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Stator cooperativity without depletion

We model the rotor as a one-dimensional lattice of Nmax sites with periodic boundary conditions
in contact with an infinite reservoir of stators described as an ideal solution with constant (dimen-
sionless) chemical potential βµr = cst, where β = (kBT )−1. Each stator interacts twofold: with
the substrate through a (dimensionless) site-independent binding energy βε ≤ 0, and, once bound,
with its next-neighbor stator through a (dimensionless) interaction energy βJ ≥ 0. We associate
with each lattice site a variable ϕk (k = 1, . . . , Nmax) whose value is equal to 0, when the site k is
empty, and to +1, when it is occupied by a stator unit. Thus, the total number of adsorbed stator
units is N =

∑Nmax
k=1 ϕk.

This system falls into the universality class of the so-called one-dimensional short range lattice
gas (SRLG) models, and its energy depends on the specific configuration {ϕk} of the lattice sites
according to the effective one-dimensional Hamiltonian for bound particles:

H{ϕk} = −J
Nmax∑
k=1

ϕkϕk+1 −
µ′r
2

Nmax∑
k=1

(ϕk+1 + ϕk) . (1)

Here, we made use of the periodic boundary conditions, ϕNmax+1 = ϕ1. Furthermore, to simplify
the notation, we incorporated the chemical potential of the reservoir and the binding energy into
an effective (dimensionless) reservoir chemical potential βµ′r = βµr − βε.

We performed Markov Chain Monte Carlo simulations by applying the Glauber algorithm to
the 1D Hamiltonian (Eq. 1) to determine the time evolution of the occupancy expectation value
〈N(t)〉. After each Monte Carlo step, the average was computed over 104 thermal histories. The
initial conditions for resurrection were {ϕk(0) = 0}, implying N0 = N(0) = 0. For the release
from stall, we prepared the system such that, for t < 0, the statistical ensemble was in equilibrium
with its average occupancy matching the desired initial value, thus mimicking the variability of the
initial conditions observed in experiments. Then, at t = 0, we changed the value of βµ′r, keeping
βJ fixed, to let the system relax towards the same steady state as for the resurrection.

Stator cooperativity with depletion

Let us consider the case in which the total number of available stators in the system is finite and
constant: ntot = N(t)+(ntot −N(t)). If N(t) denotes the instantaneous number of adsorbed stators
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Figure 1: Stator cooperativity with (triangles) and without (circles) depletion: relaxation times in arbitrary units (a. u.)
versus the coupling constant βJ . Nmax = 13, and for the depletion case, we have set ntot = 13. The free parameter βµ′r (βµ′0,
in the case with depletion) was adjusted to obtain a steady state occupancy, 〈N∞〉, equal to 4 (left panel) and 8 (right panel),
respectively. Green symbols: release from stall, i. e. 〈N0〉 = 6 (left) and 〈N0〉 = 9 (right panel). Purple symbols: resurrection,
i. e. N0 = 0 for both panels. Solid (without depletion) and dashed (with depletion) lines represent the best exponential fit for
the data set restricted to values of J ≥ 2, for which we expect an exponential behavior, as shown theoretically at half-filling
[3, 4], i. e. 〈N∞〉/Nmax = 1/2: see Tab. 1 for the parameter values. We obtained these results from Monte Carlo simulations
using Glauber dynamics for the 1D SRLG model with periodic boundary conditions.

at time t, then the instantaneous number of free ones evolves in time too and equals ntot −N(t).
Thus, the chemical potential of the reservoir, µr, is no longer constant throughout the relaxation.
On the contrary, it decreases as the occupancy increases and vice versa. By making the simplifying
assumption that the stators behave like a dilute ideal solution, we obtain [1, 2]:

βµr(t) = βµ0 + log [ntot −N(t) + 1], (2)

where µ0 corresponds to the chemical potential of the pure solvent. In the case of depletion we
can therefore define the effective time-dependent chemical potential of the reservoir as βµ′r(t) =
βµr(t)− βε and consider the difference βµ′0 = βµ0 − βε as an adjustable parameter of the model.
To correctly take into account depletion effects, βµ′r(t) is recalculated after each Monte Carlo step,
and the Hamiltonian (Eq. 1) is updated accordingly.

