
HAL Id: hal-03351276
https://hal.science/hal-03351276v1

Submitted on 15 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Multi-objective Genetic Algorithm to Reduce Setup
Waste in a Single Machine with Coupled-Tasks

Scheduling Problem
Corentin Le Hesran, Anne-Laure Ladier, Valérie Botta-Genoulaz

To cite this version:
Corentin Le Hesran, Anne-Laure Ladier, Valérie Botta-Genoulaz. Multi-objective Genetic Algorithm
to Reduce Setup Waste in a Single Machine with Coupled-Tasks Scheduling Problem. IFIP Inter-
national Conference on Advances in Production Management Systems, Sep 2021, Nantes, France.
pp.399-408, �10.1007/978-3-030-85874-2_42�. �hal-03351276�

https://hal.science/hal-03351276v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


 
 
 
This document is the original author manuscript of a paper submitted to an IFIP 
conference proceedings or other IFIP publication by Springer Nature.  As such, there 
may be some differences in the official published version of the paper.  Such 
differences, if any, are usually due to reformatting during preparation for publication or 
minor corrections made by the author(s) during final proofreading of the publication 
manuscript. 
 
 
 



Multi-objective genetic algorithm to reduce
setup waste in a single machine with
coupled-tasks scheduling problem?

Corentin Le Hesran1, Anne-Laure Ladier1[0000−0002−4201−4430], and Valérie
Botta-Genoulaz1[0000−0003−2565−6690]
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Abstract. This article studies a single-machine scheduling problem in-
volving coupled-tasks and hard due dates. A genetic algorithm based on
the Non-dominated Sorting Genetic Algorithm (NSGA) II model is pro-
posed to carry out a bi-objective optimization of both holding cost and
setup-related waste generation. Results show that the multi-objective
genetic algorithm outperforms the previous approaches regarding both
computation time and objective functions, showing that a reduction of
setups of 36% is possible at the expense of an 11% increase in inventory
with acceptable computation times. It also highlights the importance of
multi-objective optimization for decision-making in case of conflicting
objective functions.

Keywords: Multi-objective scheduling · Genetic algorithm · Waste pre-
vention.

1 Introduction

Reducing the environmental impact of industrial production is currently a press-
ing challenge. At the operational level, new machining techniques and bet-
ter operations scheduling improve environmental performance, although these
largely focus on the energy consumption aspect [8]. Alternatively, recent work
has appeared on the reduction of material waste rather than energy consumption
and CO2 emissions, enabling better resource usage and lower waste generation
through adequate scheduling [11]. Limiting waste generation is complementary
with recycling and reuse approaches.

Such a case was studied in Le Hesran et al. [10], through the optimization of
both inventory levels and setup-induced waste in the painting line of a hubcap
manufacturing plant. Only one painting line is available, making it a single-
machine scheduling problem. A passage into the painting line is referred to as
an operation, while the set of operations required for completion of an order
is called a job. Different options exist for a hubcap going through the paint-
ing line. If it is unicolor, it is painted once and can go directly to the finished
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product inventory to await shipping. If it is bicolor, it receives its first coat-
ing and is sent to dry in the intermediary inventory for a minimum period L,
then receives its second coating and is sent to the finished product inventory.
Shipping must occur before a given due date, since the Make-To-Order setting
allows no lateness. This particular problem is called a coupled-tasks schedul-
ing problem [17] and has been proven to be NP-Hard [14]. Blazewicz et al. [3]
provide a survey of research on coupled-tasks scheduling problems, as well as a
list of important results for the most common variants and subproblems. The
computation times being too large in real-life situations, metaheuristics such as
PSO and SA [13], tabu-search [4,12], as well as various heuristics [1,5] have been
used to solve coupled-tasks scheduling problems. Genetic algorithms have also
been extensively used to solve scheduling problems, including problems involving
reentrance characteristics which are similar to the coupled-tasks problems.

The objective is to optimize the daily schedule to minimize both the quantity
held in inventory and the environmental impact of the paint sludge generated in
the painting line when the color changes, represented by the number of setups. To
deal with these two conflicting objectives, Le Hesran et al. [10] propose the use
of a Genetic Algorithm with a weighted-sum method to obtain a Pareto front of
alternative solutions. Results show that this algorithm has difficulty obtaining
the entirety of the Pareto front : drastic improvements are possible regarding
both the objective functions optimization and computing time required.

To this end, the contribution of this paper is a new multi-objective GA
based on the NSGA-II framework [6] to solve the single machine couple-tasks
scheduling problem described above. Its structure and mechanisms are described
in section 2, and numerical experiments are carried out in section 3 followed by
conclusions and perspectives for future work.

2 Multi-objective GA based on NSGA-II

Figure 1 shows the global structure of the proposed multi-objective GA based
on NSGA-II.

