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CosySLAM: tracking contact features
using visual-inertial object-level SLAM for locomotion

César Debeunne†, Médéric Fourmy†+, Yann Labbé4,
Pierre-Alexandre Léziart†, Guilhem Saurel†, Joan Solà†∗ and Nicolas Mansard†+

Abstract— A legged robot is equipped with several sensors
observing different classes of information, in order to provide
various estimates on its states and its environment. While state
estimation and mapping in this domain have traditionally been
investigated through multiple local filters, recent progresses
have been made toward tightly-coupled estimation. Multiple
observations are then merged into an a-posteriori maximum
estimating several quantities that otherwise were separately
estimated. With this paper, our goal is to move one step further,
by leveraging on object-based simultaneous localization and
mapping. We use an object pose estimator to localize the relative
placement of the robot with respect to large elements of the
environments, e.g. stair steps. These measurements are merged
with other typical observations of legged robots, e.g. inertial
measurements, to provide an estimation of the robot state
(position, orientation and velocity of the basis) along with an
accurate estimation of the environment pieces. It then provides
a consistent estimation of these two quantities, which is an
important property as both would be needed to control the
robot locomotion. We provide a complete implementation of
this idea with the object tracker CosyPose, which we trained
on our environment and for which we provide a covariance
model, and with the SLAM engine Wolf used as a visual-inertial
estimator on the quadruped robot Solo.

I. INTRODUCTION

Navigation of legged robots using on board exteroceptive
sensors has gained a lot of traction in recent years due to
their progressive deployment for industrial applications [1].
For repeated travels, the map-less teach and repeat methods
[2], [3] avoid the need of a metric and globally coherent
localization by benefiting from the knowledge of a human
operator. This works very well for applications in which
such a supervision is available, and a global map is not.
However, most of the time, in industrial environments, a
map is obtainable as a CAD model or 3D scans, in which
important assets can be labelled.

Many representations of the environment are possible
depending on the needs of the system. In [4] a prior map
defined as a LIDAR pointcloud is used in a bayesian filter to
localize a humanoid robot and perform online foot planning.
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Fig. 1: Experimental setup: a Realsense D435i is mounted on the
Solo robot which localizes itself with respect to stairs. A motion
capture system provides ground truth of the robot pose.

Ref. [5] takes as an input an external odometry source
to produce efficient robot-centric elevation maps while [6]
builds a global height map to navigate through cluttered
environments. Other approaches [7] rely on a tight fusion
between proprioceptive and exteroceptive sensors in order to
make the odometry more robust.

These approaches build metric maps that do not usually
leverage the presence of known assets in the scene. In [8], the
authors develop one of the first object-level SLAM algorithm
from a depth sensor. Using a voting process based on
point cloud descriptors, a simultaneous recognition and pose
estimation of known objects was performed and included
as factors in a graph optimization estimator. The method
benefited from an active search of the objects in the scene,
the detection being done in the SLAM loop. Aside from the
robot trajectory and poses of objects, [9] also proposes to
optimize the object shapes using a differentiable rendering
engine. In such approaches, objects need to be detected,
classified, and their relative pose with respect to the camera
has to be integrated into the estimator. On the other end,
a work like [10] uses a semi-dense mono camera SLAM
algorithm to produce a scale-ambiguous feature map. Then,
a descriptor-based multi-view object proposal is performed
as a post processing step.

Huge progress to the field of object detection was brought
about by the advent of CNN frameworks such as [11]. As a
result, it seems that the domain of object scene reconstruction
is now dominated by methods relying only on RGB cameras,
for both object detection and pose retrieval. A major example



is the framework CosyPose [12]. This approach mixes a
new state-of-the-art single-view pose estimation algorithm
with a multi-view algorithm using RANSAC and Bundle
Adjustment. It achieved first in most of the 2020 BOP
challenge categories [13]. This system obtains precision in
the order of centimeters on real objects whose 3D model
is known. Its performances make it a good candidate as a
direct 6D pose sensor to perform multi-sensor fusion. In the
context of legged robots, this is very useful to localize the
robot with respect to objects it needs to interact with, such as
objects to manipulate or stairs to climb. While these models
are not yet able to be generalized to classes of objects, rapid
progress are expected in this direction. Their performances
are already very interesting to help with the locomotion in
known scenes.