For a given choice of βJ and βµ′0, the steady state mean occupancy 〈N∞〉(βJ, βµ′0, ntot) increases
with the total number of stators in the system, ntot, as one can see in Fig. 3. Depletion strongly
affects the evolution of the system for ntot/Nmax . 5. When ntot increases, depletion effects become
less important, and the curves attain the upper bound value corresponding to the steady state mean
occupancy without depletion: 〈N∞〉(βJ, βµ′0, ntot)→ 〈N∞〉(βJ, βµ′0) as ntot → ∞. Here, we have
adjusted βµ′0 such that, for any given βJ , 〈N∞〉(βJ, βµ′0) equals the desired value.

The Master Equation and average trajectories

All the models described in the manuscript assume that stator binding/unbinding is a stochastic
process with rates depending on the occupancy and mechanical properties of the motor. We
can accommodate these stochastic descriptions by describing the state of the motor through the
probability vector ~P (t), where each component P (i)(t) is the probability of observing the motor at a
stoichiometry state i at a time t. The different models describe the stator dynamics as a continuous
time Markov process in which the probability of observing a change in stoichiometry at a certain
time is determined uniquely by the stoichiometry at that time [5]. This entails a linear differential
equation for the evolution of ~P (t),
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Figure 2: Asymmetry in relaxation times, ∆ ≡ (trelc −tresc )/(trelc +tresc ) (Eq. 3 in the main text): relative difference of relaxation
times from release and resurrection processes for mean steady state occupancies 〈N∞〉 of 4 and 8. Same parameter choice and
data set as in Fig. 1. Lines represent the predicted relative differences computed by approximating the relaxation times with
exponential functions whose parameters are listed in Tab. 1.
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Figure 3: Mean steady-state occupancy vs. the total number of stators normalized by Nmax for different values of βJ . We
choose the free parameter βµ′0 to yield an occupancy 〈N∞〉 = 2/3Nmax = 8 (black dashed line) at steady state in the absence
of depletion (ntot =∞). These results were obtained using Monte Carlo simulations with Glauber dynamics of the 1D SRLG
model with periodic boundary conditions.
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Nmax ntot 〈N∞〉 Initial conditions a±∆a (a. u.) b±∆b

13 ∞ 4 N0 = 0 (res) 5.1± 0.2 1.022± 0.010
〈N0〉 = 6 (rel) 5.0± 0.9 1.07± 0.04

8 N0 = 0 (res) 6.84± 0.14 0.998± 0.004
〈N0〉 = 9 (rel) 6± 2 1.08± 0.08

13 4 N0 = 0 (res) 6.8± 0.3 0.712± 0.009
〈N0〉 = 6 (rel) 6.4± 0.5 0.639± 0.019

8 N0 = 0 (res) 5.30± 0.12 0.724± 0.005
〈N0〉 = 9 (rel) 5.0± 0.4 0.659± 0.016

Table 1: Parameter values a and b, with their (asymptotic) standard errors, obtained by best fitting an exponential function,
f(βJ) = a exp(βJb), to the relaxation times tc from the simulation data (set restricted to data for J ≥ 2). We denote the
absence of depletion by ntot =∞.

d~P

dt
= A~P (t). (3)

Where each individual entry Aij of the matrix A describes the linear dependence of a change
in the stoichiometry state i on the current probability of occupancy of state j.

In the case of the Hill-Langmuir model, the binding propensity is proportional to the available
space in the motor kon(Nmax − N), while the detaching propensity is proportional to the current
stoichiometry of the motor koffN , where kon and koff are the constant binding and unbinding rates,
respectively. We can write explicitly the Nmax + 1 differential equations composing the Master
Equation (ME) (Eq. 3) for the Hill-Langmuir model as,

dPn
dt

= kon(Nmax−n−1)Pn−1 +koff(n+1)Pn+1−kon(Nmax−n)Pn−koffnPn, n = 0, . . . , Nmax,

where P−1 = PNmax+1 = 0. The mean occupancy in time 〈N(t)〉 =
∑Nmax

n=0 nPn(t) can be obtained
by multiplying the above equation by the stoichiometry n and summing for all the possible motor
stoichiometries, resulting in a closed differential equation for the evolution of the mean occupancy
in time,

d〈N〉
dt

= kon (Nmax − 〈N〉)− koff〈N〉. (4)

Similarly, we can write the Master Equation for the speed-rate model by introducing the stoi-
chiometry dependent rates kon(N) and koff(N) in Eq. 4. If we try to obtain an equation for 〈N〉 by
multiplying the ME by n and summing for all the possible occupancy states of the motor, we do
not recover a closed expression for 〈N〉 due to the non-linearity of the rates with the occupancy,

d〈N〉
dt

= 〈kon(N) (Nmax −N)− koff(N)N〉

= k0

〈(
1− e−αγ/N

)(
Nmax −N(eβ(ε−µr) − 1

)〉
.