2.1 Chromosome representation

A chromosome represents a sequence of operations, its size being equal to the
number of jobs times the maximum number of operations per job. Since not all
jobs have the same number of operations, dummy operations with processing
time zero are added to keep the chromosome size constant. A gene’s position
corresponds to the job it belongs to and its order within this job. The value of
a gene represents its rank in the global operations sequence. Figure 2 shows an
example solution on a Gantt chart, with i the job and j the operation. As an
example, operation 1 of job 9 is processed first, while operation 2 of job 1 is
processed sixth, and operation 2 of job 8 is a dummy operation. Table 1 shows
the corresponding chromosome, Seq giving the operations sequence.
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Fig. 2: Gantt chart of a schedule with ten jobs

Table 1: Associated chromosome sequence

i 1 2 3 4 5 6 7 8 9 10

j 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Seq 4 6 13 17 8 11 12 14 2 9 5 7 15 18 10 20 1 3 16 19

Ranks are obtained using the fast non-dominated sorting algorithm [7] for
all candidate solutions. In this strategy, the Pareto dominance relationship is
used to assign each solution a rank based on a domination counter. All solutions
are compared, and all the non-dominated ones are assigned rank 1. They are
then removed from the current population, and the process is repeated with an
incremented rank number, until all solutions have been assigned a rank. This
provides a set of Pareto fronts F , where all solutions of front Fk dominate the
solutions of front Fk+1.

In order to avoid the clustering of solutions, a crowding-distance comparison
method is used. This crowding distance I[i] of a solution i is based on the
neighboring points surrounding it, according to the different objectives. It is

calculated as: I[i] =
∑
o∈O

=
zo
i+1−z

o
i−1

zo
max−zo

min
where O is the set of objectives, zo

i+1

and zo
i−1 the objective value of both neighboring solutions for the oth objective,

and zo
max and zo

min the maximum and minimum values for objective o ∈ O.
A crowded comparison operator is then used to discriminate between different
solutions with the following logic: if a solution is ranked lower than another, it
is preferred to its counterpart. If two solutions have the same rank, the one with
the biggest crowding distance is preferred.
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2.2 Initialization

Based on the instance data, a single initial solution is created. An algorithm sorts
the jobs by increasing due date. The operations of jobs with the lowest due dates
are scheduled first, and operations of other jobs can be introduced whenever the
job with the lowest due date is in the drying inventory. Once the initial solution
is created, two mutation operators are applied in order to generate a sufficient
number of new offspring. Any unfeasible solution generated (where tasks exceed
their due dates) is immediately discarded and another one created to replace it.
These constitute the initial population introduced into the GA.

2.3 Iterations

A pair of chromosomes is selected, and has a probability p1 of being subjected
to the insertion operator, that picks a random gene and inserts it somewhere
else in the chromosome. It means that any given pair of chromosome can be
subjected to either zero, one or two mutations. It is then subjected to the swap
operator [16] (the swap picks two random genes within the chromosome and
exchanges them; each chromosome is mutated independently) with a probability
p2. The resulting chromosomes then have a probability p3 of being subjected to
a standard two-point crossover [16] (as parents), followed by a probability p4 of
being subjected to the Linear Order Crossover (LOX) [15]. The standard two-
point crossover chooses two random genes in the first parent and swaps them with
the corresponding genes of the second parent. The LOX operator also chooses
two random genes as crossover points: the partial sequence contained between
them is transmitted to the offspring, the rest being filled with the missing genes
from the other parent starting from the beginning of the chromosome. This
operator has the merit of keeping a part of the first parent intact, as well as the
relative order from the second one, which is important in a problem where due
dates severely constrain the ordering possibilities.

If those new chromosomes are feasible, they are kept in the offspring gen-
eration, and a counter called Nbf is incremented. If more offspring need to be
generated to complete the population, the iteration counter NbIterations is in-
cremented and a new pair of parents is selected and submitted to the operators.
If the iteration counter reaches Iteration number before a new population has
been created, the algorithm stops and the best current solutions are returned.

Once a number of offspring equal to the population size have been accepted,
both the parent and offspring populations are combined and the Pareto-rankings
determined. The population replacement strategy is applied, the new population
is created, and the iteration counter is reset. This process goes on until the
number of generations reaches threshold and the algorithm stops.

3 Numerical experiments and results

The algorithm is coded in C++ ; all experiments are carried out using an Intel
i5 6200 2.3 GHz processor with 8 GB of RAM.
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3.1 Instances and GA parameters definition

The proposed NSGA-II algorithm is used on the instances provided by [10]. 80-
20, 50-50 and 20-80 configurations are considered: the X-Y configuration consists
of X% of jobs with one operation and Y% of jobs with two operations. Exper-
iments are run on instances of each configuration with n = 10 jobs and 80-20
instances with n = 30 jobs. Instances of 10 jobs allow us to compare optimal
results from the exact approach with those of the GA, while 30 jobs instances
are closer to industrial size instances of around 100 jobs.

