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Deep Generative Models for Library Augmentation
in Multiple Endmember Spectral Mixture Analysis

Ricardo Augusto Borsoi, Tales Imbiriba, Member, IEEE, José Carlos Moreira Bermudez, Senior Member, IEEE,
Cédric Richard, Senior Member, IEEE

Abstract—Multiple Endmember Spectral Mixture Analysis
(MESMA) is one of the leading approaches to perform spectral
unmixing (SU) considering variability of the endmembers (EMs).
It represents each EM in the image using libraries of spectral
signatures acquired a priori. However, existing spectral libraries
are often small and unable to properly capture the variability of
each EM in practical scenes, which compromises the performance
of MESMA. In this paper, we propose a library augmentation
strategy to increase the diversity of existing spectral libraries,
thus improving their ability to represent the materials in real
images. First, we leverage the power of deep generative models to
learn the statistical distribution of the EMs based on the spectral
signatures available in the existing libraries. Afterwards, new
samples can be drawn from the learned EM distributions and
used to augment the spectral libraries, improving the overall
quality of the SU process. Experimental results using synthetic
and real data attest the superior performance of the proposed
method even under library mismatch conditions.

Index Terms—Hyperspectral, endmember variability, spectral
unmixing, generative models, MESMA, spectral libraries.

I. INTRODUCTION

Spectral Unmixing (SU) aims at extracting the spectral
signatures of materials present in the hyperspectral images
(HI) of a scene, which are called endmembers (EMs), as well
as the proportion to which they contribute to each HI pixel [1].
The SU problem can be solved using algorithms that are either
supervised, where the EMs are known a priori, or unsuper-
vised, where the EMs are estimated from the HI [2]. The most
popular model to describe the interaction between light and the
targets is the Linear Mixing Model (LMM), which represents
the reflectance at each pixel as a convex combination of the
spectral signatures of the EMs [1]. However, the LMM fails to
represent important nonideal effects observed in practice, such
as nonlinear interactions between light and the materials [3]–
[5] and variations of the EM spectra along the scene [6], [7].

This work has been supported by the National Council for Scien-
tific and Technological Development (CNPq) under grants 304250/2017-1,
409044/2018-0, 141271/2017-5 and 204991/2018-8, and by the Foundation
for Research Support of the State of Rio Grande do Sul (FAPERGS) under
grant 19/2551-0001844-4.

R.A. Borsoi is with the Department of Electrical Engineering, Federal
University of Santa Catarina (DEE–UFSC), Florianópolis, SC, Brazil, and
with the Lagrange Laboratory (CNRS, OCA), Université Côte d’Azur, Nice,
France. e-mail: raborsoi@gmail.com.

T. Imbiriba is with the ECE department of the Northeastern University,
Boston, MA, USA. e-mail: talesim@gmail.com.

J.C.M. Bermudez is with the DEE–UFSC, Florianópolis, SC, Brazil,
and with the Graduate Program on Electronic Engineering and Com-
puting, Catholic University of Pelotas (UCPel) Pelotas, Brazil. e-mail:
j.bermudez@ieee.org.

C. Richard is with the Lagrange Laboratory (CNRS, OCA), Université Côte
d’Azur, Nice, France. e-mail: cedric.richard@unice.fr.

EM variability is an important effect originating from envi-
ronmental, illumination or atmospheric changes which may
lead to significant estimation errors in SU [6]. The most
prominent approach to deal with EM variability in SU consists
in modeling EMs as sets of spectral signatures, also called
spectral libraries [6]. The spectral signatures in each library
are variants of a material produced under different acquisition
conditions or physico-chemical compositions. They are usually
acquired a priori through laboratory or in situ measurements.
The SU problem then becomes equivalent to selecting a
subset of signatures in the libraries that can best represent
the observed HI under the LMM. The methods that attempt
to solve this problem can be roughly divided between sparse
SU [8], [9] and Multiple Endmember Spectral Mixture Anal-
ysis (MESMA) [10] algorithms. The MESMA algorithm is
widely used due to its simplicity and interpretability, and has
been widely employed in practice [6]. However, the quality
of the MESMA results is strongly dependent on how well the
spectral libraries represent the EM signatures actually present
in the scene. This is a problem since spectral libraries are
usually not acquired under the same conditions as the observed
HI, since in situ measurements can be costly or impractical.
Furthermore, most existing spectral libraries only have very
few signatures of each material, and might not adequately
capture spectral variability occurring in the scene.