When considering merging a tracker such as CosyPose
with other sensor modalities, an important aspect is to predict
covariance representing the level of confidence in the tracker
estimate. Such data uncertainty awareness has been shown
to be crucial to the robustness of SLAM systems involving
neural networks subsystems such as [14], while [8] claimed
to compute a covariance matrix approximated as the inverse
of the Iterative Closest Point output. The methods targeted
for deep learning applications are harder to implement,
especially if the goal is to use an off-the-shelf pose estimation
neural network, as it is the case for this paper. For instance,
Bayesian Neural Networks [15] need to be trained explicitly
for uncertainty prediction while Monte Carlo (MC) Dropout
[16] requires multiple forward passes at run-time.

In this paper we present a practical implementation of a
SLAM system based on the design of an off-the-shelf deep
learning object pose estimation algorithm [12]. In order to
be able to integrate these measurements with other sensors,
we propose a noise model based on empirical data. We
also detail practical tricks to circumvent outliers in the
network output. Experimental validations were conducted
with a visual-inertial system, both handheld and mounted
on a quadruped robot. Finally we fine tuned the pre-trained
models to perform stairs localization.

II. COSY SLAM

The front end of the SLAM system designed for this
project includes object detection and object pose estimation.
This function is provided by CosyPose [12], a deep learning
based 6D tracker that reaches state-of-the-art performances
for 6D object pose estimation. In the original paper, a single-
view pose estimator and a multi-view algorithm were intro-
duced. In our context, only the single-view module is used,
object tracking being handled by the SLAM framework.

A. CosyPose

CosyPose takes as input a single image I and a set of 3D
models, each associated with an object label l. The camera
C is assumed to be calibrated. A set of object detections
is performed using the object detector Mask-RCNN [11].
Then, each 2D candidate detection in view I is identified by

Fig. 2: Progressive convergence of a stair step estimated pose over
successive iterations of CosyPose

an index α and associated with an object candidate Oα and
its 6D pose CTOα ∈ SE(3) with respect to the camera C.

The single-view pose estimation procedure of CosyPose is
an improvement over the one proposed in DeepIm [17]. The
general idea is to iteratively use the same neural network to
converge to the most precise object pose (Fig 2). It takes
as input the cropped image of the bounding box of the
detected object and a rendered image based on the current
object pose solution CTOα,k−1 at iteration k−1. It returns a
transformation update Oα,k−1TOα,k that brings the rendered
image closer to the cropped image. In practice, two neural
networks with the same structure are trained independently:
one for a coarse pose estimation i.e. the first iteration of
the iterative process and one for the refinement of the
pose i.e. the last iterations. The coarse network gives the
first transformation CTOα,0, and the prediction of the pose
of the object is obtained by composing the N successive
transformations:

CTOα = CTOα,0

N∏
k=1

Oα,k−1TOα,k (1)

CosyPose reuses the neural network architecture of
DeepIm with a new backbone for feature extraction:
Efficient-Net [18] with a spatial average pooling layer added
after it. Then, it disables the optical flow sub network during
the training. A new rotation parametrization is used for
the loss function which was introduced in [19] and which
has been shown to bring more stability during training.
Then, the focal length of the cropped images is recomputed
during training to fit the virtual camera of these images.
Finally, the object symmetries are taken into account during
training thanks to the symmetric distance. Each 3D model l
is associated with a set of symmetries S(l), that is the set of
transformations that leave the aspect of the object unchanged:

S(l) = {S ∈ SE(3)|∀T ∈ SE(3),R(l,T) = R(l,TS)} (2)

where R(l,T) is the rendered image of the object l captured
in pose M . Given a set of symmetries S(l), we define the
symmetric distance Dl which measures the distance between
two 6D poses represented by transformation T1 and T2.
Given an object l associated to a set Xl of 3D points x ∈ Xl,



we have:

Dl(T1,T2) = min
S∈S(l)

1

|Xl|
∑
x∈Xl

||T1Sx−T2x||2 (3)

Equation (3) measures the average distance between the
points of the object model transformed by T1 and T2 accord-
ing to the symmetry that best aligns the transformed points.
In practice, for continuous symmetries that are rotations
around an axis (like for instance for a textureless cylinder),
S(l) is discretized using 64 angles.

