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A POWER-BALANCE MODEL OF L-MODE DENSITY LIMIT IN FUSION PLASMAS

A 1D cylindrical power-balance model of the radiation density limit gives a unified description of the phenomenon for stellarator, reversed field pinch and L-mode tokamak [P. Zanca et al, Nucl. Fusion 59 (2019) 126011]. The density limit scaling laws for the three different configurations are all derived by combination of just two equations: i) single-fluid heat-transport equation; ii) on-axis Ohm's law with Spitzer resistivity, taken in a suitable limit for the stellarator. Here, we present a refined version of the model, alongside further experimental evidences supporting its successful application.
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Introduction

Density limit (DL) is ubiquitous in magnetic confinement fusion devices, and several processes can trigger this phenomenon. In particular, DL can take place as a radiation limit. In this regard, a 1D cylindrical power-balance model, matching fairly well experiments in the L-mode tokamak, in the reversed field pinch (RFP), and in the stellarator, derives a DL as bound of the equilibrium states characterized by realistic temperature profiles, i.e. with small values only at the edge, in the presence of radiation losses from impurities and edge neutrals [1,2]. Differently from previous similar analyses [3][START_REF] Wesson | Tokamaks[END_REF][START_REF] Ashby | [END_REF], this model predicts the same DL expression for the tokamak and the RFP, without assumptions for the energy transport, but exploiting just two equations: i) single-fluid steady-state heat-transport equation; ii) on-axis Ohm's law with Spitzer resistivity. Within this model, the stellarator is approximated by a pure additionally heated cylindrical configuration. Since Ohm's law apparently does not apply to this case, the DL has been derived by the combination of i) with the International Stellarator Scaling 95 for the energy confinement time 𝜏 𝐸 , as reported in [1,2]. The expression obtained is very similar to the Sudo scaling [6], which represents the empirical reference for the stellarator, and it is also used for interpreting high-density experiments in Wendelstein 7-X [7].

However, in the present paper we will show that it is possible deriving an almost identical expression for the stellarator DL by combination of i) with a suitable limit of Ohm's law, thus removing any transport input, as done for the tokamak and the RFP. By limiting to just the couple of equations i), ii) we obtain an even deeper unification of the DL modelling in the three major configurations. The generality of the model stems also from the fact that equation i) is implemented by taking radial integrals, a procedure that smooths out the profile peculiarities of the different configurations.

Moreover, equation i) itself can be regarded as the cylindrical approximation of a flux-surface averaged equation. Given the minimal 1D physics involved, the model may represent the 'ultimate radiative DL'.

The paper is organized as follows. In section 2, a new and simpler method to integrate equation i) is presented. The basic DL relation is further developed by equation ii), providing the DL scaling laws for the different configurations. In section 3 a previous numerical analysis [1] of the same model is discussed. In section 4, the model is compared to specific experiments: some of them, already considered in [1,2], are here revisited. Conclusions are drawn in section 5.

The model

In cylindrical geometry, we take the single-fluid steady-state heat transport equation The single temperature approximation is justified by the strong coupling of ion and electron in the high density conditions we want to model ( 𝑇 𝑖 ≈ 𝑇 𝑒 = 𝑇). Here, K is an effective perpendicular conductivity, ℘(𝑟), ℜ(𝑟) are respectively the heating power density (with ohmic and auxiliary components) and the radiated power density, 𝑛 𝑒 is the electron density. Moreover, 𝑓 𝑗 , 𝑅𝑎𝑑 𝑗 are the jth impurity concentration and radiation rate coefficient respectively, whereas 𝑓 0 , 𝑅𝑎𝑑 0 are the same quantities for neutrals. The main ion emission is discarded, as minor effect in the plasmas here considered. Throughout this paper we use the International System of units (SI), but for the temperature, which is expressed in 𝑘𝑒𝑉. Therefore, K incorporates the numerical factor 1.6 × 10 -16 .

The temperature profile satisfies the on-axis symmetry condition 𝑇 ′ (0) = 0 (′ = 𝑑 𝑑𝑟 ⁄ ). Moreover, the request of ambient temperature value at r=a, location of the first material wall, is modelled by the constraint T(a)=0.

Let's take the integral of (1) over [0, 𝑎], after multiplying it by 𝑟𝐾 𝑑𝑇 𝑑𝑟 ⁄ :

2)

1 2 [𝑎 𝐾(𝑎) 𝑑𝑇 𝑑𝑟 (𝑎)] 2 = -∫ 𝑟( ℘ -ℜ) 𝑟 𝐾 𝑑𝑇 𝑑𝑟 𝑑𝑟 𝑎 0 ≥ 0
The inequality stems from the square in the l.h.s, and it will be transformed into a DL condition. We assume ℘ ≪ ℜ in the edge region, since both 𝑅𝑎𝑑 𝑗 , for light impurities, and 𝑓 0 , for neutrals, are maximum there, due to the small temperature involved. We also assume that this is the only region where the above condition holds. The edge region is modelled by the radial and temperature intervals, , the first integral over the plasma bulk [0, 𝑟 * ] (i.e. [𝑇 0 = 𝑇(0), 𝑇 * ]) becomes:

[
4) ∫ 𝑟( ℘ -ℜ)𝑟𝐾 𝑑𝑇 𝑑𝑟 𝑑𝑟 𝑟 * 0 = - 1 2 ∫ 𝑑 𝑑𝑟 [∫ 𝜌(℘ -ℜ)𝑑𝜌 𝑟 0 ] 2 𝑑𝑟 = - 1 2 [∫ 𝑟 ℘ 𝑑𝑟 𝑟 * 0 -∫ 𝑟 ℜ 𝑑𝑟 𝑟 * 0 ] 2 𝑟 * 0
Since ℘ is small in the complementary narrow edge region, we approximate the integral ∫ 𝑟 ℘ 𝑑𝑟 This inequality provides the following DL condition 𝑎 2 ⁄ , is not physical for a steady state condition. Equation ( 8) is the same as equation ( 5) of [2], but here it has been derived by a simpler approach. Now, we develop (8) by introducing the profile factor 𝛿 𝑛 = 𝑛 𝑏𝑢𝑙𝑘 𝑛 * ⁄ , and the two densities