Therefore, analysis of the mean occupancy in time demands that we solve the systems of differ-
ential equations numerically. Note that, though the rates are not linear in the occupancy N , the
right hand side of the ODE system is still linear in the probability vector ~P (see eq. 3), and this
allows us to solve the equation by diagonalization of the matrix A (see next section).
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Finally, for the two-state model, the stoichiometry probability vector must incorporate the
two possible binding states (weak and strong) of the stators ~P = {Pw,s|w = 0, . . . , Nmax; s =
0, . . . , Nmax; w + s ≤ Nmax}, where the resulting system of (Nmax − 2)(Nmax − 1)/2 differential
equations composing the Master Equation follows,

dPw,s
dt

= kuw[(Nmax − w − s− 1)Pw−1,s − (Nmax − w − s)Pw,s],
+ kwu((w + 1)Pw+1,s − wPw,s),
+ kws((w + 1)Pw+1,s−1 − wPw,s),
+ ksw((s+ 1)Pw−1,s+1 − sPw,s), w, s = 0, 1, ..., Nmax,

(5)

where for sake of clarity we are extending the notation such that Pw,s = 0 if w, s < 0 or w+s > Nmax.
Despite the high dimensionality of the two-state model, since the right hand side is linear in the
stoichiometry variables w, s, we can calculate closed expressions for the evolution of the expected
number of weakly bound stators at time t as 〈w(t)〉 =

∑Nmax
w=0

∑Nmax
s=0 wPw,s; and equivalently, for the

strongly bound stators 〈s(t)〉 =
∑Nmax

w=0

∑Nmax
s=0 sPw,s. Multiplying Eq. 5 by w or by s and summing

for all the possible attainable configurations of the motor, we obtain the system of equations

d〈w〉
dt

= kuw(Nmax − 〈w〉 − 〈s〉) + ksw〈s〉 − (kwu + kws)〈w〉,
d〈s〉
dt

= kws〈w〉 − ksw〈s〉. (6)

At steady state (d〈w〉
dt = d〈w〉

dt = 0), the model predicts the following stoichiometries,

〈w∞〉 =
Nmaxkswkuw

kuwkws + kuwksw + kswkwu
,

〈s∞〉 =
Nmaxkwskuw

kuwkws + kuwksw + kswkwu
,

〈N∞〉 = 〈w∞ + s∞〉 =
Nmax(kws + ksw)kuw

kuwkws + kuwksw + kswkwu
.

(7)

In addition, the linear system of ODEs (6) can be solved analytically, obtaining the evolution
of the weak and strongly bound stators,(〈w〉(t)

〈s〉(t)

)
= C+

(
1

a+

)
eλ+t + C−

(
1

a−

)
eλ−t+

(〈w〉∞
〈s〉∞

)
, (8)

where,

λ± = −K
2

(
1∓
√

1− 4
kuwkws + kuwksw + kswkwu

K2

)
,

a± =
λ± + kuw + kwu + kws

ksw − kuw
=

λ∓ + ksw
kuw − ksw

,

K = kuw + kwu + kws + ksw,

C− =
(ksw − kuw)(s0 − 〈s〉ss − a+(w0 − 〈w〉ss))

λ− − λ+
,

C+ = w0 − 〈w〉ss − C−.

(9)
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The expected trajectory for a given set of rates and initial condition can be obtained from
Eq. (8), returning the expression given in the main text,

〈N(t)〉 = 〈w(t)〉+ 〈s(t)〉 = C+(1 + a+)eλ+t + C−(1 + a−)eλ−t + 〈w∞〉+ 〈s∞〉 (10)

≡ D+eλ+t +D−eλ−t + 〈N∞〉 (11)

