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The bacterial flagellar motor (BFM) is the membrane-embedded rotary molecular
motor which turns the flagellum that provides thrust to many bacterial species. This
large multimeric complex, composed of a few dozen constituent proteins, has emerged
as a hallmark of dynamic subunit exchange. The stator units are inner-membrane
ion channels which dynamically bind and unbind to the peptidoglycan at the rotor
periphery, consuming the ion motive force (IMF) and applying torque to the rotor
when bound. The dynamic exchange is known to be a function of the viscous load on
the flagellum, allowing the bacterium to dynamically adapt to its local viscous envi-
ronment, but the molecular mechanisms of exchange and mechanosensitivity remain
to be revealed. Here, by actively perturbing the steady-state stator stoichiometry of
individual motors, we reveal a stoichiometry-dependent asymmetry in stator remod-
eling kinetics. We interrogate the potential effect of next-neighbor interactions and
local stator unit depletion and find that neither can explain the observed asymmetry.
We then simulate and fit two mechanistically diverse models which recapitulate the
asymmetry, finding stator assembly dynamics to be particularly well described by a
two-state catch-bond mechanism.

The bacterial flagellar motor (BFM) is the rotary molecular motor which, in many bacterial
species, provides the thrust necessary for motility, chemotaxis, biofilm formation and infection. The
BFM is large (∼ 11 MDa), dynamically self-assembled, and membrane-spanning, comprised of more
than a dozen different proteins. The rotor, which extends into the cytoplasm, is rotated by up to
around a dozen peptidogylcan (PG)-bound stator units, each one powered by the electrochemical
gradient across the cell membrane. This rotation is coupled to the extracellular flagellar filament,
which can spin at speeds of up to hundreds of Hertz.

Historically, it was imagined that, once assembled, the composition of the BFM was static.
However, thanks to a multitude of studies over the last decade showing dynamic exchange of
multiple motor components, the BFM has become a hallmark of dynamic subunit exchange in
multimeric protein complexes [1]. This phenomenon has been most well characterized for the
stator units, which exchange between an active, motor-bound, torque-producing population and a
pool of inactive membrane-diffusing units [2]. While the purpose and mechanism of this exchange
have not yet been fully elucidated, the stator units are mechanosensitive, with larger viscous loads
on the flagellum leading to higher stator occupancy [3, 4]. Stator unit exchange occurs on timescales
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of seconds to minutes, allowing the motors of individual cells to quickly and dynamically adapt to
changes in their environment.

The dynamics of stator remodeling was first quantitatively modeled with a simple reversible Hill-
Langmuir adsorption model [2, 5]. When this model was applied to motors driving various viscous
loads, it was observed that the stator unbinding rate was load-dependent, and that the stator
units behaved in a manner consistent with a catch-bond mechanism. In spite of these results, the
particular mechanism in control of the stoichiometry dynamics remains elusive. Recently, Wadhwa
et al. proposed a more complex model which conjectures that, in addition to a load-dependent
unbinding rate, both the binding and unbinding rates are also dependent upon the speed of the
motor [6]. In contrast to the Hill-Langmuir model, this model presents an intriguing and testable
prediction: the characteristic relaxation timescale towards steady state depends on the initial stator
stoichiometry. Here, by employing a variety of experimental methods, we explore different starting
stoichiometries of individual motors and measure their relaxation dynamics. In order to shed light
on the mechanistic nature of the resulting timescales, we compare the experimental results with
the model of Wadwha et al. and with other models compatible with a relaxation time depending
on the initial stoichiometry. In particular, we propose an alternative model based on a two-state
catch bond, and we discuss the implications of these results with respect to stator remodeling of
the BFM and more generally for dynamic protein complexes.

Results

Measurements of BFM relaxation to steady state

Previously, we used magnetic tweezers to reversibly increase the viscous load on individual motors,
transiently perturbing the stator stoichiometry from steady state, then quantified stator dynamics
during the relaxation back to steady state [5]. In this work, we started by repeating these measure-
ments. Cells of a non-switching strain of E. coli lacking flagellar filaments were immobilized to a
coverslip, and streptavidin-coated superparamagnetic particles were attached to an endogenously
biotinylated hook. The position of the particles was tracked and used as a proxy for the angular
position of the motor, yielding motor speed and torque. Following a steady-state measurement,
two permanent magnets were brought near the sample. Here, the torque exerted by the magnets
on the particle counters and balances the torque exerted by the BFM upon the particle, thereby
stalling motor rotation. This resulted in the recruitment of additional stators, priming the system
to a state of higher stoichiometry than that of steady state. Following 10 minutes of motor stall,
the magnets were rapidly removed, and the speed and torque of the motor were measured as the
system relaxed back to steady state.