9) 𝑛 1 = 〈℘〉 [8 𝐺 * 𝐾(𝑎) 𝑎 2 ⁄ ] 1 2 ⁄ , 𝑛 2 = (〈℘〉 ℱ 𝑏𝑢𝑙𝑘 ⁄ ) 1/2
with obvious meanings: 𝑛 1 is the DL for 𝑛 * neglecting bulk radiation (ℱ 𝑏𝑢𝑙𝑘 = 0; the approximation adopted in [1]); 𝑛 2 is the DL for 𝑛 𝑏𝑢𝑙𝑘 neglecting edge radiation (𝐺 * = 0). After little algebra, the DL condition can be cast into the following equivalent forms, respectively for 𝑛 * and 𝑛 𝑏𝑢𝑙𝑘 :

10) 𝑛 * ≤ 𝑛 1 × Θ(𝜄), 𝑛 𝑏𝑢𝑙𝑘 ≤ 𝑛 1 × Θ(𝜄) × 𝛿 𝑛 ; Θ(𝜄) = [(1 + 2𝜄) 1 2 -1] 𝜄 ⁄ , 𝜄 = 2𝛿 𝑛 2 𝑛 1 2 𝑛 2 2 ⁄
The function Θ ≤ 1 weighs the contributions of edge and bulk radiations. At the typical temperatures of the plasma bulk, the emission is important only for heavy impurities: by keeping them to negligible concentration, we have 𝑛 2 ≫ 𝑛 1 and Θ~1. In this case, 𝑛 1 is the fundamental quantity, whereas Θ can be regarded as a corrective factor.

The density 𝑛 1 contains an important dependence on 𝐾(𝑎), a quantity of not straightforward estimate.

In the next paragraphs 𝐾(𝑎) will be replaced by global plasma parameters and a suitable profile factor, by exploiting again equation ( 1) and the on-axis Ohm's law. This will provide the final DL scaling laws for the different configurations.

Tokamak and RFP expressions for 𝒏 𝟏

Letting, 𝜅 𝑎 = 2 × 10 20) and (28).

The factor 𝜅 𝑎 can be replaced by 𝑇 0 , by introducing an integral shape factor, which involves the normalized profiles 𝐾 ̂= 𝐾 𝐾(𝑎) ⁄ , ℘ ̂= ℘ ℘(0) ⁄ , ℜ ̂= ℜ ℜ(𝑟 * ) ⁄ . To this purpose, we take a double integration of (1):

12) 𝜅 𝑎 𝑇 0 = 〈℘(𝑀𝑊)〉 × ℑ 𝑝 ; ℑ 𝑝 = ∫ 𝑑𝑟 1 𝑟 𝐾 ̂(∫ 𝑑𝑦 𝑦 ℘ r 0 ∫ 𝑑𝑦 𝑦 ℘ â 0 - ∫ 𝑑𝑦 𝑦 ℜ r 0 ∫ 𝑑𝑦 𝑦 ℜ â 0 ) 𝑎 0 ;
When ℜ ̂ is close to unity only at the edge, its contribution to ℑ 𝑝 is minor. In [START_REF] Chen | High Energy Density Phys[END_REF] we also exploit the condition 〈ℜ〉 〈℘〉 ⁄ = 1, which holds at the DL, i.e. when equation ( 7) is satisfied as equality (see section 3).

Then 𝑇 0 is expressed by the on-axis ohm's law with Spitzer resistivity [START_REF] Wesson | Tokamaks[END_REF] (neoclassical effects vanish at 𝑟 = 0). We take radially constant toroidal voltage 𝑉 𝜙 = 2𝜋 𝑅 0 𝐸 𝜙 (i.e. steady-state conditions; 𝑅 0 is the simulated major axis), by including the current drive effect (tokamak) and the RFP dynamo term: [8]). The current-drive function, 𝜉(𝑟) = 𝐽 Ω 𝐽 ⁄ , with 𝐽, 𝐽 Ω the current density magnitude, total and ohmic respectively, is related to the additional heating. We take 𝐶 = 1 for the tokamak, and 𝜉 = 1 in the absence of current drive. Note that the renormalized loop voltage 𝑉 ̂𝜙 remains finite even in the presence of substantial current drive (𝜉 ≪ 1, 𝑉 𝜙 ≪ 1).

13) 𝑉 ̂𝜙 = 𝑉 𝜙 [𝜉(0) 𝐶(0)] ⁄ = 2𝜋 𝑅 0 𝜂(0) 𝐽 𝜙 (0) = 2𝜋 𝑅 0 𝜂 1 𝜁 𝑍 𝑒𝑓𝑓 𝑇 0 - 3 2 𝐽 𝜙 (0) × 10 -
Finally, we replace the on-axis current density by the average current density, which is just the

Greenwald parameter 𝑛 𝐺 = 𝐼 𝑃 (𝑀𝐴) (𝜋𝑎 2 ) ⁄ [9]: 14) 𝐽 𝜙 (0) = 10 6 × 𝐽 𝜙 (0) 〈𝐽 𝜙 〉 ⁄ × 𝑛 𝐺
This is convenient because the current profile factor 𝐽 𝜙 (0) 〈𝐽 𝜙 〉 ⁄ partially offsets the previous one ℑ 𝑝 .

By combination of equations ( 11)-( 14) we provide a family of four very similar 𝑛 1 scaling laws, given by the product of a purely ohmic Greenwald-like expression 𝑛 1,𝑜ℎ𝑚 , with an additional heating factor Π:

15) 𝑛 1 (10 20 𝑚 -3 ) = Π 1 2 × 𝑛 1,𝑜ℎ𝑚 , 𝑛 1,𝑜ℎ𝑚 ≅ 0.34 × 𝑛 𝐺 5 6 (𝜁 𝑍 𝑒𝑓𝑓 ) 1 3 𝐺 ̂ * -1 2 Ψ 𝐺1 (𝑉 ̂𝜙 𝑅 0 ⁄ ) 1/6 , 16) 𝑛 1 (10 20 𝑚 -3 ) = Π 1 2 × 𝑛 1,𝑜ℎ𝑚 , 𝑛 1,𝑜ℎ𝑚 = 0.25 × 𝑛 𝐺 (𝜁 𝑍 𝑒𝑓𝑓 ) 1/2 𝐺 ̂ * -1/2 Ψ 𝐺2 𝑇 0 -1/4 , 17) 𝑛 1 (10 20 𝑚 -3 ) = Π 2/5 × 𝑛 1,𝑜ℎ𝑚 , 𝑛 1,𝑜ℎ𝑚 ≅ 0.36 × 𝑛 𝐺 4 5 (𝜁 𝑍 𝑒𝑓𝑓 ) 2 5 𝐺 ̂ * -1 2 Ψ 𝐺3 𝜅 𝑎 1 10 , 18) 𝑛 1 (10 20 𝑚 -3 ) = Π 4/9 × 𝑛 1,𝑜ℎ𝑚 , 𝑛 1,𝑜ℎ𝑚 ≅ 0.23 × 𝑛 𝐺 8 9 (𝜁 𝑍 𝑒𝑓𝑓 ) 4 9 𝐺 ̂ * -5 9 Ψ 𝐺4 (Θ 𝜏 𝐸 ⁄ ) 1 9 , with 19) Π = 𝑃 (𝑉 ̂𝜙𝐼 𝑝 ) ⁄ , 𝑃 = 〈℘〉 × 2 𝜋 2 𝑎 2 𝑅 0
Equation ( 18) is derived from ( 17) by replacing 𝜅 𝑎 1/10 with the energy confinement time:

20) 𝜅 𝑎 = 0.048 × 𝑛 * (10 20 𝑚 -3 ) 𝜏 𝐸 ⁄ Ψ 𝑝 , Ψ 𝑝 = 𝛿 𝑛𝑇 ℑ 𝑝 , 𝛿 𝑛𝑇 = 〈𝑛 𝑒 𝑛 * × 𝑇 𝑇 0 ⁄ ⁄ 〉
This relation stems from the operative definition of 𝜏 𝐸 in stationary conditions, 𝜏 𝐸 = 1.6 × 10 -16 × 3〈𝑛 𝑒 𝑇〉 〈℘〉 ⁄ , combined with [START_REF] Chen | High Energy Density Phys[END_REF]. Equation ( 17) is approximately the scaling law considered in [1], ( 18) is exactly the scaling law obtained in [2], whereas ( 15), ( 16) are here presented for the first time.

If the model was a perfect description of the reality, the above relations would be identical. Of course, this is not the case, and they can be taken separately, as different approximations of the DL. However, they compare almost in the same way to the experimental data.

For the additionally heated tokamak, Π is the power enhancement with respect to the ohmic heating.

Obviously, Π = 1 for the ohmic tokamak. Though ohmic as well, Π is not exactly 1 for the RFP, due to the anomaly, defined below equation ( 13), which relates current and electric field:

21) 𝑃 = 4𝜋 2 𝑅 0 ∫ 𝜂 𝐽 2 𝑎 0 𝑟𝑑𝑟 = 4𝜋 2 𝑅 0 ∫ 𝐸 𝜙 𝐽 𝜙 𝐶 ⁄ 𝑎 0 𝑟 𝑑𝑟 = 𝑉 ̂𝜙 𝐼 𝑝 × Π; Π = ∫ 𝑑 𝑑𝑟 𝑎 0 ( 𝑟𝐵 𝜃 𝑎 𝐵 𝜃 (𝑎) ) 𝐶 ̂-1 𝑑𝑟
Therefore, Π has the meaning of shape factor (close to unity) of the normalized anomaly profile 𝐶 ̂= 𝐶 𝐶(0) ⁄ . The shape factors Ψ 𝐺𝑖 are similar combinations of those defined in ( 12) and ( 14):

22) Ψ 𝐺1 = [𝐽 𝜙 (0) 〈𝐽 𝜙 〉 ⁄ ] 1/3 ℑ 𝑝 -1/2 , Ψ 𝐺2 = [𝐽 𝜙 (0) 〈𝐽 𝜙 〉 ⁄ ] 1/6 Ψ 𝐺1 , Ψ 𝐺3 = Ψ 𝐺1 6/5 , Ψ 𝐺4 = Ψ 𝐺1 4/3 Ψ 𝑝 1/9
They can be estimated by computing normalized profiles for temperature and current with a scan of input profiles for thermal conductivity, additional heating and radiation, and then fitting the results by means of the measurable profile factors for temperature, 𝛿 𝑇 = 〈𝑇 𝑇 0 ⁄ 〉, and density, 𝛿 𝑛 (see appendix B of [2]). This analysis shows that 𝐽 𝜙 (0) 〈𝐽 𝜙 〉 ⁄ and ℑ 𝑝 balance to some extent within Ψ 𝐺𝑖 .

Expressions ( 15)-( 18) have been obtained without any modelling of transport: its effect has been encapsulated into global parameters by equations ( 12)-( 14). In doing this, the linear 𝑃 dependence of the initial equation (11) Scaling laws ( 15)-( 18) are quantitatively similar for the tokamak and the RFP: besides the comparable estimate of the shape terms Ψ 𝐺𝑖 (as expected, involving integrals of normalized profiles), the difference in the confinement order of magnitude of the two configurations is cancelled by the small exponents of the confinement terms: roughly speaking, passing from the tokamak to the RFP, 𝑉 𝜙 , 𝑇 0 , 𝜅 𝑎 , 𝜏 𝐸 vary by factors, 20, 10 -1 , 10 2 , 10 -2 respectively, but 𝑉 𝜙 1/6 , 𝑇 0 -1/4 , 𝜅 𝑎 1/10 , 𝜏 𝐸 -1/9 all vary only by a factor 1.6 ÷ 1.8. Finally, we note that ( 15)-( 18) do not depend neither on 𝑅 0 , nor on the toroidal field 𝐵 𝜙 .

𝒏 𝟏 for the stellarator

Semi-empirical, Sudo-like expressions for 𝑛 1 have been obtained for the stellarator, approximated by a pure additionally heated cylindrical configuration [1,2]. In particular, the one reported in [2] stems from the initial DL relation (11), with 𝜅 𝑎 replaced by 𝜏 𝐸 (by means of ( 20)), and 𝜏 𝐸 specified by the empirical International Stellarator scaling 95 [10], suitable to L-mode plasmas. It is

23) 𝑛 1,𝐼𝑆𝑆95 (10 20 𝑚 -3 ) ≅ 0.257 × 𝑃(𝑀𝑊) 0.57 𝐵 𝜙 0.33 𝑅 0 -0.54 𝑎 -0.72 𝜄 2/3 0.16 [𝐺 ̂ * Ψ 𝑝 ] -0.4 [𝛿 𝑛 Θ ⁄ ] 0.2
with 𝜄 2/3 is the rotational transform at 𝑟 = 2 3 ⁄ 𝑎.

