 

data in [1] and to Wendelstein 7-X in [30, 31]. Here, we consider the maximum values for the 

Wendelstein 7-X edge density (𝑟∗ 𝑎⁄ = 0.85) reported in figure 4 of [31], and, in particular, those 

obtained after boronization (𝑍𝑒𝑓𝑓 < 2), which show the highest DL. They refer to the standard 

configuration: 𝑅0 = 5.5, 𝑎 = 0.51, 𝐵𝜙 = 2.41, 𝜄2/3 = 0.9. Figure 5 shows that the modelled edge 

DL, 𝑛∗ = 𝑛1 × Θ(2𝛿𝑛
2𝑛1

2 𝑛2
2⁄ ), with both scaling laws (26) (black line) and (23) (red line) for 𝑛1, 

agrees fairly well with those densities. The quantities 𝑛1, 𝑛2  are computed as follows. For the two 

most important parameters we take values representative of clean machine condition: 𝑍𝑒𝑓𝑓 = 1.5, 

𝑓0(%) = 0.5. A mixture of Boron-Carbon-Oxygen in equal concentrations is considered, giving 

𝑔𝐼∗ = 3.74; ℱ𝑏𝑢𝑙𝑘  is computed for 𝑇∗ = 0.2𝑘𝑒𝑉 and 𝑇0 = 2𝑘𝑒𝑉 [7]. The estimate Ψ𝑝
−0.4 ≈ 3.62 ×

𝛿𝑇
0.544 𝛿𝑛

−0.396 𝛿𝑅𝑎𝑑
0.375 given in [2] is applied in (23), with 𝛿𝑇 = 0.4 (half way between a parabolic and 

a quartic profile), 𝛿𝑛 derived from the experimental data of the same figure 4 of [31], and 𝛿𝑅𝑎𝑑 =
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∫ 𝑑𝑟 𝑟 ℜ
𝑎

0
∫ 𝑑𝑟 𝑟 ℜ

𝑎

𝑟∗
⁄ ≅ 1 + [𝑇∗𝑎 2(𝑎 − 𝑟∗)⁄ ]𝛿𝑛

2 ℱ𝑏𝑢𝑙𝑘 𝐺∗⁄  (it is estimated 𝛿𝑅𝑎𝑑~1.2 ). The shape 

factor in (26) is estimated by ℑ𝑝
−1/2 = Ψ𝑝

−1/2𝛿𝑛𝑇
1/2~Ψ𝑝

−1/2𝛿𝑇
1/2𝛿𝑛

1/2
. Finally we set 𝜆𝑡𝑜𝑘 =

(�̂�𝜙 𝑞0)
𝑡𝑜𝑘

= 0.41, as average estimate on the previous JET database.  

 

Figure 5. Symbols: experimental edge DL from figure 4 of [31]. Lines: predicted edge DL, 𝑛∗ = 𝑛1 × Θ, with 

𝑛1 given by (26) (black) and (23) (red). Details of parameters setting in the text. 

 

5. Conclusions 

A basic power balance model, exploiting just two equations, i) 1D single-fluids heat transport, ii) on-

axis ohm’s law with Spitzer resistivity (in a suitable limit for the stellarator), gives a satisfactory 

description of the maximum observed densities in the main configurations. The generality stems from 

the minimal 1D physics involved and from taking integrals of i), hence smoothing out the profile 

peculiarities of the different configurations. The model predicts a Sudo-like scaling law for the 

Stellarator and the same Greenwald-like scaling law for the tokamak and the RFP. Unlike the 

respective empirical relations, they feature also dependences on 𝑍𝑒𝑓𝑓, shape factors, and (normalized) 

heating power in the tokamak case. These scaling laws are obtained without any hypothesis for the 

transport. As far as the tokamak and the RFP are concerned, we get a tenuous dependence on the 

energy confinement time 𝜏𝐸, giving almost the same quantitative prediction in the two configurations. 

Moreover, our analysis contradicts the widespread vision of a DL representable by the single 

parameter 𝑛𝐺, since the estimates obtained by the proposed model are clearly better. In particular, we 

have devoted ample space to bring evidences in favour of the 𝑃 dependence in the L mode tokamak, 

including JET limiter experiments, not discussed in the previous paper [2], which demonstrate, at 
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comparable 𝑍𝑒𝑓𝑓, a substantial increase of the ohmic DL obtained by NBI and ICRH in a complete 

equivalent way [22]. Finally, we also showed, as done in [2], that careful analyses of published data, 

supposed to be a validation of the 𝑛𝐺 criterion, confirm, instead, the present model.  
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