Following relaxation, and using the exact same set of motors, we perturbed the motors away
from steady-state stoichiometry, but in the opposite direction, towards lower stator stoichiometries.
We introduced an ionophore to collapse the proton motive force (PMF) and waited 8 min for the
stators to fully dissociate from the motor. We then flushed out the ionophore and measured motor
speed and torque as the stators re-incorporated to reach steady state, a process we refer to as
‘resurrection’. All measurements were performed for three viscous loads (γ1300, γ500, γ300) by using
beads of 1300, 500, and 300 nm in diameter. Details are given in Materials and Methods and as
described previously [5].

From these different experiments we obtained, for each individual motor, traces in time for
three different initial stoichiometry conditions: steady state, release from stall, and resurrection.
Using a step detection algorithm and knowledge of the torque per stator from individual traces,
we calculated stator stoichiometry trajectories in time [5]. Fig. 1A shows an example of a single
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motor measurement, Fig. 1B shows a schematic of the evolution of stoichiometry, and Fig. 1C-D
shows motor torque and stator stoichiometry as a function of time for all of the measurements.

An asymmetry in the characteristic relaxation time

We previously proposed a reversible Hill-Langmuir adsorption model to describe stator assembly
kinetics [5]. In this model, the rotor is surrounded by Nmax fixed, independent, and non-interacting
binding sites. Stator units freely diffusing in the inner membrane can bind to an empty site on
the rotor with rate constant kon, bound stator units can dissociate with rate constant koff , and the
average number of bound stator units, 〈N〉, evolves according to

d〈N〉
dt

= kon (Nmax − 〈N〉)− koff〈N〉. (1)

We assume the concentration of freely diffusing stators is large enough to be considered constant.
The analytical solution,

〈N〉(t) = 〈N∞〉+ (N0 − 〈N∞〉)e−(kon+koff)t, (2)

relaxes from stator occupancy N0 at t = 0 to the average steady-state value, 〈N∞〉 = Nmax/(1 +
koff/kon), with a characteristic relaxation time tc ≡ 1/(kon + koff).

Eq. 2 was fit to the average over all motors for each experimental relaxation (shown in Fig. 2A),
with the exception of release from stall for γ1300, wherein the number of stators is not significantly
affected by motor stall. The resulting rate constants and characteristic relaxation times are shown
in Fig. 2B. In accordance with earlier work, we observe that tc is dependent upon load, and thus
upon the torque delivered by a single stator unit: the smaller the single stator unit torque, the
faster the relaxation. Unexpectedly, we observed a new feature which becomes apparent only when
the system is prepared into different starting stoichiometries: the timescale to approach steady
state is asymmetric; resurrection traces are faster than release from stall traces. This asymmetry
(dependence of tc on the starting stoichiometry) is not compatible with the previously proposed Hill-
Langmuir adsorption model, and opens the door to understanding the mechanisms that control the
feedback between load and stoichiometry dynamics. Consequently, we proceeded by interrogating
various potential mechanisms in search of the source of this observed asymmetry.

Neither depletion nor cooperativity explain the observed asymmetry

We investigated whether either next-neighbor unit-unit interactions or local depletion of unbound
stator units surrounding the motor could explain the observed asymmetry in relaxation time. We
first employed a grand canonical Hamiltonian description of a one-dimensional Short Range Lattice
Gas (SRLG) with periodic boundary conditions to rigorously explore the effects of stator cooper-
ativity (see SI for more details). Our Glauber Monte Carlo simulations based on this model show
that the characteristic relaxation time increases quickly with the (dimensionless) unit-unit interac-
tion energy βJ ≥ 0 (where β = (kBT )−1, with the Boltzmann constant kB and T the temperature),
and the correlation length, the characteristic distance over which the occupancy of one binding
site influences that of its neighbors, grows as well [7–9] (Fig. 1). Furthermore, the characteristic
relaxation time for positive values of βJ depends on the average occupancy at steady state 〈N∞〉.
Note that when the (dimensionless) interaction energy βJ equals zero, the SRLG is equivalent to
the Hill-Langmuir adsorption model, and the following relation between the effective (dimension-
less) chemical potential of the reservoir, βµ′r = βµr − βε, and the Hill-Langmuir rate constants is
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Figure 1: A) Single measurement of a 300 nm bead, showing motor torque and stator number as a function of time. The
experimental protocol for single motor measurements was the following: unperturbed steady-state measurement (yellow), motor
stall via magnetic tweezers (10 min), release from stall and relaxation back to steady state (green), introduction of ionophore (8
min), removal of ionophpre and motor resurrection to steady state (purple). B) A schematic of the torque-speed plane for the
example in (A), where colors correspond to the experimental steps. Solid arrows represent observed transitions, open arrows
non-observed transitions. Bottom inset shows the experimental assay. C) Individual traces of motor torque versus time and
D) stator number versus time for the steady state (yellow), release from stall (green), and resurrection (purple) measurements.
Black lines show the average behavior of all motors. Subplots from top to bottom shows 1300, 500, and 300 nm beads (27, 33,
and 31 measurements, respectively).
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Figure 2: A) Evolution of stator stoichiometry for release from stall (green) and resurrection (purple). Viscous loads, from the
top to bottom are γ1300, γ500, and γ300. Green and purple lines show the average of multiple traces, shading shows standard
deviation, and the yellow line shows the average of steady-state measurements. The black dashed line shows the best fit of Eq. 2
to each time series (with the exception of release from stall for γ1300). B) The rates (top) and characteristic times (bottom) as
a function of single stator torque at steady state, τss. Error bars on τss are the standard deviation of all measurements. Error
bars on rates and tc represent the 90% high density interval from Approximate Bayesian Computation inference.