Here, we obtain an almost identical expression by a suitable limit 𝑉 𝜙 → 0, 𝐼 𝑝 → 0 of the tokamak case discussed in the previous paragraph. This approach removes any empirical input. In the place of ( 14) we now use the standard relation For such a configuration, a crude approximation of the stellarator, 𝑛 1 is then obtained by combination of ( 11), ( 12), (25):

26) 𝑛 1 (10 20 𝑚 -3 ) = 0.223 × 𝑃(𝑀𝑊) 1/2 𝐵 𝜙 1/3 𝑅 0 -0.5 𝑎 -1 (

𝜁𝑍 𝑒𝑓𝑓 𝜆 𝑡𝑜𝑘 ) 1/3 [𝐺 ̂ * ℑ 𝑝 ] -1/2
The similarity of ( 23) and ( 26) is striking. Moreover, they are both very similar to the empirical Sudoedge scaling 𝑛 𝑆𝑢𝑑𝑜_𝑒𝑑𝑔𝑒 (10 20 𝑚 -3 ) = 0.2 × 𝑃(𝑀𝑊) 1/2 𝐵 𝜙 1/2 𝑅 0 -0.5 𝑎 -1 , proposed in [11] for the edge DL of LHD. Note that, (23), ( 26) depend on 𝑅 0 , unlike ( 15)-( 18).

The edge radiation term

The quantity 𝐺 ̂ * , present in all the above DL scaling laws, can be given a simple approximate form [2]. First, denoting 𝑍 𝑖 the main ion charge, we factor 𝑍 𝑒𝑓𝑓 -𝑍 𝑖 , taken radially constant, in the impurity term of ℱ (see equation ( 1)): Here, 𝑓 0 (%) has the meaning of effective concentration, and weighs, by comparison with 𝑍 𝑒𝑓𝑓 -𝑍 𝑖 , the relative contributions of impurities and neutrals to the edge emission. Hereafter, approximation (28) will be adopted within all the scaling laws of the model.

Comparison with numerical analyses

A numerical analysis of the above set of equations, which improves some of the unavoidable approximations of the analytical approach (in particular 𝑇(𝑟) is computed from (1) self-consistently with 𝑅𝑎𝑑 𝑗 (𝑇)), has been presented in [1] for the tokamak case. The DL is there identified by the boundary dividing the solutions with standard temperature profiles decreasing to small value at 𝑟 = 𝑎 , from the unphysical solutions featuring oscillating non-monotonic temperature profiles. The numerical DL agrees very well with the analytical DL, even though they somehow differ as far as the radiated power fraction, namely the ratio 〈ℜ〉 〈℘〉 ⁄ , is concerned. In fact, the analytical DL, defined by (7) taken as equality, corresponds to 𝑇 ′ (𝑎) = 0, which implies 〈ℜ〉 〈℘〉 ⁄ = 1, as can be seen by the integral of (1) over [0, 𝑎]:

29) 𝑎 𝐾(𝑎) 𝑑𝑇 𝑑𝑟 (𝑎) = - 𝑎 2 2
(〈℘〉 -〈ℜ〉)

Instead the numerical DL relaxes appreciably this condition, covering the interval 〈ℜ〉 〈℘〉 ⁄ ≳ 0.5

(see figure 7 of [1]). This seeming contradiction is resolved by the non-linear relationship between 〈ℜ〉 〈℘〉 ⁄ and the proximity to the DL, namely the ratio 𝑛 * (𝑛 * ) 𝐷𝐿 ⁄ . To illustrate this, let's assume that the radiation in the plasma bulk is negligible, namely 𝑛 𝑏𝑢𝑙𝑘 2 ℱ 𝑏𝑢𝑙𝑘 ≪ 〈℘〉 in equation (7). Therefore, (𝑛 * ) 𝐷𝐿 ≅ 𝑛 1 , and by combination of ( 7), ( 9), ( 29) we get

30) 𝑛 * 𝑛 1 ⁄ ≅ √1 -(1 -〈ℜ〉 〈℘〉 ⁄ ) 2
Owing to the non-linearity of (30), the narrow interval about the analytical DL 𝑛 * 𝑛 1 ⁄ = 1, covered by the numerical DL, corresponds to a significant range in 〈ℜ〉 〈℘〉 ⁄ (for example, taking 𝑛 * 𝑛 1 ⁄ ≳ 0.9 one gets 〈ℜ〉 〈℘〉 ⁄ ≳ 0.5). In other words: the condition 𝑛 * 𝑛 1 ⁄ = 1 = 〈ℜ〉 〈℘〉 ⁄ of the analytical approach gives a good approximation of the more realistic numerical DL, which corresponds to an interval for 〈ℜ〉 〈℘〉 ⁄ .

Comparison with experimental data

The model is now validated against data from several experiments, all obtained in conditions with negligible content of heavy impurities. Some of them have been already discussed in [1,2], but they are presented again in a slightly refined form.