B. Covariance model

CosyPose does not provide an evaluation of its uncertainty.
The two main families of solutions available to estimate
uncertainties of neural network predictions consist in MC
dropout [16] or Bayesian Neural Network (BNN) [15]. Using
BNNs would require to change the architecture of CosyPose
and to retrain it. MC dropout would require several forward
passes through the network for each iterations, which would
be computationally expensive.

We need to compute the covariance without changing
the architecture of the network and at an affordable cost.
We propose to make an empirical error model based on
polynomial regression in order to compute the covariance
matrix. The idea is to parametrize the average error on
each se(3) component returned by CosyPose. We conduct an
empirical study on several video sequences that explore the
variations of the parameter set for several object types. The
error is computed by comparing the SE(3) transformations
between the camera C and an object O returned by CosyPose
CTO with the same transformation given by a motion capture
system. We then use the error predictions of our parametric
model as a proxy to the true 6 covariances during model
fitting. A different model is fit for each object type due to
their diversity of shapes, sizes and textures.

The parameters to compute the error need to represent as
much as possible the error sources of CosyPose. To cover
the error due to the configuration of the object in space,
we need to include the 3D coordinates of the camera in
the object frame. We also want to take into account some
invariance that can occur by rotating around the object if it is
textureless for example. For this reason, we choose spherical
coordinates of the camera origin with respect to the object
frame to parametrize the model. Another source of error can
be the occlusion of the object in the scene, as well as the
motion blur, or any inherent noise in the image. This can
affect the quality of the detection and of the pose estimation.
Having an idea of the quality of the object detection informs
us on the quality of the object representation that may be
occluded or blurry. The Mask-RCNN object detector returns
a confidence score s for each detection that we will include in
our model. This score is the output of the final softmax layer
of the detector, which is designed to represent a probability
distribution.

To sum up, our model is parametrized by four values:
r - distance, ϕ - azimuth, θ - elevation, s - Mask-RCNN

softmax output. We can then compute the error of CosyPose
with respect to the motion capture data:

e = [et, ea] ,
[
Op̂C − Op̃C , Log

(
O
R̂−1
C

O
R̃C

) ]
(4)

where ·̂ and ·̃ denote quantities obtained from the motion
capture system and CosyPose respectively. Log denotes the
logarithm application mapping elements of SO(3) to the R3

representation of its Lie algebra so(3).
We want to find a polynomial function f(r, ϕ, θ, s) ∈ R6

that returns the error given the set of training data {X,E}.
For each object, we capture a set of video sequences and
we compute the error with the motion capture data for each
measurement. We then perform polynomial regression with a
pipeline in Scikit Learn [20]. A simple linear regression leads
to a high root-mean-square error (RMSE) on a test dataset.
Over degree 3, the model overfits and the high curvature
of the polynomial returned high error values outside of the
training data range. Thus, a degree 2 polynomial regression
seemed to offer a good compromise. Quantitative results are
given in the experimental validation section (see Fig. 6 for
a few examples of fitted polynomials).

C. Data association and Outlier rejection

A key part of our SLAM system is the association of
landmarks with the rejection of erroneous pose estimates.
First of all, each object is associated with a label α so that
a detection can only match a landmark with the same label.
Then, the position of the robot is propagated by integrating
the IMU measurements with the current estimated biases.
Thus we can then have the pose of a detection in the world
frame at each keyframe. We check if this pose is similar to
the one of a landmark with the same label with a threshold
on the distance between the pose in SE(3). If a detection
does not match any landmark then a new one is created.

CosyPose can return poses of objects that are not included
in the scene because of false detections, of Mask-RCNN, or
wrong pose estimations. To handle these outlier detections,
each landmark is associated with a score c that corresponds
to its repeatability over time:

c =
nf
∆t

(5)

∆t is the time since the landmark initialisation and nf is
the number of factors associated to it. The lowest scores
are filtered with a threshold determined empirically and the
associated landmarks are removed from the map.