satisfied: βµr = log (kon/koff). Here, µr is the chemical potential of the reservoir, ε is the binding
energy.

Simulation results do indeed exhibit different relaxation times to steady state between release
from stall and resurrection, trel

c and tres
c , respectively. The cooperativity-induced time asymmetry

cannot, however, reasonably explain the experimentally measured ones, even though the former
increases with the nearest-neighbor (dimensionless) interaction energy, βJ . Indeed, for biologically
reasonable values of the coupling constant, βJ ∼ 0–5, the simulations predict too small a difference
between the relaxation times when compared with the experimental data. Fig. 2 shows that for
relatively high values of the interaction, βJ = 5, cooperativity predicts a relative difference in the
relaxation times,

∆ ≡ (trel
c − tres

c )/(trel
c + tres

c ), (3)

of 20% at most. A simple extrapolation from these results shows that we would need biologically
unreasonable values, βJ > 19, to obtain values comparable with the experimental ones (∼ 63% for
γ500, and ∼ 82% for γ300).

Second, taking inspiration from a recent study of depletion effects [10], we constrained the SRLG
to interact with a finite reservoir of stator units.We introduced a new parameter, the number of
available stator units per cell ntot, thus fixing the total number of stator units in the system (see
SI for more details). The steady-state occupancy increases with ntot and tends asymptotically
from below to the value of the SRLG model without depletion (Fig. 3). Interestingly, simulations
conducted under high depletion (ntot = Nmax = 13) predict that release processes relax more
rapidly than resurrection ones (Fig. 1), in evident contrast with the experimental results.

In conclusion, all reasonable interpretations of the above findings suggest that neither interac-
tions between neighboring bound stator units, nor finite reservoir effects are directly responsible
for the observed asymmetry of relaxation times. Nevertheless, cooperativity and depletion sensi-
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bly affect both the steady-state occupancy and the relaxation time. Thus, further theoretical and
experimental investigations are needed to ascertain their role in the stator recruitment mechanism.

A model incorporating speed and torque dependent rates

Wadhwa et al. [6] have proposed a model of stator assembly dynamics which employs a statistical
physics approach, explicitly incorporating the dependence of the rates on the motor speed, and thus
stator stoichiometry (see Fig. 3B). In this model, which we henceforth refer to as the ‘speed-rate’
model, the binding of a single stator unit to the rotor changes its free energy ε(τ)− µr, where the
binding energy ε(τ) is dependent upon the torque produced by the stator. In line with our previous
model [5], they hypothesize that torque production lowers the free energy difference depending on
the torque which leads to the following rate ratio, [6],

kon

koff
= eβ(µr−ε(τ)). (4)

From this general starting point, Wadhwa et al. find that their data is best fit by a model in
which koff is torque dependent, kon is speed dependent, and in order to satisfy Eq. 4, koff must also
incorporate the same speed dependence. The rates are thus

kon = k0(1− e−κ/ω),

koff = k0(1− e−κ/ω)eβ(ε(τ)−µr),
(5)

where k0 and κ are constants, and ω is the rotation speed of the motor. Because the speed of the
motor is proportional to its stoichiometry for a given value of the load (γ) [11, 12], the rates of Eq. 5
can also be written in terms of the stoichiometry κ/ω ≡ αγ/N , where αγ is a multiplicative constant
dependent on the load. This allows us to proceed similarly to the Hill-Langmuir model Eq. 2, and
write an ordinary differential equation (ODE) for the evolution of the average stoichiometry,

d〈N〉
dt

= 〈kon(N) (Nmax −N)− koff(N)N〉

= k0

〈(
1− e−αγ/N

)(
Nmax −N(eβ(ε−µr) − 1

)〉
.

Given the non-linearity of the rates of Eq. 5 with the stoichiometry, the speed-rate model does
not give a closed analytical differential equation for the evolution of the average stoichiometry
〈N〉, as proposed previously [6], since 〈f(N)〉 6= f(〈N〉) for any non-linear function f(·). As a
consequence, calculating the average stoichiometry trajectories for any given set of parameters
requires us to computationally solve the corresponding Master Equation (see SI for more details).
To infer the optimal parameters of the speed-rate model given the experimental data, we employ
Approximate Bayesian Computation (ABC) [13], comparing the resulting average stoichiometry
dynamics of the model with the experiments (see SI). The results are shown in Fig. 3A, and the
parameters are given in Tab. 3 and Fig. 5. The use of a Bayesian framework not only allows us to
perform a global search, reporting the range and correlations of the parameters compatible with
the experimental data, but also allows for quantitative comparison of the credibility of various
theoretical models (see SI).