One approach to alleviate this problem consists of gener-
ating multiple synthetic samples of an endmember using a
physical model (radiative transfer function – RTF) describing
the variability of the spectra as a function of atmospheric or
biophysical parameters [6], such as e.g. the PROSPECT of
Hapke models [11], [12] for vegetation or mineral spectra.
These additional signatures are then included in the library to
augment it before performing SU. The use of RTFs to generate
spectral libraries has great potential since it can represent
spectral variability caused by different effects which are unlike
to be captured by laboratory or field measurements [13]–[15].
However, physics-based models require accurate knowledge of
the physical process governing the observation of the materials
spectra by the sensor, which is hard to obtain in practice. This
limits the practical interest of these methods.

Recently, deep generative models (DGMs) have seen re-
markable advances in the form of variational autoencoders
(VAEs) and generative adversarial networks (GANs) [16],
[17]. This have made it possible to learn the distribution of
complex data (e.g., natural images) efficiently, and from a
limited amount of samples [18]. DGMs have been considered
for data augmentation in few-sample settings for image classi-
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fication problems [18]. A recent work proposed to use DGMs
learned from observed HIs in order to parametrize the variable
EM spectra in the optimization step of a matrix factorization-
based blind SU problem, where the EMs are estimated from
the HI [19]. This showed that using generative neural networks
is a promising approach to represent the EMs in SU.

In this paper, we propose a spectral library augmenta-
tion method for MESMA-based algorithms by leveraging the
power of DGMs to represent the EMs. The main contribution
of the proposed method is that it works blindly, what allows
for augmentation of the spectral libraries used with MESMA
even when RTFs or physical models are unknown. The overall
strategy can be divided in three steps. First we learn the
statistical distribution of each EM in the scene using the
spectral signatures contained in the existing spectral library
and a DGM. Then, we sample new spectral signatures using
the DGMs and augment their respective spectral libraries.
Finally, we unmix the observed HI using MESMA and the aug-
mented library. Simulations with synthetic and real data show
a substantial accuracy gain in abundance estimation when
comparing the proposed method with competing strategies.

II. SPECTRAL UNMIXING WITH MESMA
Most MESMA algorithms consider the LMM as their cen-

tral building block. The LMM assumes that each L-band pixel
yn ∈ RL, n = 1, . . . , N , of a N -pixel HI, can be modeled as:

yn = Man + en, s. t. 1>an = 1 and an ≥ 0 (1)

where M ∈ RL×P is a matrix whose columns are the P EM
spectral signatures mk, an is the abundance vector and en is
an additive noise term. Differently from most LMM-based SU
methodologies, which assume a unique EM for each material
in the scene, MESMA considers multiple spectra libraries,
or bundles, one for each endmember, and performs a search
for the best fitting model within all possible combinations
of endmembers. Thus, assuming prior knowledge of spectral
bundles for each EM in the scene, the set M of endmember
matrices that can be drawn from the library can be defined as

M =
{[

m1, . . . ,mP

]
: mk ∈Mk, k = 1, . . . , P

}
(2)

where Mk = {mk,1, . . . ,mk,Ck}, mk,j ∈ RL is a set of
Ck spectral signatures of the kth material. The MESMA SU
problem can be formulated as

min
M∈M,an

∥∥yn −Man
∥∥2
2

s. t. an ≥ 0, 1>an = 1. (3)

Although the MESMA algorithm has shown excellent perfor-
mance when dealing with spectral variability in many practical
scenarios, its performance is strongly effected by the quality
of the spectral libraryM [6]. In order for MESMA to perform
well, the library must be representative of the spectral library
observed in a given scene. Previous works tried to address this
issue by augmenting the spectral libraries using physics-based
models that describe well the variability of the endmembers.
See, e.g., the PROSPECT or Hapke models [11], [12].