RFX-mod

The RFX-mod DL [START_REF] Puiatti | [END_REF]15] is taken as a term of comparison for the RFP. Since the line-average density 𝑛 ̅ 𝑒 is the customary quantity stored in the RFX-mod databases, we estimate the correspondent DL, (𝑛 ̅ 𝑒 ) 𝐷𝐿 = 𝑛 1 × Θ × 𝛿 ̅ , by supplying the experimental peaking factor 𝛿 ̅ = (𝑛 ̅ 𝑒 𝑛 * ⁄ ) 𝑒𝑥𝑝 . In RFXmod (𝑅 0 = 2, 𝑎 = 0.46), the density profile is rather flat, with a tendency to become hollow at high density: by taking 𝑟 * = 0.9𝑎, inversion of interferometric data [16] provides the approximate trend 𝛿 ̅ ≈ 0.73 × 𝑛 ̅ 𝑒 (10 20 𝑚 -3 ) -0.68 . The ensuing DL scaling, (𝑛 ̅ 𝑒 ) 𝐷𝐿 ≅ 0.83 × (𝑛 1 × Θ) 0.6 , features a very weak parametric dependence, when taking any of the expressions ( 15)-( 18) for 𝑛 1 . Therefore, we can safely replace all these parameters, but 𝑛 𝐺 , with typical, or at least reasonable values for RFXmod. As an example, we specify 𝑛 1 by ( 18), and we set: 𝑍 𝑖 = 1; 𝑔 𝐼 * = 4 (Carbon); 𝜏 𝐸 = 10 The trend 𝑍 𝑒𝑓𝑓 = 1 + 0.5 𝑛 ̅ 𝑒 (10 20 𝑚 -3 ) ⁄ is a reasonable assumption for RFX-mod [START_REF] Carraro | EPS Conference on Plasma Phys[END_REF], considering also the weak dependence of (31) on this parameter. Figure 1 shows that (31) delimits fairly well the upper boundary of the RFX-mod operative (𝑛 𝐺 , 𝑛 ̅ 𝑒 ) space (the database is the union of the two ensembles used for figures 1 of [START_REF] Puiatti | [END_REF] and [15]). Instead, the 𝑛 ̅ 𝑒 (10 20 𝑚 -3 ) = 𝑛 𝐺 criterion leaves a significant gap for 𝑛 𝐺 > 1. Note also that the experimental points tend to become sparse when approaching the boundary [START_REF] Fuchert | [END_REF]. In agreement with the general premise of the introduction, this suggests the interpretation of (31) as 'ultimate DL' (replacing the 'standard' 𝑛 𝐺 reference), but in the presence of other mechanisms, which hinder or prevent the density increase towards that limit. In fact, saturation of the density build-up due to high edge transport [START_REF] Valisa | Fusion Energy[END_REF], and radiative instabilities related to the 3D magnetic topology [15], play a significant role. 

FTU

The FTU ( 𝑅 0 = 0.935, 𝑎 = 0.28 ) ohmic tokamak experiments [START_REF] Pucella | [END_REF] are particularly relevant, because the edge DL (𝑟 * 𝑎 ⁄ ~0.8), which is straightforwardly compared to our model, is characterized there. The experimental densities reported in figure 11 of [START_REF] Pucella | [END_REF] are now compared to the prediction of the model, (𝑛 * ) 𝐷𝐿 = 𝑛 1,𝑜ℎ𝑚 × Θ, taking ( 16) for 𝑛 1,𝑜ℎ𝑚 . We set 𝑔 𝐼 * ≈ 4.7, assuming Boron as the dominant impurity (clean machine conditions are obtained by boronization), and 𝑇 0 ≈ 1 (see figure 2 of [START_REF] Pucella | [END_REF]). The shape factor Ψ 𝐺2 is replaced by the average value (~2.68) estimated on the JET database discussed in the next paragraph, where we have access to profile information: this value is assumed to be representative of the L-mode tokamak. One gets 32) (𝑛 * ) 𝐷𝐿 (10 20 𝑚 -3 ) ≈ 0.3 × (𝜁 𝑍 𝑒𝑓𝑓 ) 1/2 [𝑓 0 (%) + 𝑍 𝑒𝑓𝑓 -𝑍 𝑖 ] -1/2 𝑛 𝐺 × Θ The compatibility between (32) and the empirical scaling (𝑛 * ) 𝐷𝐿,𝑒𝑥𝑝 (10 20 𝑚 -3 ) ≈ 0.34 × 𝑛 𝐺 proposed in [START_REF] Pucella | [END_REF] is self-evident. Therefore, we compute (32) with 𝑍 𝑖 = 1, 𝑍 𝑒𝑓𝑓 = 1.25 (it is reported 𝑍 𝑒𝑓𝑓 < 1.5 ), 𝑓 0 (%) = 0.5 (a value suggested by the above mentioned JET analysis), and with

Θ(2 𝛿 𝑛 2 𝑛 1,𝑜ℎ𝑚 2 𝑛 2 2 
⁄ ) properly taken into account, since these discharges are characterized by a large variation of 𝛿 𝑛 ( ℱ 𝑏𝑢𝑙𝑘 within 𝑛 2 is computed for 𝑇 0 = 1, 𝑇 * = 0.075 ). One gets (𝑛 * ) 𝐷𝐿 (𝑛 * ) 𝐷𝐿,𝑒𝑥𝑝 ⁄ = 1.05 ± 0.28 (average and standard deviation). Same result with the empirical scaling: 0.34 𝑛 𝐺 (𝑛 * ) 𝐷𝐿,𝑒𝑥𝑝 ⁄ = 1.06 ± 0.28

L-mode additionally heated JET experiments

The model prediction (𝑛 𝑏𝑢𝑙𝑘 ) 𝐷𝐿 = 𝑛 1 × Θ × 𝛿 𝑛 , with (18) for 𝑛 1 , has been compared in [2] we replace the product 𝑉 ̂𝜙-4/9 Ψ 𝐺4 Θ 10/9 𝛿 𝑛 by its average value over the whole database (since the density profiles are weakly peaked, it is not crucial to take into account the exact shot by shot variation of 𝛿 𝑛 ), taking only the last 200𝑚𝑠 before the disruption. We get:

33) (𝑛 𝑏𝑢𝑙𝑘 ) 𝐷𝐿 (10 20 𝑚 -3 ) ≈ ∁ × (𝜁 𝑍 𝑒𝑓𝑓 ) 4 9 
[𝑓 0 (%)+𝑍 𝑒𝑓𝑓 -𝑍 𝑖 ] A tolerance deriving from the standard deviations of the above product is reported in ∁. Since 𝑔 * ~4

for Carbon and 𝑔 * ~4.8 for Beryllium, we expect ∁~0.45 ± 0.15. Note that, both 𝑃 and 𝐼 𝑝 are divided by 𝜋𝑎 2 in (33). Expression (33) with ∁≈ 0.4, 𝑓 0 (%) = 0.5 (a choice compatible with the typical relative contributions of impurity and neutrals to the edge radiation [20]) and approximation

𝜏 𝐸 -1 9
⁄ ≈ 1 (suitable for JET), was the reduced scaling considered in [2]. Here instead, ∁ and 𝑓 0 (%) are optimized by a fit (in doing this we exclude the above mentioned peculiar shot). After dividing the experimental 〈𝑛 𝑒 〉 𝐷𝐿,𝑒𝑥𝑝 by [𝑃(𝑀𝑊) (𝜋𝑎 2 ) ⁄ ] 4/9 𝑛 𝐺 4/9 , we take a two-parameters fit with the function 𝑚 1 × 𝑍 𝑒𝑓𝑓 4 9

[𝑚 2 + 𝑍 𝑒𝑓𝑓 -𝑍 𝑖 ] -5 9 , representing the 𝑍 𝑒𝑓𝑓 dependence in (33) (all values are time-averaged over the last 200𝑚𝑠 before the disruption; the weak factor 𝜁 is discarded here, since its inclusion does not modify the result). The data, displayed in figure 2a), follows a weak decreasing trend with 𝑍 𝑒𝑓𝑓 , compatible with the model's prediction (a power law fit would be slightly worse).