A two-state catch-bond model

We also consider an alternative kinetic model based upon previous models of two-state catch bonds
[14–16]. Our previous work observed that the lifetime of the stator in the motor complex increases as
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Figure 3: A) The experimental data set. The solid colored lines and shading show the mean and standard deviation of stator
number for steady state, release from stall, and resurrection (yellow, green, purple, respectively). Three viscous loads are shown
from top to bottom: 1300, 500, and 300 nm bead. Blue dashed lines are a global fit of the speed-rate model of Wadhwa et al.
[6] (Eq. 1 using the rates of Eq. 5). Red dashed lines are a global fit of the two-state catch-bond model (Eq. 8). B) Schematics
of the speed-rate and two-state catch-bond models C) Bayes factors for each of the models, normalized by that of the speed-rate
model. Blue and red bars show the speed-rate and two-state catch-bond models depicted in (B). White bars show the 10 and
12 parameter two-state models. D) From the fit of the speed-rate model, the dimensionless energetic contribution µr − ε(τ), as
a function of torque per stator unit. Error bars show high density interval. E) From the fit of the speed-rate model, a graphical
representation of kon, koff and 1/tc as a function of motor speed for each of the viscous loads over the range of observed speeds.
Shading shows high density interval of 1/tc. F) From the fit of the two-state catch-bond model, rates as a function of torque
per stator unit. Triangles mark maximum a priori values, shading shows the high density parameter region. G) From the fit
of the two-state catch-bond model, a schematic of the energy landscape corresponding to the rates shown in (F). We note that
the distance along the reaction coordinate is unknown. Arrows showing transitions of energy barriers are color-matched to the
rates plotted in (F).

the stator applies more torque upon the rotor, and by reaction, as the stator pulls with higher force
on the PG [5]. This behavior is characteristic of a catch bond. A widely applied phenomenological
model to describe catch-bond behavior is a two-state model in which the thermodynamic stability
between two bound conformational states is mediated by force [14, 17]. So, we propose a model,
depicted in Fig. 3B, in which the stator can bind to the PG with low affinity or high affinity,
mechanical force regulates the transition between these conformational states, and the stator applies
torque to the rotor in both bound states. For simplicity, and to minimize the number of free
parameters, we assume that the energy barrier between the high affinity (strong, s) and unbound
(u) state is sufficiently high, such that the stator can only transit to and from the unbound state
from the low affinity (weak, w) state.

The number of weakly bound stators, w(t), and strongly bound stators, s(t), follow inherently
stochastic dynamics. Similarly to the Hill-Langmuir model (see Eq. 2), we can write the Master
Equation for the stochastic process that allows us to obtain a pair of ODEs describing the time
evolution of the expected values 〈w〉(t), and 〈s〉(t),

d〈w〉
dt

= kuw(Nmax − 〈w〉 − 〈s〉)− (kwu + kws)〈w〉+ ksw〈s〉,

d〈s〉
dt

= kws〈w〉 − ksw〈s〉,
(6)

that can be solved to obtain an analytical expression for the stator stoichiometry in time,

〈N〉(t) = D+eλ+t +D−eλ−t + 〈N∞〉, (7)
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where prefactors D± depend on the rates and the initial stoichiometry condition, while the steady-
state 〈N∞〉 and the relaxation rates λ± only depend on the stator rates k (derivation and explicit
expressions in SI). Note that, in contrast to the Hill-Langmuir dynamics (Eq. 2 ), the two-state
model naturally predicts two different relaxation time scales in line with the experimental observa-
tions.

We hypothesized that the dependence on torque appears in the rates of exiting the intermediate
weak state, and we henceforth refer to this as the ‘two-state catch-bond’ model. Nevertheless, in
order to generally and more extensively explore two-state models, we also examined cases in which
rates exiting the strong state, and binding rates are also allowed to depend upon torque. As in the
speed-rate model, we used ABC to infer distributions of parameters compatible with the observed
experimental trajectories, with the fit shown in Fig. 3A, parameters listed in Tab. 3, and the
posterior parameter distributions shown in Fig. 6-7.