D. Retraining with stairs

In order to produce a realistic SLAM scenario in the
context of walking legged robots, we retrained CosyPose
with staircases present in our lab. We made a textured mesh
of a stair step used in our experimental platform. This
textured mesh was used both for training and using the
trained model. The generation of photorealistic synthetic data
was handled by BlenderProc [21]. The render and compare
loop uses PyBullet [22].

We generate 10.000 synthetic images that are labeled with
the pose ground truth by design of the scene in Blender. We



Fig. 3: On the left, a picture of our climbing module at LAAS
and on the right the 3D model of the stair projected according to
CosyPose measurements on the same picture

retrain the three modalities of CosyPose: the Mask-RCNN
detector, the coarse pose estimator and the pose refiner. We
slightly tune the training parameters used for the object from
the BOP challenge as the scale is different: the stair is 1m×
0.3m×0.07m whereas a T-LESS object is never wider than
10cm. Thus, we generate training data on 10m×10m scenes,
and we increase the noise used to train the refiner.

An illustration of the performances of CosyPose on a set
of 3 stair steps is given on Fig. 3: the pose of each step is
here independently estimated which leads to local accuracy
but global inconsistency.

III. FACTOR GRAPH FORMULATION

In our factor graph SLAM, the problem is represented
as a bipartite graph where nodes represent either variables
of the problem or geometrical constraints between sets of
variables: the factors. The state x is modeled as a multi-
variate Gaussian distribution that includes robot poses and
velocities at a given keyframe i, xi = (pi, vi,Ri), the
sensor bias bi and the object poses WTOα,k ∈ SE(3) in
the world frame W . Thus, we can formulate finding the
Maximum A Posteriori as the following non-linear-least-
squares problem:

x∗ = arg min
x

∑
i

||rIi (x)||2ΣIi +
∑
j

||rV (x)||2ΣVj (6)

with {rI ,ΣI} and {rV ,ΣV } being the residuals and covari-
ances of the inertial and visual factors respectively. A typical
fraction of our factor graph is represented on Fig. 4.

A. Visual factor

As seen previously, CosyPose returns the pose of an object
labeled α expressed in the camera frame. At a keyframe time
i, it is noted

Ci
T̃Oα ∈ SE(3). In our SLAM framework,

an object can be considered as a landmark whose pose in
the world frame can be simply obtained by applying the
composition chain

W
T̃Oα,k =

W
T̃B

B
T̃Ci

Ci
T̃Oα,k , as seen

in Fig. 5. We indexed the object with k as several objects
of the same label α can be present in the scene. The frame
B is the IMU frame that we consider being the robot base
frame of our problem. The transformation between the robot
frame and the camera frame

B
T̃Ci is assumed to be known.

xi xj

bi

Oα,k

rVOα,k

bjrIi

...

...

...

...

...

Fig. 4: This graph involves state blocks corresponding to keyframes
xi = (pi,vi,Ri), biases bi and objects Oα,k. IMU factors relate
consecutive keyframes and the IMU bias whose drift is represented
on the lower branch. Visual factors relate landmarks poses and
keyframes from which the landmark has been observed.

Fig. 5: Kinematic chain of the visual observation of a landmark

The factor’s residual rV (xi, O
α,k) ∈ R6 is defined as

the logarithmic difference between the expected pose of
the object

Ci
T̃Oα,k =

B
T̃−1
Ci

W
T̃−1
B

W
T̃Oα,k and CosyPose

measurement
Ci
T̃Oα :

rV (xi, O
α,k) = Log

(
Ci
T̃−1

Oα,k

B
T̃−1
Ci

W
T̃−1
B

W
T̃Oα,k

)
(7)

This residual is weighted in (6) by its covariance ΣVα,k that
is computed with the empirical error model detailed in the
previous section.

B. IMU pre-integration factor

As it is shown in [23], [24], IMU measurements can be
pre-integrated between two keyframes to avoid re-integration
at each iteration of the solver. We obtain delta quantities
∆ = [∆ p,∆ v,∆ R] that are independent of the initial
conditions for position, orientation and velocity and depend
only on IMU data and bias. The effect of changes in the bias
estimates is linearized so that the deltas can be corrected us-
ing precomputed Jacobians. This delta pre-integration theory
is implemented in WOLF, our factor graph framework, and
every detail about Jacobians and deltas computation is given
in [25].