However, a major drawback of physics-based models is
the requirement of accurate knowledge of the physical pro-
cess governing the observation of the materials spectra by

Figure 1. Outline of the proposed approach: deep generative models are used
to approximate the distribution of spectra belonging to a library. Then, new
spectral samples (right) can be obtained by propagating samples drawn from
the EM submanifold through Gθ and used to augment the spectral library.

the sensor. This detailed information is rarely available in
practice, which limits the applicability of these methods. In
the following, we will present a new approach for spectral
library augmentation that is based on deep generative models
such as VAEs and GANs. These approaches allows one to
learn the statistical distribution of the endmembers from very
few training samples, making it effective in practical scenarios.

III. LIBRARY AUGMENTATION WITH DGMS

Physics-based models describing the variations of the spec-
tral signatures in a scene reveal an important characteristic
of spectral variability: that EM spectra usually lies on a
low-dimensional submanifold of the high-dimensional spectral
space RL. This assumption is in agreement with most physical
models, such as the PROSPECT or Hapke’s [11], [12], which
represent the spectral signature of the materials as a function
of only a small number of photometric or chemical properties.

Instead of employing physics-based models, we propose in
this paper to augment the spectral libraries by using deep
generative models. Generative models aim to estimate the
probability distribution p(X) of a random variable X ∈ RL
based on a set of Nx observations xi. Then, they allow one
to generate new samples that look similar to new realizations
of X . Such models have shown good performance at represent-
ing endmember spectra in blind unmixing applications [19].
Here we propose to use the signatures in existing spectral
libraries to learn the generative models describing the distribu-
tions of EM spectra. Then, to enhance the ability of MESMA
to adapt to a wider range of spectral variability, we augment
the libraries by sampling from the estimated distributions. An
illustrative outline of this strategy is shown in Fig. 1.

Even though the spectral dimensionality L is high compared
to the small number of signatures often found in typical spec-
tral libraries (making this problem very hard in general [20],
[21]), the low-dimensinality of the manifolds to which the EM
spectra is confined, allied with recent advances in generative
models, have made this problem tractable. This framework has
shown success in capturing the distribution of complex data
such as natural images from very few training samples [18],
which illustrates its appropriateness for our application.

Deep generative models: A convenient way to estimate
the PDF p(X) of a random variable X that lies on a low-
dimensional submanifold of RL is to define a new random
variable RK 3 Z ∼ p(Z), with K � L and a known distri-
bution p(Z), and a parametric function (e.g. a neural network)
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Gθ which maps Z 7→ X̂ ∈ RL such that the distribution of
the transformed random variable X̂ = Gθ(Z) is very close
to p(X). This allows us to generate new samples from X̂ by
first sampling from Z ∼ p(Z) and then applying the function
Gθ(Z). Although estimating Gθ to fulfill this objective might
seem difficult, recent advances in generative modeling such as
VAEs [16] and GANs [17] have shown excellent performance
for modeling complex distributions (e.g., of natural images)
using only a limited amount of samples [18].

VAEs address this problem by maximizing a lower bound
on the log-likelihood of p(X) [16]:

log p(X)≥Eqφ(Z|X)

{
log p(X|Z)

}
−KL

(
qφ(Z|X)‖p(Z)

)
,

where the function Gθ is represented by p(X|Z), KL(·‖·)
is the Kullback-Leibler divergence between two distributions,
Eς{·} is the expected value operator with respect to the
distribution ς and qφ(Z|X) is a variational approximation to
the intractable posterior p(Z|X), which is also represented
through another parametric function Dφ : RL → RK .