Model comparison

Despite both dynamical models – the speed-rate model and the two-state catch-bond model –
being able to reproduce relaxation asymmetry, the two-state catch-bond model returned average
relaxation asymmetries comparable to the experimental ones (Fig. 3A), resulting in trajectories
that better fit the data (Fig. 4). This result was anticipated since the two-state catch-bond model
involves a larger set of parameters (8) compared to the speed-rate model (5). In order to assess
if we can select one model over the other, we calculated the Bayes factor comparing the posterior
marginal probabilities of each model by making use of the ABC inferred distributions [18] that
naturally incorporate a penalty associated with the dimensionality of the models (see Materials
and Methods and SI). Results show that despite having more parameters, the two-state catch-bond
model has the highest posterior credibility (see Fig. 3C), though the difference over the speed-rate
model is small enough to be considered anecdotal. On the other hand, the difference over other
variations of the two-state model (10 and 12 parameter models) is high enough to select the 8
parameter two-state catch-bond model shown in Fig. 3B as the most credible two-state model.

Discussion

We measured the torque of individual BFMs and calculated the temporal evolution of stator sto-
ichiometry under three sequential conditions: at steady state, after motor stall and subsequent
stator recruitment, and during resurrection starting from an empty rotor. These experiments were
performed for three viscous loads. We observed that, on average, the relaxation time to steady
state is faster for smaller viscous loads, in agreement with our previous work [5]. However, we also
observed a subtle but surprising effect that, for each viscous load tested, the relaxation time from
‘below’ (during resurrection) was faster than from ‘above’ (release from stall). This effect is not
predicted by our previous simple Hill-Langmuir reversible adsorption model of stator dynamics [5].

We have theoretically explored the effects of interactions between neighboring adsorbed stator
units and finite stator unit reservoir effects, and we confirm that neither of these mechanisms can
account for the degree of relaxation time asymmetry observed. Such effects may, nonetheless,
prove relevant to the description of stator assembly dynamics and are worthy of further exploration
(article in preparation [19]).

Based upon previous studies which show that stators dissociate from the motor upon IMF
collapse within ∼ one minute, we have assumed that after eight minutes of ionophore-induced
PMF collapse, all stator units have dissociated from the rotor and the system is at steady-state
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zero occupancy [20–22]. This is supported by recent work which estimates the difference in effective
free energy of bound and unbound stator units and concludes that the binding of stator units to
the motor at zero torque is unfavorable [6].

A recent model of stator dynamics, depicted in Fig. 3B, described by Eqs. 5-6, and referred to
here as the ‘speed-rate’ model, proposes that the rate of stator assembly depends non-linearly on
both the rotor speed and the torque generated per stator unit [6]. Due to the speed dependency,
this model predicts that, when perturbed from steady-state stator stoichiometry, the relaxation
time depends upon the direction of perturbation. Our data exhibit this perturbation direction
dependent asymmetry in tc (Fig. 2). Nevertheless, as shown in Figs. 3A and 4, a global fit of
this model to our entire data set is still not capable of recapitulating the observed differences in
timescales as well as the two-state catch-bond model.

The speed-rate model posits that, when a stator unit binds to the motor, its free energy changes
by an amount dependent upon the torque produced by that unit. Fig. 3D shows the resulting change
in free energy as a function of single stator torque, with a trend that agrees with Wadhwa et al.
[6]. Fig. 3E shows the speed-dependent decrease in kon, koff , and 1/tc, with the confidence intervals
given by ABC. Over the physiological range of speed for E. coli, this model would suggest that,
as the rotor speeds up, the rate of stator unit binding decreases by about a factor of three. As
Wadhwa et al. explain [6], an interaction between the stator unit and the FliG protein of the rotor,
triggering a conformational change in the periplasmic region of the stator complex that enables
PG binding [23–25], provides a plausible explanation for the rotor speed dependent rate of stator
binding. However, the exact mechanism and the specific role of stator-rotor interactions have yet to
be clearly illuminated (for a review, see [26]). Importantly, this model also requires that the rate of
stator unbinding decreases with increasing motor speed, by the same factor of about three. Speed
dependent disassembly is a phenomenon for which we have yet to find a compelling mechanistic
explanation.

Our previous work has shown that the stator units have lower rates of unbinding for increased
torque upon the rotor, and thus increased force upon the PG, a behavior characteristic of a catch
bond [5]. Single molecule force spectroscopy experiments have now identified a wide range of
biological catch bonds, particularly amongst proteins with an adhesive or mechanosensory role
[27, 28]. While many of the underlying mechanisms which govern this behavior remain to be
elucidated, a number of phenomenological and microscopic theories have been proposed [17]. One
of the most successful models to date is a two-state model [14, 15] which can quantitatively explain
the experimental results for an impressive range of biological catch bonds, including P-selectin
[14, 29], the bacterial FimH adhesive protein [16, 30], kinetochore-microtubule interactions [31],
cadherin-catenin interactions [32], cell surface sulfatase and glycosaminoglycan interactions [33],
vinculin-actin interactions [34], and platelet - von Willebrand factor binding [35].