Since the optimum values, 𝑚 1 = ∁ × 𝜏 𝐸 -1 9 ~0.37, 𝑚 2 = 𝑓 0 (%)~0.46, are in the expected range for these parameters, the fit gives a confirmation of the model. The JET DL increased of about 20% when CW was replaced by ILW [21]: from figure 2a) this may be interpreted as an effect of the smaller 𝑍 𝑒𝑓𝑓 , which according to (28) implies lower edge radiation, passing from Carbon to Beryllium as dominant impurity. The model (33), with the fitted values for ∁ × 𝜏 𝐸 -1 9 , 𝑓 0 (%) is compared to the experimental DL in figure 2b). The vertical bars give the sensitivity from 𝑓 0 (%) (upper and lower extremes correspond to 0.2 and 1 respectively): this is relevant for ILW discharges, due to their small 𝑍 𝑒𝑓𝑓 -𝑍 𝑖 . In any case, it is clear that the model aligns the disruptions, whereas the Greenwald parameter absolutely does not. The DL of our model does not depend on the additional heating system: any difference in the power deposition profile from one heating method to another is smoothed out by the double radial integration of the shape term ℑ 𝑝 in equation ( 12). In the above database, no appreciable dependence of DL on the heating technique is found (see figure 9 of [2]), but too few shots with ICRH are there to draw a sound conclusion.

After publication of [2], we considered previous L-mode JET experiments in limiter configuration, which demonstrate the complete equivalence of ICRH and NBI as far as DL is concerned [22,23].

This result is achieved by some optimizations which minimize the impurity production specific to ICRH. In figure 3 experiments, where a clear trend 𝑃 0.5 is observed for the edge DL: this confirms that the phenomenon occurs at the edge, as predicted by ( 15)- [START_REF] Valisa | Fusion Energy[END_REF]. In conclusion, our model describes quite well the JET L-mode DL. experimental 〈𝑛 𝑒 〉 𝐷𝐿 (dashed lines). The value 𝑛 𝐺 ≅ 0.66 of these experiments is also reported.

Further L-mode tokamak experiments

An inter-machines analysis, collecting together published DL data from several L-mode, NBI experiments is shown in figure 4. The data scattering is substantially reduced when replacing, as order parameter, 𝑛 𝐺 by model (33) (we take ∁= 0.45 ), even further reducing it to just the 𝑃, 𝐼 𝑝 dependences, the only choice, since 𝑍 𝑒𝑓𝑓 is not given on a shot-by-shot basis. Compared to the similar analysis reported in [2], here we add a further TEXTOR experiment, and we include the 𝜏 𝐸 -1/9 factor within model (33), by taking representative values of 𝜏 𝐸 for each device as given by the standard thermal L-mode scaling law [START_REF] Wesson | Tokamaks[END_REF]. A power-law fit of these data also confirms the model (33): To our knowledge, the only published result against the 𝑃 dependence of the tokamak L-mode DL, or at least of the 'detachment DL', is figure 9a of [29], referring to DIII-D experiments (𝑎 = 0.63, 𝑅 0 = 1.66) and showing the densities at the plasma detachment (𝑛 ̅ 𝑒 ) 𝑑𝑒𝑡 , in both ohmic and NBI discharges. A criticism has been raised in [2] to that figure: here, we present again our counter analysis, with some new elements. 

Wendelstein 7-X

Scaling laws similar to (23) and based on the present model have been successfully compared to LHD data in [1] and to Wendelstein 7-X in [START_REF] Fuchert | Density related operational limit in the limiter phase of Wendelstein 7-X[END_REF][START_REF] Fuchert | [END_REF]. Here, we consider the maximum values for the Wendelstein 7-X edge density (𝑟 * 𝑎 ⁄ = 0.85) reported in figure 4 of [START_REF] Fuchert | [END_REF], and, in particular, those obtained after boronization (𝑍 𝑒𝑓𝑓 < 2), which show the highest DL. They refer to the standard configuration: 𝑅 0 = 5.5, 𝑎 = 0.51, 𝐵 𝜙 = 2.41, 𝜄 2/3 = 0.9. 26) is estimated by ℑ 𝑝 -1/2 = Ψ 𝑝 -1/2 𝛿 𝑛𝑇 1/2 ~Ψ𝑝 -1/2 𝛿 𝑇 1/2 𝛿 𝑛 1/2 . Finally we set 𝜆 𝑡𝑜𝑘 = (𝑉 ̂𝜙 𝑞 0 ) 𝑡𝑜𝑘 = 0.41, as average estimate on the previous JET database. 

Conclusions

A basic power balance model, exploiting just two equations, i) 1D single-fluids heat transport, ii) onaxis ohm's law with Spitzer resistivity (in a suitable limit for the stellarator), gives a satisfactory description of the maximum observed densities in the main configurations. The generality stems from the minimal 1D physics involved and from taking integrals of i), hence smoothing out the profile peculiarities of the different configurations. The model predicts a Sudo-like scaling law for the Stellarator and the same Greenwald-like scaling law for the tokamak and the RFP. Unlike the respective empirical relations, they feature also dependences on 𝑍 𝑒𝑓𝑓 , shape factors, and (normalized) heating power in the tokamak case. These scaling laws are obtained without any hypothesis for the transport. As far as the tokamak and the RFP are concerned, we get a tenuous dependence on the energy confinement time 𝜏 𝐸 , giving almost the same quantitative prediction in the two configurations.