Integration of the Master Equation

Since all the model comparisons in this study are done through the expected occupancy trajectories,
the analytical expressions for 〈N(t)〉 were used when available, without the necessity to solve the
Master Equation (Eq. 3). For the speed-rate model this is not possible. Nevertheless, since the
Master Equation is linear in the probabilities Pn, it can be solved by diagonalizing the system of
ODEs finding the change of base Λ = UAU−1 that returns a diagonal matrix Λ decoupling the
system of ODEs (where the matrix U is composed by the eigenvectors of A). In the eigenbase, the
evolution for each component of the probability vector follows,

dQn(t)

dt
= λnQn(t) ⇒ Qn(t) = Qn(0)eλnt, (12)

where ~Q(t) = U ~P (t) is the probability vector in the eigenbase and λn = Λn,n are the corresponding

eigenvalues. Full trajectories ~P (t) were obtained by numerically diagonalizing the matrix A for a
given parameter set, expressing the initial vector ~P (0) in the eigenbase ~Q(0) = U ~P (0), calculating
the trajectories in the eigenbase ~Q(t) using Eq. 12, and finally, transforming back to the natural
base ~P (t) = U−1 ~Q(t).

This evaluation was required to obtain the trajectories of the speed-rate model. In addition,
it was also used to obtain the initial condition for the release trajectories of the two-state model.
Experimental release trajectories provide the initial condition 〈N(0)〉 = Nexp(0) but leave a degree
of freedom on the distribution of the stator hidden states 〈w(0)〉 and 〈s(0)〉 = 〈N(0)〉 − 〈w(0)〉.
Different initial conditions were tested, where the best fits were obtained by using the steady state
distribution P ∗w,s (eigenvector with λ = 0) in the case for which there is no unbinding from the
motor kwu = 0. This is consistent with the catch-bond hypothesis, assuming that unbinding is
forbidden during stall. The corresponding values 〈w(0)〉 and 〈s(0)〉 = N(0)−〈w(0)〉 were obtained
using the conditional average,

〈w(0)〉 =

∑
w,s=1,...,Nmax

wP ∗w,sδw+s,N0∑
w,s=1,...,Nmax

P ∗w,sδw+s,N0

, (13)

where δi,j is the Kronecker delta.

Bayesian Inference

Bayesian inference was employed to obtain credibility distributions for each set of parameters
for each model. Bayesian inference requires us to define a likelihood function that describes the
probability to observe the experimental data given a certain set of parameters. Unfortunately,
variability between motors and uncertainty from the stoichiometries obtained by the step detec-
tion and stoichiometry reconstruction alogorithms [6] do not allow us to write an exact expression
for the likelihood. For this reason, we employed Approximate Bayesian Computation (ABC) in
which the likelihood function for a given parameter set ~θ is replaced by the conditional probability
P (d(~θ, data) < ε). Where the function d(~θ, data) is a distance function comparing the experimental
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Optimal Parameters
Model Optimal distance Maximum a Posteriori High density interval
Hill Langmuir
release data

u
kon(τ)

koff (τ)
b

εT = 45
d∗ = 35.5

kon,300 = 2.18 · 10−3 s−1

koff,300 = 3.96 · 10−3 s−1

kon,500 = 2.47 · 10−3 s−1

koff,500 = 1.57 · 10−3 s−1

kon,1300/koff,1300 = 3.54

kon,300 = 2.04 · 10−3 s−1

koff,300 = 3.73 · 10−3 s−1

kon,500 = 2.45 · 10−3 s−1

koff,500 = 1.57 · 10−3 s−1

kon,1300/koff,1300 = 3.64

kon,300 = [1.28, 3.01] · 10−3 s−1

koff,300 = [2.47, 5.33] · 10−3 s−1

kon,500 = [1.30, 4.78] · 10−3 s−1

koff,500 = [9.05, 28.6] · 10−4 s−1

kon,1300/koff,1300 = [3.38, 4.02]