The two-state catch-bond model (depicted in Fig. 3B) proposes that the stator complex has two
bound and torque-producing states, a weak and strong PG affinity state, and that the conversion
between these states is force-dependent, with high force favoring the putative high affinity state.
Mechanical forces on the stator complex could act directly upon the PG binding domain, for
example exposing PG binding sites, in a manner similar to other mechanosensitive proteins [28].
Alternatively, tensile forces could act allosterically via the stalk which links the inner membrane
domain to the PG domain. Both experiments and simulations have suggested that allostery plays
a role in a number of biological catch bonds, wherein mechanical stress at the allosteric site is
propagated along the protein to invoke rearrangements at the binding pocket [28, 36]. We speculate
that extension of the disordered and flexible interdomain region of MotB could similarly regulate
stator-PG affinity. As seen in Fig. 3A, a global fit of the experimental data to this model produces
a very good fit, reproducing the experimentally observed asymmetry in tc. The relaxation time
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asymmetry would arise because, during resurrection, a stator must merely transition from unbound
to weakly bound in order to begin applying torque, whereas during relaxation from stall, stators
which are in the strongly bound state must pass through the weakly bound state and then unbind
in order to stop producing torque. As depicted in the energy landscape schematic of Fig. 3G (see
also Tab. 3 and Figs. 6-8), Bayesian inference in a general two-state model suggests that it is the
transition out of the intermediate weak state that is torque-dependent. Increasing torque reduces
the barrier between the weak and strong states, in a manner consistent with traditional slip bond
behavior. While it is known that the stator must undergo a large conformational change in order
to bind to the PG [37, 38], we note that, to date, there is no evidence for two different PG-bound
conformations, and this model remains hypothetical. In any case, the success of the two-state
model may point towards a more continuous (rather than bistable) or complex conformational and
energy landscape for the stator.

Thus, we find that our experimental data fits the two-state catch-bond model more accurately
than the speed-rate model. Nevertheless, since the catch-bond model requires a larger dimensional
parameter set, we compared the likelihood of both models. While the two-state catch-bond model
shows the highest posterior credibility, the difference is insufficient to exclude the speed-rate model.

Neither model offers a specific structural explanation for the catch-bond behavior. The high
resolution structures of the stator complex have recently been solved via cryo electron microscopy
[39, 40], opening the door to future structure-based models. Simulations may yield atomistic
insights regarding the effects of force-induced structural changes on stator assembly. For example,
steered molecular dynamics (SMD) simulations, seeded with the static cryo-EM structure, were
used to predict force-induced allosteric structural changes in FimH [41], which were later confirmed
by single molecule atomic force microscopy experiments [42]. One current limitation to such an
approach is that, due to the short timescales accessible, SMD simulations require forces and loading
rates much higher than those used in experiments in order to observe bond rupture or allosteric
change [17].

In a more recent set of electrorotation experiments, Wadhwa et al. revert back to the Hill-
Langmuir model [5] to fit their data and find that the extracted rate constants show a speed
dependence in kon [43], an effect which may be compatible with one of the two models described
above. Interestingly, recent electrorotation experiments by Ito et al. also suggest a speed depen-
dence in kon, albeit in the opposite direction: Ito et al. observe that stator binding is enhanced by
rotor speed, though only at low stoichiometry, potentially only applicable to the first stator unit
to bind [10]. While we sometimes observe long dwells at zero stoichiometry, potentially compatible
with their observations, given our uncertainty in the (short) time needed to restore the PMF dur-
ing our resurrection experiments, we have not attempted to quantify this effect. We nonetheless
hypothesize that this observation, instead of arising from a rotor speed-dependence in kon, may be
equally well explained by the two-state catch-bond model, wherein the transition to the strongly
bound state is dependent on the force across the arriving stator unit, which remains at zero until
the rotor begins to rotate. We also note that such an effect could arise from the first stator unit
needing to recruit a putative partner (for example, FliL [44]), or if the torque from a single stator
unit were insufficient to maintain motor rotation [45].

Finally, we note that there is evidence for IMF-dependent stator assembly [46] (as also shown by
our resurrection experiments), suggesting that stators sense not only the mechanical environment,
but also the electrochemical environment. While this phenomena has yet to be robustly charac-
terized, a successful model of stator assembly dynamics will also need to be able to recapitulate
this effect. A catch-bond mechanism within the stator would allow it to stabilize attachment to
the PG exactly when it’s needed, provide resistance to large mechanical stresses, and destabilize
attachment when it’s no longer needed, allowing reconfiguration under small stresses, thereby con-
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serving the PMF. This mechanism may be consistent with IMF-dependent assembly, though future
experiments are needed to quantify the dependence. Future structural models may yield testable
predictions linking stator structure and assembly and may even allow the bond to be engineered.
Interfering with the catch-bond behavior of the stator could have grand implications for infection,
biofilm formation, and disease.