Moreover, our analysis contradicts the widespread vision of a DL representable by the single parameter 𝑛 𝐺 , since the estimates obtained by the proposed model are clearly better. In particular, we have devoted ample space to bring evidences in favour of the 𝑃 dependence in the L mode tokamak, including JET limiter experiments, not discussed in the previous paper [2], which demonstrate, at 
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 1 Figure 1. RFX-mod operative (𝑛 𝐺 , 𝑛 ̅ 𝑒 ) space. Predicted DL (31) is given for two values of 𝑓 0 . The dashed line corresponds to 𝑛 ̅ 𝑒 = 𝑛 𝐺 .

  to a set of about 40 high density disrupted, L-mode, JET discharges in divertor configuration (𝑅 0 = 2.98, 𝑎 = 0.95), both with Carbon wall (CW), and ITER-like wall (ILW: Beryllium for the first-wall, Tungsten for the divertor). Most of the shots feature NBI heating (up to 11MW), seven are purely ohmic, whereas ICRH (~4 ÷ 6 𝑀𝑊) is present only in a couple of shots, in combination with the NBI. The experimental signals for many of the needed quantities (in particular 𝑍 𝑒𝑓𝑓 and 𝑉 𝜙 ) are available. Apart one shot, which required the inclusion of a small amount of Tungsten, it was sufficient to restrict to light impurities and neutral Deuterium to make the model compatible with the maximum experimental volume-average densities 〈𝑛 𝑒 〉 𝐷𝐿,𝑒𝑥𝑝 . A slightly better agreement was also obtained by replacing some uncertain terms, such as the profile factors and the renormalized voltage 𝑉 ̂𝜙 = 𝑉 𝜙 𝜉(0) ⁄ , with typical estimated values, possibly removing some noise in the prediction, thus highlighting the most important dependences. This model reduction is presented again, going deeper in the comparison with the database. Starting from (𝑛 𝑏𝑢𝑙𝑘 ) 𝐷𝐿 = 𝑛 1 × Θ × 𝛿 𝑛 , with 𝑛 1 given by (18),

Figure 2 .

 2 Figure 2. Data taken close to the disruptions. a) 〈𝑛 𝑒 (10 20 𝑚 -3 )〉[𝑃(𝑀𝑊) (𝜋𝑎 2 ) ⁄ ] -4/9 𝑛 𝐺 -4/9 against 𝑍 𝑒𝑓𝑓 : ILW (blue triangles), CW (black triangles), fit (red line). b) scaling (33) (red diamond) and 𝑛 𝐺 (squares) against experimental 〈𝑛 𝑒 〉 𝐷𝐿,𝑒𝑥𝑝 ; vertical bars gives the interval of model prediction for 𝑓 0 (%) = 0.2 ÷ 1.

9 ⁄ ≈ 1 , 𝑔 * = 4 (

 914 model (33) is compared to three examples of these experiments, taken from figure2of[22], all with 𝐼 𝑝 = 3𝑀𝐴 and similar 𝑍 𝑒𝑓𝑓 (see figure4of[22]), but featuring different heating methods. A scan with 𝑓 0 (%) is performed with 𝑎 = 1.2 (limiter configuration), 𝜏 𝐸 -1 Carbon), and respectively 𝑃(𝑀𝑊) = 2.5, 11.5, 12, 𝑍 𝑒𝑓𝑓 = 1.5, 1.6, 1.4 for the ohmic, ICRH, NBI cases. The model well predicts the increase of the ohmic DL obtained with the addition of ICRH and NBI, equivalently. On the contrary, the 𝑛 𝐺 criterion cannot explain such a large difference of the DL in shots that share the same 𝐼 𝑝 . We also mention figure161of [23], referring to this kind of

Figure 3 .

 3 Figure 3. Scan with 𝑓 0 (%) of model (33) (continuous lines; parameter setting in the text), alongside

G

  34) (𝑛 ̅ 𝑒 ) 𝐷𝐿 (10 20 𝑚 -3 ) ≈ 0.58 × [𝑃(𝑀𝑊) (𝜋 𝑎2 ) ⁄ ] 0.49±0.02 𝑛 𝐺 0.44±0.04 𝐵 𝜙 -0.12±0.04 , The three variables in (34) have a weak linear Pearson correlation (|𝑟| = 0.2, 0.26, 043 respectively for the first two, the first and the third, the last two). The dependence on the toroidal field is found almost negligible, as in the model.

Figure 4 .

 4 Figure 4. Maximum published line-average densities obtained in several L-mode NBI experiments. The legend reports the data source. They are plotted vs. 𝑛 𝐺 in (a), and vs (33) w/o the 𝑍 𝑒𝑓𝑓 term in (b).

Figure 5 ∫

 5 with both scaling laws (26) (black line) and (23) (red line) for 𝑛 1 , agrees fairly well with those densities. The quantities 𝑛 1 , 𝑛 2 are computed as follows. For the two most important parameters we take values representative of clean machine condition: 𝑍 𝑒𝑓𝑓 = 1.5, 𝑓 0 (%) = 0.5. A mixture of Boron-Carbon-Oxygen in equal concentrations is considered, giving 𝑔 𝐼 * = 3.74; ℱ 𝑏𝑢𝑙𝑘 is computed for 𝑇 * = 0.2𝑘𝑒𝑉 and 𝑇 0 = 2𝑘𝑒𝑉[7]. The estimate Ψ 𝑝 -0.4 ≈ 3.62 × 𝛿 𝑇 0.544 𝛿 𝑛 -0.396 𝛿 𝑅𝑎𝑑 0.375 given in[2] is applied in (23), with 𝛿 𝑇 = 0.4 (half way between a parabolic and a quartic profile), 𝛿 𝑛 derived from the experimental data of the same figure4of[START_REF] Fuchert | [END_REF], and 𝛿 𝑅𝑎𝑑 = 𝐺 * ⁄ (it is estimated 𝛿 𝑅𝑎𝑑 ~1.2 ). The shape factor in (

Figure 5 .

 5 Figure 5. Symbols: experimental edge DL from figure 4 of [31]. Lines: predicted edge DL, 𝑛 * = 𝑛 1 × Θ, with 𝑛 1 given by (26) (black) and (23) (red). Details of parameters setting in the text.

  has been transformed into: i) a quasi-linear dependence on current, 𝑛 1,𝑜ℎ𝑚 ~𝑛𝐺 , for an ohmic device; ii) a mixed power-current dependence, 𝑛 1 ~[𝑃 𝜋𝑎2 , by the integral of the normalized conductivity radial profile within Ψ 𝐺𝑖 , and by 𝑉 ̂𝜙 within Π (anyway, 𝑉 ̂𝜙 has limited variations with respect to those of 𝑃, 𝐼 𝑝 , in the tokamak).