We can then exhibit the residuals for the IMU delta factors
between keyframes i and j. It requires the states estimates
xi and xj , the current bias estimates bi, the bias used during
pre-integration b̃i, the pre-integrated Jacobian J∆i,j

b and the



pre-integrated delta ∆̃i,j . A corrected delta ∆i,j is computed
with the bias and its Jacobian with a linearized update:

∆i,j = ∆̃i,j ⊕ J
∆i,j

b (bi − b̃i) (8)

We compute the predicted delta ∆̂i,j from the state estimates
using the increments introduced in [24]. Finally, the residuals
are given by:

rI(xi,xj ,bi) =

 ∆pi,j − ∆̂pi,j
∆vi,j − ∆̂vi,j

Log(∆ R−1
i,j ∆̂ Ri,j)

 ∈ R9 (9)

IV. EXPERIMENTAL VALIDATION

We have produced datasets in the robotic experimental
arena at LAAS-CNRS in Toulouse. This is a 3D environment
about 10m × 5m made of flat floors, stairs and beams.
The robot environment was augmented with objects of the
datasets that were used to train CosyPose. Each dataset is
composed of three sequences:
• A sequence of RGB images captured at 30 Hz
• A sequence of IMU measurements captured at 200 Hz
• A sequence of motion capture (MoCap) measurements

at 200 Hz used as ground truth
We recorded two types of datasets: one for the uncertainty

models and one for the SLAM. For the uncertainty models,
reflective MoCap markers were attached to the object to
obtain ground truth of their pose. For the SLAM, only the
camera was tracked. We used the monocular RGB camera
and the Bosh BMI085 IMU of an Intel Realsense L515
Camera for handheld trajectories. The Intel Realsense d435i
was used with the same modalities for the experiments on
the quadruped robot Solo [26] as shown in Fig. 1. The
extrinsic calibration between the IMU and the camera was
provided by Intel and the delays observed between IMU
and Camera measurements were negligible. Our datasets are
publicly available at https://homepages.laas.fr/
mfourmy/icra22_cosyslam.

A. Empirical covariance

As explained in Sec. II, we have trained empirical models
to evaluate the covariance of the estimation of CosyPose. To
validate these models, we propose to exhibit a few intuitive
observations and a quantitative statistical analysis. One of
the parameter involved in our model is the absolute distance
between the camera and the object, noted r. Our trained
models show an expected behavior regarding this parameter:
the global error increases when the camera moves away
from the object. Fig. 6 sheds light on these phenomena and
gives an explicit comparison between the models of different
objects. The error of the object from the YCBV dataset seems
more stable and smaller than the one of the objects from the
T-LESS dataset. This can be explained by the texture of the
object and the absence of symmetries: T-LESS objects are
known to be more challenging for pose estimation and this
is confirmed by our model.

A more quantitative evaluation can be deduced from table
I. The translation error seems to be captured pretty well, as

Fig. 6: The norm of the translation error returned by the models of
three different objects with respect to r, the distance between the
camera and the object. The other parameters θ, φ and s are fixed
to the average values of our training data.

TABLE I: A quantitative evaluation of our models, these values are
computed on test samples that were not used for training.

R2 RMSE ang. err. (°) RMSE trans. err. (cm)
YCBV-4 0.55 5,1 0.6

T-LESS-23 0.5 11.7 1.5
T-LESS-26 0.68 22 0.6

the RMSE is around the centimeter. However, the angular
error seems a little less predictable, especially for T-LESS
objects which orientation estimation can suffer from an
important measurement noise due to the lack of textures.
The R2 ∈ [0, 1] score is the coefficient of determination and
is often used to evaluate statistical models. Its interpretation
is subject to debate and cannot conclude to a ”good” or a
”bad” model. However, a score higher than 0 demonstrates
that our model is more accurate than a simple average model.