Table 2 details the chosen values of the GA parameters, obtained through a
Taguchi experimental design.

3.2 Interpretation of the Pareto front

The Pareto front [2] provides the decision-maker with alternative solutions that
represent the variety of possible results. Its size is limited by the maximum
number of possible color changes. Although every Pareto point is an optimal
solution, all of them might not be suited to a practical use ; thus, four key
points are extracted for each instance.

Two extreme points (zmin
inventory, z

0
setup) and (z0

inventory, z
min
setup), represent the

cases where the decision-maker wishes to minimize one objective in priority. The
ideal point (zmin

inventory, z
min
setup) is defined using the two optimum values of these

points, i.e. the minimum quantity of inventory and minimum number of setups
achievable. The coordinates of each point zit are normalized using the formula

znormal = zit−zmin

z0−zmin for both zinventory and zsetup. This norm provides new values
between 0 and 1 to compare values of different nature and order of magnitude
(inventory, number of setups).

Using these normalized values, the euclidean distance of each point to the
ideal point is calculated. The solution located at the minimal distance from
the ideal point (zmin

inventory, z
min
setup) is chosen as the trade-off point ztrade-off, which

represents the best compromise in terms of number of setups reduction versus
increase in inventory.

zpercent is the point with the highest difference between setup percentage
reduction and inventory percentage increase. This point aims at providing an
attractive option for decision-makers that wish to improve their environmental
impact without affecting their inventory costs negatively. An example of Pareto
front with its important points is shown in Figure 3.

3.3 Results

Table 3 shows that the multi-objective GA reaches the optimal solution a ma-
jority of the time for both the zmin

inventory and zpercent points, with average gaps
not exceeding 3.3%. While the average gap appears to be slightly higher for
the NSGA-II algorithm than for the weighted-sum one, optimal solutions are
reached more often.
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Fig. 3: Example of a Pareto front

Table 2: GA parameter values

30-job
instances

100-job
instances

Population size 30 100
Swap rate 0.8 0.8
Insertion rate 0.5 0.8
Crossover rate 0.3 0.3
LOX rate 0.1 0.05
Threshold 1000 2500
Iteration number 1000 2500

The complete results for ztrade-off and zpercent are shown in Tables 4 and 5
respectively. The multi-objective GA provides accurate results and manages to
cover the majority of the Pareto front. As an example, for the 20-80 configuration
an average Pareto front size of 4.6 is observed versus 5.6 for the MILP results.
As a comparison, the weighted-sum GA by Le Hesran et al. [10] obtained an
average size of 3.85 for the Pareto front of the same configuration.

In addition to a larger number of Pareto points obtained, results from the
multi-objective GA are better than those from the weighted sum GA, obtaining
a lower number of setups for the trade-off points and a lower inventory for the
percent points on all configurations except for the 80-20 one.

Table 6 shows a direct comparison of the ztrade-off and zpercent points obtained
using the MILP (solved with CPLEX) and weighted sum GA from Le Hesran
et al. [10], and our new multi-objective GA on the 30-job instances, most of
which cannot be proved optimal by the MILP model within its time limit of
1800 seconds. The MILP results dominate both the weighted-sum and multi-
objective GAs. However, their computation requires upwards to half an hour
per point, which is not suited for practical applications on large instances. On
the other hand, the multi-objective GA largely outperforms the MILP and is
better than the weighted-sum GA regarding computation time.

Table 3: Comparison on key points (10-job instances)

Weighted sum GA [10] NSGA-II : zinventory
min NSGA-II : zpercent

n Config. Average gap
(%)

Nb opt/
nb total

Average gap
(%)

Nb opt/
nb total

Average gap
(%)

Nb opt/
nb total

10 80-20 1,0% 27/30 3,0% 27/30 3,3% 28/30
10 50-50 1,8% 24/30 1,0% 25/30 1,0% 25/30
10 20-80 1,0% 20/30 2,0% 21/30 1,2% 21/30
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Table 4: Characteristics of the ztrade-off point (standard deviation in parenthesis)

Weighted sum GA [10] NSGA-II

n Config. ztrade-off
setup ztrade-off

inventory CPU (s) Pareto size ztrade-off
setup ztrade-off

inventory CPU (s) Pareto size

10 80-20 3.1 3056 0.45 (1.2) 3.34 3.1 3084 14.1 (14.1) 2.97
10 50-50 3.8 5560 215 (539) 4.55 4.1 4584 12.0 (8.7) 3.75
10 20-80 4.4 7150 638 (737) 5.60 5.0 6374 13.1 (9.2) 4.57