Hill Langmuir
resurrection data

εT = 190
d∗ = 169

kon,300 = 0.0189 s−1

koff,300 = 0.0451 s−1

kon,500 = 9.89 · 10−3 s−1

koff,500 = 8.08 · 10−3 s−1

kon,1300 = 5.39 · 10−3 s−1

koff,1300 = 1.97 · 10−3 s−1

kon,300 = 0.0216 s−1

koff,300 = 0.0523 s−1

kon,500 = 9.62 · 10−3 s−1

koff,500 = 7.80 · 10−3 s−1

kon,1300 = 5.38 · 10−3 s−1

koff,1300 = 1.94 · 10−3 s−1

kon,300 = [0.0106, 0.0427] s−1

koff,300 = [0.0251, 0.100] s−1

kon,500 = [8.23, 11.7] · 10−3 s−1

koff,500 = [6.63, 9.86] · 10−3 s−1

kon,1300 = [4.90, 5.87] · 10−3 s−1

koff,1300 = [1.61, 2.29] · 10−3 s−1

Hill Langmuir
full dataset

εT = 1100
d∗ = 1024

kon,300 = 6.81 · 10−3 s−1

koff,300 = 1.37 · 10−2 s−1

kon,500 = 7.08 · 10−3 s−1

koff,500 = 4.68 · 10−3 s−1

kon,1300 = 4.81 · 10−3 s−1

koff,1300 = 1.39 · 10−3 s−1

kon,300 = 9.21 · 10−3 s−1

koff,300 = 1.86 · 10−2 s−1

kon,500 = 7.11 · 10−3 s−1

koff,500 = 4.74 · 10−3 s−1

kon,1300 = 4.77 · 10−3 s−1

koff,1300 = 1.38 · 10−3 s−1

kon,300 = [4.36, 16.8] · 10−3 s−1

koff,300 = [8.82, 33.5] · 10−3 s−1

kon,500 = [5.69, 9.21] · 10−3 s−1

koff,500 = [3.71, 6.07] · 10−3 s−1

kon,1300 = [4.26, 5.45] · 10−3 s−1

koff,1300 = [1.11, 1.65] · 10−3 s−1

Table 2: Resulting parameters for the Hill-Langmuir model [6]. The SMC-ABC was run for each case with a final distance
threshold εT and the optimal distance parameter set returned an optimal distance d∗.

average trajectories, with the expected average trajectories for ~θ. We used the sum of squared
distances between experimental and theoretical average trajectories (see Material and Methods).
The threshold ε is a small value below which a trajectory is considered to reproduce experimental
trajectories.

The inference also requires the introduction of a prior knowledge of the model expressed as prior
credibility distributions for each parameter. To avoid bias in the parameter inference, we chose flat
distributions for the logarithm of each rate over three decades. To make this clearer, the range of
all posterior plots (see Figs. 5-8) shows the range of the prior distributions used.

In order to accelerate the convergence of the inference we made use of Sequential Monte Carlo
(SMC) sampling in which the posterior distribution is obtained by sequentially finding the poste-
rior distributions for a decreasing set of thresholds ε1, ε2, . . . , εT obtaining a set of generations of
posteriors until the target threshold εT is obtained. Perturbation and evaluation for each gener-
ation was done using a Gaussian Kernel with a covariance dependent on the previous generation [7].

For each individual model, the final threshold value εT was chosen to be close to the optimal
distance attainable for each model. On the other hand, for model selection, the SMC-ABC was run
with a common final threshold 10% above the optimal distance for the speed-rate model.

Fitting results of the experimental data

For each posterior distribution, we report in tables 2 and 3 the maximum a posteriori of the distribu-
tion and the 90% high density intervals for each parameter set. In addition, for each parameter set,
we performed a minimization of the distance function, using the Nedler-Mead algorithm, starting
each search at the maximum a posteriori identified by the SMC-ABC.
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Optimal Parameters
Model Optimal distance Maximum a Posteriori High density interval
speed-rate [8]
(5 parameters)

u
kon(ω)

koff (ω, τ)
b

εT = 1100
d∗ = 997

k0 = 0.00575 s−1

κ = 396 rad s−1

β(µr − ε300) = 0.846
β(µr − ε500) = −0.356
β(µr − ε1300) = −1.19

k0 = 0.00562 s−1

κ = 256 rad s−1

β(µr − ε300) = 0.871
β(µr − ε500) = −0.336
β(µr − ε1300) = −1.20

k0 = [0.00430, 0.0079] s−1

κ = [109, 818] rad s−1

β(µr − ε300) = [0.712, 1.04]
β(µr − ε500) = [−0.516,−0.168]
β(µr − ε1300) = [−1.40,−0.990]

two-state catch-bond
(8 parameters)

u
kuw

kwu(τ)
w

kws(τ)