Differently, GANs attempt to learn the distribution p(X) by
seeking for the Nash equilibrium of a two-player adversarial
game [17] between the generator network Gθ and a discrimi-
nator network Cφ, which predicts the probability of a sample
xi coming from the true distribution p(X) instead of being
generated through Gθ. The generator Gθ is trained to maximize
the probability of the discriminator making a mistake, which
is formulated as the following minimax optimization problem:

min
Gθ

max
Cφ

Ep(X)

{
log Cφ(X)

}
+ Ep(Z)

{
(1− Cφ(Gθ(Z)))

}
.

Although GANs are more flexible and have shown better
results when modeling complex distributions, they are also
much harder to train [21]. This motivated us to use VAEs
in this work due their more stable training procedure. Future
works will consider the use of GANs.

Library augmentation: Consider a small spectral library
M known a priori containing a set of spectral signatures Mi

for each material i = 1, . . . , P . Each signature mi,j ∈ Mi,
j = 1, . . . , Ck, can be viewed as a sample drawn from the sta-
tistical distribution of the ith EM spectra. Thus, these libraries
can be employed as training data to learn a set of generative
models Gθi that represents the probability distribution function
pi(M) of each EM i = 1, . . . , P using a VAE [16].

Given the learned generative models Gθi , we can then
generate new spectral signatures from each EM class by sam-
pling from the distribution of Gθi(Z), where Z ∼ N (0, IK).
These new signatures can then be used to augment into the
original libraryM, yielding a new spectral library M̃ which is
more comprehensive and better accounts for different spectral
variations of each material. Finally, the MESMA algorithm
can be applied to unmix each image pixel yn using the
augmented library M̃. This procedure is described in detail
in Algorithm 1, where the spectral library is augmented by
adding Ns samples to each EM set. Note that although this
increases the complexity of SU with MESMA, approximate
strategies can be used to obtain an efficient solution when the
augmented library has many signatures [22].

Algorithm 1: MESMA with spectral library augmentation
Input : Y , Mi, i = 1, . . . , P and Ns.

1 for i = 1, . . . , P do
2 Set M̃i =Mi and train a DGM Gθi using the samples in Mi ;
3 for j = 1, . . . , Ns do
4 Sample z ∼ N (0, I) and compute m̂ = Gθi (z);
5 M̃i ← M̃i

⋃{
m̂
}

;
6 end
7 end
8 Set M̃ =

{
[m1, . . . ,mP ] : mk ∈ M̃i, i = 1, . . . , P

}
;

9 Run MESMA with the augmented library M̃ to compute Â ;
10 return Â, M̃ ;

Table I
ENCODER AND DECODER NETWORK ARCHITECTURES.

Layer Activation Number of units

Dφ

Input — L

Hidden # 1 ReLU d1.2× Le+ 5

Hidden # 2 ReLU max
{
dL/4e, K + 2

}
+ 3

Hidden # 3 ReLU max
{
dL/10e, K + 1

}
Gθ

Hidden # 1 ReLU max
{
dL/10e, K + 1

}
Hidden # 2 ReLU max

{
dL/4e, K + 2

}
+ 3

Hidden # 3 ReLU d1.2× Le+ 5

Output Sigmoid L

Network architecture: To learn the generative models
Gθp , we used a VAE [16] due to its stable training [21] and
because it behaved well with small spectral libraries. The
network architectures for Gθp and Dφp and the dimension of
the latent spaces were selected as in [19] since they resulted
in a good experimental performance and showed sufficient
capacity to capture the spectral variability of a given library.
The network architectures are shown in Table I and the latent
spaces dimension was set to K = 2. Finally, the network
training was performed with the Adam optimizer [23] in
TensorFlow for 50 epochs.