30 80-20 8.9 16764 1714 (384) 9.01 9.1 21461 65.7 (79.1) 6.55

Table 5: Characteristics of the zpercent point (standard deviation in parenthesis)

Weighted sum GA [10] NSGA-II

n Config. zpercent
setup zpercent

inventory CPU (s) Pareto size zpercent
setup zpercent

inventory CPU (s) Pareto size

10 80-20 3.9 2215 0.10 (0.67) 3.34 3.8 2350 14.1 (141.1) 2.97
10 50-50 4.3 4385 118 (371) 4.55 4.2 3997 12.0 (8.7) 3.75
10 20-80 5.4 5852 595 (762) 5.60 5.4 6000 13.1 (9.2) 4.57

30 80-20 11.0 13179 1680 (392) 9.05 13 14497 65.7 (79.1) 6.55

Results from the multi-objective GA are closer to the MILP ones than those
of the weighted-sum GA, providing a lower average number of setups for the
ztrade-off point, and lower average inventory for the zpercent one. Since ztrade-off

tends to be located on the left of the Pareto front (meaning a lower number
of setups) and zpercent on the right (meaning a lesser inventory), results from
the multi-objective GA are closer to those of the MILP than those from the
weighted-sum GA.

Table 6: Points of interest for 30-job instances and 80-20 configuration

Solving
method

zsetup zinventory Setup %
reduc.

Inventory
% inc.

CPU time
(s)

Pareto
size

ztrade-off
MILP 8.9 16764 38.5 (16.1) 54.8 (73.2) 1714.0 (384) 9.05
Weighted-sum 11.5 18518 22.4 (16.0) 25.5 (35.6) 95.0 (55.5) 5.35
Multi-obj 9.1 21461 34.2 (15.0) 62.5 (39.4) 65.7 (79.1) 6.55

zpercent
MILP 11.0 13179 25.9 (13.7) 12.3 (8.9) 1680.0 (392.0) 9.05
Weighted-sum 12.8 16537 15.2 (17.1) 5.9 (9.3) 88.4 (58.0) 5.35
Multi-obj 13.0 14497 9.6 (12.2) 4.4 (7.3) 65.7 (79.1) 6.55

In order to simulate a real life situation and show its performance on bigger
instances, the proposed multi-objective GA is solved on 10 instances of 100 jobs
(the size of a daily schedule) with the 80-20 configuration. Results for the ztradeoff

and zpercent point are available in Table 7. The genetic algorithm is more effi-
cient on large instances, which are those which are important for manufacturers.
Alternative daily schedules can be obtained in one hour and a half on average,
which is an acceptable time-frame for a practical use. While percentages seem
lower in both waste reduction and inventory increase, they still remain significant
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Table 7: Points of interest for 100-job instances and 80-20 configuration

n Config. zsetup zinventory Setup % reduc. Inventory % inc. CPU time (s)

ztrade-off 100 80-20 34.2 253920 41.1 (8.5) 149.2 (98.2) 5718
zpercent 100 80-20 51.6 135431 11.1 (9.6) 4.3 (3.87) 5718

with such large quantities. The possible improvements are largely dependent on
the instance, and can vary greatly as shown by the high standard deviations.
The provided schedules are very efficient for some particular instances.

4 Conclusion

This paper tackles the issue of a single-machine scheduling problem with coupled-
tasks, aiming at reducing waste generation due to setups and costs induced by
inventory under the constraint of due dates. It proposes a new multi-objective
genetic algorithm based on the NSGA-II structure. The new algorithm is more
efficient in mapping the Pareto front than a GA using weighted sums. Thanks to
evolutionary mechanisms designed for obtaining multiple alternative solutions,
this algorithm obtain solutions that are both more optimized and more evenly
spread out in the solutions space, improving the solutions provided to decision-
makers. Computation times are also improved, as the multi-objective GA is able
to map a Pareto front in a single run, as opposed to the weighted-sum one
requiring multiple runs, and a larger number of Pareto points is obtained.

Alternative solutions can thus be obtained rapidly, providing the decision-
makers with different options depending on their priorities and current situation.
The zpercent point in particular is shown to be useful for decision-makers. These
improved results highlight the potential of such waste-reducing schedules for
both economic and environmental objectives.

Several perspectives can be considered for this study. Calculating lower bounds
would help to assess the performance of the GA for large instances. The model
could be extended to other types of workshops (e.g. multi-machines environ-
ments) or product types (e.g. multiple colors and coatings) as studied in Gould
and Colwill [9]. From an environmental perspective, assessing the environmental
impact of paint sludge production, and the potential benefits of reducing waste
production could also motivate practitioners to implement such schedules. In-
deed, if the actual cost of waste management was assessed, alternative schedules
reducing waste generation could prove to be overall economically beneficial to
companies.
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