ksw
s

εT = 500
d∗ = 391

kuw = 8.37 · 10−3 s−1

ksw = 1.93 · 10−3 s−1

kwu,300 = 0.0213 s−1

kws,300 = 2.37 · 10−4 s−1

kwu,500 = 7.53 · 10−3 s−1

kws,500 = 6.17 · 10−4 s−1

kwu,1300 = 7.42 · 10−3 s−1

kws,1300 = 4.38 · 10−3 s−1

kuw = 8.03 · 10−3 s−1

ksw = 2.34 · 10−3 s−1

kwu,300 = 0.0194 s−1

kws,300 = 3.63 · 10−5 s−1

kwu,500 = 6.90 · 10−3 s−1

kws,500 = 4.23 · 10−4 s−1

kwu,1300 = 7.94 · 10−3 s−1

kws,1300 = 6.02 · 10−3 s−1

kuw = [6.67, 10.8] · 10−3 s−1

ksw = [1.35, 3.06] · 10−3 s−1

kwu,300 = [1.54, 2.74] · 10−2 s−1

kws,300 = [1.02, 589] · 10−6 s−1

kwu,500 = [4.93, 10.9] · 10−3 s−1

kws,500 = [4.46, 134] · 10−5 s−1

kwu,1300 = [4.13, 13.9] · 10−3 s−1

kws,1300 = [1.91, 9.81] · 10−3 s−1

extended two-state catch-bond
(10 parameters)

u
kuw

kwu(τ)
w

kws(τ)

ksw(τ)
s

εT = 500
d∗ = 388

kuw = 8.41 · 10−3 s−1

kwu,300 = 0.0212 s−1

kws,300 = 2.49 · 10−4 s−1

ksw,300 = 2.12 · 10−3 s−1

kwu,500 = 7.55 · 10−3 s−1

kws,500 = 5.90 · 10−4 s−1

ksw,500 = 1.87 · 10−3 s−1

kwu,1300 = 7.23 · 10−3 s−1

kws,1300 = 3.88 · 10−3 s−1

ksw,1300 = 1.76 · 10−3 s−1

kuw = 8.00 · 10−3 s−1

kwu,300 = 0.0192 s−1

kws,300 = 6.45 · 10−5 s−1

ksw,300 = 2.01 · 10−3 s−1

kwu,500 = 7.04 · 10−3 s−1

kws,500 = 4.18 · 10−4 s−1

ksw,500 = 1.69 · 10−3 s−1

kwu,1300 = 6.07 · 10−3 s−1

kws,1300 = 2.84 · 10−3 s−1

ksw,1300 = 1.66 · 10−3 s−1

kuw = [6.54, 10.5] · 10−3 s−1

kwu,300 = [0.0152, 0.0254] s−1

kws,300 = [1.06, 666.0] · 10−6 s−1

ksw,300 = [1.30, 4.21] · 10−3 s−1

kwu,500 = [4.80, 10.2] · 10−3 s−1

kws,500 = [6.27, 163] · 10−5 s−1

ksw,500 = [7.72, 42.8] · 10−4 s−1

kwu,1300 = [3.72, 12.1] · 10−3 s−1

kws,1300 = [1.15, 9.77] · 10−3 s−1

ksw,1300 = [8.24, 34.3] · 10−4 s−1

general two-state model
(12 parameters)

u
kuw(τ)

kwu(τ)
w

kws(τ)