				⁄	] 1/2 𝑛 𝐺 1/2 for
	the additionally heated tokamak. The residual transport dependence of the final scaling laws is
	expressed by the weak confinement terms 𝑉 𝜙	1/6 , 𝑇 0	-1/4 , 𝜅 𝑎	1 10 , 𝜏 𝐸 -1/9

  𝑍 𝑗 (𝑇) are the impurity charges, and 𝑓 ̂𝑗are the relative impurity concentrations (i.e. normalized to that of the dominant impurity). For light impurities, the integral function 𝑔 𝐼 * (𝑇 * ) saturates quickly with 𝑇 * , approximately for 𝑇 * ≳ 30𝑒𝑉. The dependence of 𝑔 𝐼 * on the (light) impurity species is not strong, because 𝑅𝑎𝑑 𝑗 (𝑇) is divided by 𝑍 𝑗 2 (𝑇) -𝑍 𝑗 (𝑇)𝑍 𝑖 within the integrand, and the impurities with wider principal maximum in 𝑅𝑎𝑑 𝑗 (𝑇) also feature higher charge. For example, we estimate 𝑔 𝐼 * ~4 for Carbon and 𝑔 𝐼 * ~4.8 for Beryllium (we refer to the FLYCHK code [12, 13], for 𝑍 𝑗 (𝑇)), 𝑅𝑎𝑑 𝑗 (𝑇), as well as for 𝑅𝑎𝑑 0 (𝑇)). Therefore, in (27) the impurity species dependence is mainly transformed into the charge dependence 𝑍 𝑒𝑓𝑓 -𝑍 𝑖 . Second, we consider atomic line emission of Deuterium (D) to have a correct order of magnitude of 𝑅𝑎𝑑 0 : taking 𝑇 * ≈ 50𝑒𝑉 , one gets 10 35 × ∫ 𝑅𝑎𝑑 0 𝑑𝑇

	27)	𝐺 ̂ * = 10 35 × ∫ ℱ 𝑑𝑇 𝑇 * 0	= 𝑔 𝐼 * × (𝑍 𝑒𝑓𝑓 -𝑍 𝑖 ) + 10 35 × 𝑓 0 ∫ 𝑅𝑎𝑑 0 𝑑𝑇 𝑇 * 0	; 𝑔 𝐼 * (𝑇 * ) = 10 35 ×
	∫ 𝑇 * 0	∑ 𝑓 ̂𝑗𝑅𝑎𝑑 𝑗 (𝑇) 𝑗 ∑ 𝑓 ̂𝑗[𝑍 𝑗 2 (𝑇)-𝑍 𝑗 (𝑇)𝑍 𝑖 ] 𝑗	𝑑𝑇	
					𝑇 * 0	≈
	400 ≈ 100 × 𝑔 𝐼 * . Therefore, (27) can be approximated by
	28) 𝐺 ̂ * ≈ 𝑔 𝐼 * × [𝑍 𝑒𝑓𝑓 -𝑍 𝑖 + 𝑓 0 (%)],	𝑔 𝐼 * ~4 ÷ 5

  An unbiased look at the plotted data suggests an inverse

	dependence	on	𝐵 𝜙	.	In	fact,	we	get	(𝑛 ̅ 𝑒 ) 𝑑𝑒𝑡 (10 20 𝑚 -3 ) ≈ 0.64 ×
	[𝑃(𝑀𝑊) (𝜋 𝑎 2 ) ⁄ ] 0.31±0.07 𝑛 𝐺	0.74±0.09 𝐵 𝜙 -0.45±0.09 for the NBI subset, and (𝑛 ̅ 𝑒 ) 𝑑𝑒𝑡 (10 20 𝑚 -3 ) ≈
	0.84 × 𝑛 𝐺	1.45±0.11 𝐵 𝜙 -0.37±0.14 for the ohmic subset. In the latter, 𝑃 is not considered as fitting

variable, being strongly linearly correlated with 𝐼 𝑝 . Note that the 𝐵 𝜙 exponent is the same in the two subsets, supporting a real physical dependence. Detachment is not necessarily close to the DL in these experiments: it is qualitatively reported that (𝑛 ̅ 𝑒 ) 𝑑𝑒𝑡 ≅ (𝑛 ̅ 𝑒 ) 𝐷𝐿 at low/moderate edge safety factor

  𝑞 95 , whereas (𝑛 ̅ 𝑒 ) 𝑑𝑒𝑡 < (𝑛 ̅ 𝑒 ) 𝐷𝐿 at high 𝑞 95 . Since 𝑞 95 plays a role, in the previous two fits we replace 𝐵 𝜙 by the cylindrical approximation of the edge safety factor: 𝐵 𝜙 = 𝜋 𝑅 0 𝑛 𝐺 𝑞 𝑎 5 ⁄ . For the NBI and 𝑞 𝑎 ̅̅̅ the shot-average value in each of the two subsets. Apart from the 𝑞 𝑎 dependence, possibly related to the fact of considering (𝑛 ̅ 𝑒 ) 𝑑𝑒𝑡 instead of (𝑛 ̅ 𝑒 ) 𝐷𝐿 , and the unknown 𝑍 𝑒𝑓𝑓 dependence, (35) is similar to the model (33), and (36) to the ohmic version (𝑃~𝐼 𝑝 ) of the same. In any case, the NBI

	the ohmic subsets we get respectively	
	35) (𝑛 ̅ 𝑒 ) 𝑑𝑒𝑡 (10 20 𝑚 -3 ) ≈ 0.43 × [𝑃(𝑀𝑊) (𝜋 𝑎 2 ) ⁄ ] 0.31±0.07 𝑛 𝐺	0.29±0.17 (𝑞 𝑎 𝑞 𝑎 ̅̅̅ ⁄ ) -0.45±0.09
	36) (𝑛 ̅ 𝑒 ) 𝑑𝑒𝑡 (10 20 𝑚 -3 ) ≈ 0.66 × 𝑛 𝐺	1.1±0.15 (𝑞 𝑎 𝑞 𝑎 ̅̅̅ ⁄ ) -0.37±0.14
	with	

b)

scaling (

35

) is much closer to the previous fit (34) than to the 𝑛 𝐺 criterion. We draw the conclusion that these data indeed support the 𝑃 dependence of the tokamak L-mode DL. The comparison between (34), (35) also suggests that the 'ultimate DL' has a simpler form than the 'detachment DL', in consonance with the general premise stated in the introduction.
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