1 Materials and Methods

Bacteria and growth

We used E. coli strain MTB32, wherein the flagella has been genetically deleted and the hook
is biotinylated [47]. We genetically deleted cheY [5], the chemotactic response regulator. Frozen
aliquots of cells (grown to saturation and stored in 25% glycerol at -80◦C) were grown in Terrific
Broth (Sigma-Aldrich) at 33◦C for 5 h, shaking at 200 rpm, to a final OD600 of 0.5–0.6, then washed
and resuspended in motility buffer (10 mM potassium phosphate, 0.1 mM EDTA, 10 mM lactic
acid, pH 7.0). Cells were immobilized to a poly-L-lysine (Sigma-Aldrich P4707) coated coverslip
in a custom flowslide with a parafilm spacer. Streptavidin superparamagnetic beads (1.36 µm,
Sigma-Aldrich; 543 or 302 nm, Adamtech) were washed in PBS, resuspended in motility buffer,
then allowed to attach to the BFM hooks.

BFM experimental measurements

Experiments were performed in motility buffer at 22◦C. The sample was illuminated with a 660 nm
LED on a custom inverted microscope, and imaged with a 100× 1.45-NA objective (Nikon) onto
a CMOS camera (Optronics CL600x2/M) at a framerate of 1 kHz. Two permanent magnets were
positioned above the sample at a distance that was controlled by a motorized vertical translation
stage.

For a given motor, steady-state rotation was measured with the magnets far from the sample
(8 min), the magnets were lowered to within ∼ 1 mm of the sample to stall motor rotation (10
min), the magnets were raised and the motors were allowed to relax to steady state (11 min), the
ionophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP, 20 µM) was added to the media to
collapse the PMF and dissociate the stators (8 min), then CCCP was washed from the media and
cells were allowed to resurrect (11 min). In some measurements of the smaller beads, torque from
the magnetic tweezers was insufficient to hold the motor stalled for the entire 10 min. While this
effect likely reduces the number of stators recruited during stall, it does not affect the relaxation
after stall. In approximately 20% of cases, motors either failed to resurrect after treatment with
CCCP or resurrected to less than 40% the steady-state speed; in these cases the entire recording
for that motor was discarded.

Data analysis

The x, y position of the bead was determined via image cross-correlation analysis [48], and the
angular position of the bead was calculated as θ = arctan(y/x). The rotational viscous drag
coefficient of the bead was calculated as [49],

γ =
8πηr3

b

1− (1/8)(rb/d)3
+

6πηr2
erb

1− (9/16)(rb/d) + (1/8)(rb/d)3
, (8)

where rb is the bead radius, re is the measured radial distance to the bead’s axis of rotation, and d
is the distance from the bead to the cell surface, estimated to be 5 nm. Motor torque was calculated
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as τ = γω, where ω is the rotational speed of the motor. Stator stoichiometry, and single stator
torque values were calculated as described previously [5].

All analysis was performed with custom LabView, Matlab, and Python scripts.

Model simulation

Mean trajectories 〈N(t,N0)〉 for an initial motor configuration N0 for the Hill-Langmuir model and
the two-state model were obtained using their analytical expressions (Eqs. 2 and 9). Trajectories
for the speed-rate model were obtained by solving the corresponding Master Equation consisting of
a system of Nmax linear ordinary differential equations by diagonalizing the resulting rate matrix
(see SI).

The initial condition for resurrection trajectories was set to correspond with an empty motor
(N0 = 0), while for stall trajectories the steady-state stoichiometry was used (N0 = 〈N∞〉). In order
to reproduce the observed variability of initial conditions during release trajectories, the average
trajectory 〈N(t)〉 was obtained by calculating the average over all the initial condition N `

0 observed
for each observed experimental motor ` = 1, . . . , L,

〈N(t)〉 =
1

L

L∑
`=1

〈N(t,N `
0)〉. (9)

Finally, for the two-state model, release trajectories require inference of the initial values of
weakly and strongly bound motors w0 and s0 for each experimental observed value of N0. This
relationship was obtained by assuming that the initial configurations in the release experiment is
the steady-state probability distribution of occupancy when stator detachment is forbidden kwu = 0
(see SI).

Parameter inference and model selection

In order to infer sets of parameters able to reproduce the experimental data, we made use of Ap-
proximate Bayesian Computation. The outcome of this analysis returns distributions of credibility
for the ensemble of parameters and models with which we obtain intervals and correlations between
parameters as well as a means of model comparison. The inference was performed using Sequential
Monte Carlo (SMC) to obtain distributions for the credibility P (θm|d(θm) < ε) for the parameter
set θm for each model m such that the score d of a given parameter set is below a certain threshold
ε (see SI). The score function d(θ) was defined as the distance between the experimental trajec-
tories 〈Nexp(c, t)〉 for a given experimental setup c = {resurrection, steady-state, release} and the
corresponding predicted trajectories 〈Ntheo(θm, t, c)〉

d(θm) =
∑
c

∑
i

(〈Nexp(c, ti)〉 − 〈Ntheo(θm, ti, c)〉)2 , (10)

where the subindex i runs for all experimental timepoints ti that include information of at least 3
individual motors with non-zero speed, and a time step of ∆t ≡ ti+1 − ti = 1s. The Bayes factor
was calculated by resampling the ABC-SMC [18] with a distance threshold 10% above the minimal
threshold for the speed-rate model and using a Gaussian kernel with covariance equal to the the
covariance of the original sample. All fittings and SMC simulations were performed with custom
Python scripts that can be found in a githhub repository https://github.com/2piruben/BFM_

multistate.