ksw(τ)
s

εT = 325
d∗ = 222

kuw,300 = 0.0697 s−1

kwu,300 = 0.188 s−1

kws,300 = 4.76 · 10−4 s−1

ksw,300 = 2.06 · 10−3 s−1

kuw,500 = 0.0127 · s−1

kwu,500 = 0.0132 s−1

kws,500 = 1.02 · 10−3 s−1

ksw,500 = 1.82 · 10−3 s−1

kuw,1300 = 6.15 · 10−3 s−1

kwu,1300 = 4.07 · 10−3 s−1

kws,1300 = 3.61 · 10−3 s−1

ksw,1300 = 2.62 · 10−3 s−1

kuw,300 = 0.0252 s−1

kwu,300 = 0.0589 s−1

kws,300 = 2.76 · 10−5 s−1

ksw,300 = 2.21 · 10−3 s−1

kuw,500 = 0.0124 s−1

kwu,500 = 0.0130 s−1

kws,500 = 7.60 · 10−4 s−1

ksw,500 = 1.33 · 10−3 s−1

kuw,1300 = 5.51 · 10−3 s−1

kwu,1300 = 2.75 · 10−3 s−1

kws,1300 = 2.14 · 10−3 s−1

ksw,1300 = 2.75 · 10−3 s−1

kuw,300 = [0.00906, 0.0978] s−1

kwu,300 = [0.0209, 0.234] s−1

kws,300 = [1.00, 434] · 10−6 s−1

ksw,300 = [1.09, 3.51] · 10−3 s−1

kuw,500 = [7.94, 19.9] · 10−3 s−1

kwu,500 = [6.74, 23.5] · 10−3 s−1

kws,500 = [2.18, 29] · 10−4 s−1

ksw,500 = [7.81, 35.7] · 10−4 s−1

kuw,1300 = [4.67, 7.58] · 10−3 s−1

kwu,1300 = [1.83, 6.80] · 10−3 s−1

kws,1300 = [3.57, 94.1] · 10−4 s−1

ksw,1300 = [4.29, 98.4] · 10−4 s−1

Table 3: Resulting parameters for the two different models which show asymmetric relaxation timescales discussed in the
manuscript: the speed-rate model, and the two-state catch bond model. In addition we include the results for the extended
two-state catch bond model (10 parameters) where only the binding rate is independent of the torque, and the general two-state
model (12 parameters). The SMC-ABC was run with a final distance threshold εT and the optimal distance parameter set
returned an optimal distance d∗
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Figure 4: Relationship between the number of parameters and optimal distances for the different models studied.
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Figure 5: Sample of the posterior distribution for the speed-rate model. Marginal posterior (diagonal) and pairwise posterior
distributions (off-diagonal), color indicates density of the joint posterior distribution. Units of the rates are in s−1. Parameter
ζ ≡ β(µT − ε) indicates the free energy change term in the speed-rate model. Axes ranges correspond with the range of the
uniform prior distributions.
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Figure 6: Sample of the posterior distribution for the two-state catch-bond model. Marginal posterior (diagonal) and pairwise
posterior distributions (off-diagonal), color indicates density of the joint posterior distribution. Units of the rates are in s−1.
Axes ranges correspond with the range of the uniform prior distributions. Two rates are identical along the guiding dashed
lines.
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Figure 7: Sample of the posterior distribution for the extended two-state catch bond model. Marginal posterior (diagonal)
and pairwise posterior distributions (off-diagonal), color indicates density of the joint posterior distribution. Units of the rates
are in s−1. Axes ranges correspond with the range of the uniform prior distributions. Two rates are identical along the guiding
dashed lines.
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Figure 8: Sample of the posterior distribution for the general two-state model. Marginal posterior (diagonal) and pairwise
posterior distributions (off-diagonal), color indicates density of the joint posterior distribution. Units of the rates are in s−1.
Axes ranges correspond with the range of the uniform prior distributions. Two rates are identical along the guiding dashed
lines.

13



References

1. Hansen, J.-P. & McDonald, I. R. Theory of simple liquids (Elsevier, 1990).

2. Vafaei, S., Tomberli, B. & Gray, C. McMillan-Mayer theory of solutions revisited: Simplifica-
tions and extensions. The Journal of chemical physics 141, 154501 (2014).

3. Glauber, R. J. Time-dependent statistics of the Ising model. Journal of mathematical physics
4, 294–307 (1963).

4. Godreche, C. & Luck, J. Response of non-equilibrium systems at criticality: ferromagnetic
models in dimension two and above. Journal of Physics A: Mathematical and General 33, 9141
(2000).

5. Van Kampen, N. Stochastic Processes in Physics and Chemistry isbn: 9780080475363. https:
//books.google.co.uk/books?id=N6II-6HlPxEC (Elsevier Science, 2011).

6. Nord, A. L. et al. Catch bond drives stator mechanosensitivity in the bacterial flagellar motor.
Proceedings of the National Academy of Sciences of the United States of America 114, 12952–
12957 (2017).

7. Filippi, S., Barnes, C. P., Cornebise, J. & Stumpf, M. P. On optimality of kernels for approxi-
mate Bayesian computation using sequential Monte Carlo. Statistical Applications in Genetics
and Molecular Biology 12, 87–107 (2013).

8. Wadhwa, N., Phillips, R. & Berg, H. C. Torque-dependent remodeling of the bacterial flagellar
motor. Proceedings of the National Academy of Sciences of the United States of America 116,
11764–11769 (2019).

14