B. Object level VI-SLAM

In order to validate the performances of the fusion of
CosyPose estimates and inertial measurements, we evaluated
three scenarios with the camera held by hand and T-LESS
objects1 in the scene. The first one is a short and slow
trajectory, i.e. an ideal scenario. The second one is a slow
but long trajectory, to validate the consistency of our system
over time. The last one is a highly dynamic scenario with
a lot of motion that can blur some frames and lose sight of
objects for more extend period of times. Moreover, T-LESS
objects being the most difficult objects for pose estimation
with CosyPose, they may return many outliers and noisy
measurements. This is therefore a challenging dataset to test

1T-LESS is one of the dataset for which CosyPose is trained by default
and whose object can be bought in Czech Republic [27]. It features several
small electric devices, whose symmetry at lack of texture make them an
interesting benchmark for realistic scenarios.

https://homepages.laas.fr/mfourmy/icra22_cosyslam
https://homepages.laas.fr/mfourmy/icra22_cosyslam


Fig. 7: Comparison between the MoCap, the output of CosySLAM
with visual factors only and the output of CosySLAM with IMU
fusion on the circular trajectory.

TABLE II: Datasets description and results of the hand held videos

Scenario Length(m) Duration(s) MTE¹(cm) STE²(cm)
V-only - Circular 3.7 23.7 3.8 1.6

V-only - Short 2.5 12 3.8 2.4
V-only - Dynamic 3.5 17.8 7.8 4.0
V-IMU - Circular 3.7 23.7 1.9 0.7

V-IMU - Short 2.5 12 1.9 0.5
V-IMU - Dynamic 3.5 17.8 1.7 1.2

¹ Mean translation error
² Standard deviation of translation error

the robustness of our algorithm. Keyframes are selected at
10 Hz, only if objects are detected in the images.

It is interesting to analyse the gains brought by the IMU
fusion. The most evident observation is that the output
trajectory is smoother, which gives more consistency to the
result (Fig. 7). But we can notice that the MTE is also
reduced (Table II). Indeed, the motion model is more precise
thanks to IMU data. This makes the outlier rejection more
efficient than the visual only CosySLAM which makes a zero
velocity assumption between keyframes.

C. Localization and Mapping of stairs by Solo

With our retrained model we were able to perform SLAM
in our experimental area, without augmenting it with fake
objects. We recorded video sequences including stairs with
a camera fixed on a Solo robot (Fig. 8). A stair has three
discrete symmetries that are hard to handle for an object
pose estimator and the images provided by Solo were noisy
because of the walk. These scenarios are challenging for our
SLAM system, but it maps successfully the stairs and the
error on the position of the base of Solo remains reasonable
(Table III).

V. CONCLUSION AND DISCUSSION

We have proposed using a visual-inertial object-based
SLAM to simultaneously estimate the robot state and the

TABLE III: Datasets description and results of the videos taken on
Solo

Scenario Length(m) Duration(s) MTE(cm) STE(cm)
V-IMU - Approach 1.3 18.7 2.0 0.9
V-IMU - Module 1.3 15.5 2.4 1.5

Fig. 8: This trajectory was recorded on Solo walking along a
climbing module made of three stairs using [28]’s controller. The
green dots represent the trajectory of Solo provided by the MoCap,
and the red dots the one produced by our visual-inertial SLAM. The
blue rectangles represent the map of the SLAM made of stairs.

location of large objects in the environment, such as stair
steps. The main idea was to demonstrate that a technology
efficient for object manipulation and scene reconstruction
could be applied to another field of robotics. The object
pose estimator provides an informative yet noisy estimate
of the location of objects in the scene, as well as an
interesting alternative to dense mapping systems. The inertial
measurements accurately smooth out the SLAM estimates
and increase the bandwidth of the perception system. The
a-posteriori maximization then leverages the best of the two
sensor modalities to provide fast and accurate estimates of
both the robot state and the environment mapping. To this
end, we have proposed an original model to estimate the
uncertainty of the object pose estimator. We also reported
the first re-training of the CNN of the CosyPose object pose
estimator, which the reader would hopefully find useful if
also aiming at using it. The empirical study of CosyPose gave
us a better understanding of its behavior and strengthened
our idea that it was suitable for SLAM application. We
have shown that our SLAM system performs well enough
on two different object scales and platforms. By mapping
and tracking the contact surface on the stair scenarios, our
work can contribute to help Solo climbing a set of stairs.
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[13] T. Hodaň, M. Sundermeyer, B. Drost, Y. Labbé, E. Brachmann,
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