12



Acknowledgments

We thank Francesco Pedaci for insightful discussions. The bacterial strain used in this work was a
modified strain of that gifted to us from the lab of Richard Berry. This work was supported by the
ANR FlagMotor project grant ANR-18-CE30-0008 of the French Agence Nationale de la Recherche.
The CBS is a member of the France-BioImaging (FBI) and the French Infrastructure for Integrated
Structural Biology (FRISBI), 2 national infrastructures supported by the French National Research
Agency (ANR-10-INBS-04-01 and ANR-10-INBS-05, respectively). AP acknowledges the CNRS for
an exemption of a semester (demi-délégation) of teaching duties.

References

1. Tusk, S. E., Delalez, N. J. & Berry, R. M. Subunit Exchange in Protein Complexes. Journal
of molecular biology 430, 4557–4579 (2018).

2. Leake, M. C. et al. Stoichiometry and turnover in single, functioning membrane protein com-
plexes. Nature 443, 355–8 (2006).

3. Tipping, M. J., Delalez, N. J., Lim, R., Berry, R. M. & Armitage, J. P. Load-dependent
assembly of the bacterial flagellar motor. mBio 4 (2013).

4. Lele, P. P., Hosu, B. G. & Berg, H. C. Dynamics of mechanosensing in the bacterial flagellar
motor. Proceedings of the National Academy of Sciences of the United States of America 110,
11839–44 (2013).

5. Nord, A. L. et al. Catch bond drives stator mechanosensitivity in the bacterial flagellar motor.
Proceedings of the National Academy of Sciences of the United States of America 114, 12952–
12957 (2017).

6. Wadhwa, N., Phillips, R. & Berg, H. C. Torque-dependent remodeling of the bacterial flagellar
motor. Proceedings of the National Academy of Sciences of the United States of America 116,
11764–11769 (2019).

7. Glauber, R. J. Time-dependent statistics of the Ising model. Journal of mathematical physics
4, 294–307 (1963).

8. Godreche, C. & Luck, J. Response of non-equilibrium systems at criticality: ferromagnetic
models in dimension two and above. Journal of Physics A: Mathematical and General 33,
9141 (2000).

9. Walter, J.-C. & Barkema, G. An introduction to Monte Carlo methods. Physica A: Statistical
Mechanics and its Applications 418, 78–87 (2015).

10. Ito, K. I., Nakamura, S. & Toyabe, S. Cooperative stator assembly of bacterial flagellar motor
mediated by rotation. Nature Communications 12 (2021).

11. Ryu, W. S., Berry, R. M. & Berg, H. C. Torque-generating units of the flagellar motor of
Escherichia coli have a high duty ratio. Nature 403, 444–7 (2000).

12. Reid, S. W. et al. The maximum number of torque-generating units in the flagellar motor of
Escherichia coli is at least 11. Proceedings of the National Academy of Sciences of the United
States of America 103, 8066–71 (2006).

13. Toni, T., Welch, D., Strelkowa, N., Ipsen, A. & Stumpf, M. P. Approximate Bayesian compu-
tation scheme for parameter inference and model selection in dynamical systems. Journal of
The Royal Society Interface 6, 187–202 (2009).

14. Barsegov, V. & Thirumalai, D. Dynamics of unbinding of cell adhesion molecules: Transition
from catch to slip bonds. Proceedings of the National Academy of Sciences of the United States
of America 102, 1835–1839 (2005).

13



15. Evans, E., Leung, A., Heinrich, V. & Zhu, C. Mechanical switching and coupling between two
dissociation pathways in a P-selectin adhesion bond. Proceedings of the National Academy of
Sciences of the United States of America 101, 11281–11286. issn: 00278424 (2004).

16. Thomas, W. et al. Catch-Bond Model Derived from Allostery Explains Force-Activated Bac-
terial Adhesion. Biophysical Journal 90, 753–764 (2006).

17. Chakrabarti, S., Hinczewski, M. & Thirumalai, D. Phenomenological and microscopic theories
for catch bonds. Journal of Structural Biology 197, 50–56 (2017).

18. Didelot, X., Everitt, R. G., Johansen, A. M. & Lawson, D. J. Likelihood-free estimation of
model evidence. Bayesian Analysis 6, 49–76 (2011).
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