IV. EXPERIMENTAL RESULTS

In this section, simulation results using both synthetic and
real data illustrate the performance of the proposed method.
We compare the performance of MESMA using the augmented
library with that of the traditional MESMA algorithm. We also
present results obtained with the fully constrained least squares
(FCLS) and the the GLMM [7], which estimate the endmem-
bers from the observed HI (without using a spectral library).
The VCA algorithm [24] was used to extract EMs used by the
FCLS and GLMM methods. The performances were evaluated
using the Root Mean Squared Error (RMSE) between the
estimated abundance maps (RMSEA) and between the recon-
structed images (RMSEY ). The RMSE between two matrices
is defined as RMSEX =

√
‖X −X∗‖2F /NX , where NX

denotes the number of elements in X .
Synthetic data with library mismatch: In this example,

we evaluate the performance of the proposed approach quan-
titatively using a synthetic data set with three endmembers
and L = 198 spectral bands. The goal is to simulate a
typical library mismatch scenario often found when consid-
ering library-based unmixing [8]. To generate and process
this dataset, we first obtained two disjoint sets of endmember
spectra M1

i and M2
i , with M1

i ∩M2
i = ∅, i ∈ {1, 2, 3} by
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Table II
SIMULATIONS WITH SYNTHETIC AND REAL DATA (VALUES ×103).

Synthetic HI Alunite Hill Gulfport
RMSEA RMSEY RMSEY RMSEY

FCLS 50.0± 32.2 0.73± 0.87 0.47± 0.60 1.00± 2.06

GLMM 45.3± 31.2 0.30± 0.22 0.001± 0.002 0.002± 0.003

MESMA 18.2± 13.7 0.41± 0.45 19.2± 14.0 1.31± 2.02

Proposed 15.3± 11.0 0.26± 0.25 18.4± 12.8 1.16± 1.86

RMSEA of Algorithm 1 as a function of Ns
Ns 0 1 2 3 4 5 6
RMSEA 18.18 16.23 15.65 15.34 15.21 15.09 15.01

manually extracting pure pixels of soil, vegetation and water
from a real hyperspectral scene (the Jasper Ridge HI [25]).
The sets M1

i contained 20 signatures each and were used to
compose the synthetic pixel spectra yn, while each of the sets
M2

i contained 14 signatures that were employed to construct
the spectral libraries used by MESMA to perform SU. We
simulated a library mismatch by applying a random affine
transformation (a gain and an additive scaling in the intervals
[0.75, 1.25] and [−0.15, 0.15], respectively) to each element
of M1

i , i ∈ {1, 2, 3}. To generate each pixel, we used the
LMM considering abundance fractions an sampled from a
Dirichlet distribution with concentration parameters selected
such as to have a heavily mixed data in order to evaluate the
methods in a challenging scenario, and pixel-dependent end-
member matrices obtained by randomly (uniformly) selecting
one spectral signature from each of the setsM1

i , i ∈ {1, 2, 3}.
White Gaussian noise with a signal to noise ratio (SNR) of
30dB was added to the data.

The final libraryM available for the MESMA-based meth-
ods was created by sampling five signatures at random of each
material from M2

i , and no other preprocessing or adequacy
strategy was used to mitigate mismatch between the available
library and the true endmembers used to construct the scene.
Only the spectra in M was used to learn the DGMs, and
Ns = 3 additional signatures were sampled for each material.
Finally, in order to provide a proper statistical evaluation,
this whole procedure was repeated for 104 Monte Carlo
realizations. The mean values and standard deviations are
shown in Table II. It can be seen that despite only a small
number of signatures being available to train the DGMs, the
proposed strategy provided a substantial (16%) improvement
in the abundance estimation RMSE when compared to the
MESMA algorithm. This shows that with a careful selection
of the neural network architecture, the proposed method can
work even under such challenging conditions. When compared
with the other methods the proposed solution improvement
is even more significant obtaining gains of 70% (FCLS) and

Figure 2. “Ground truth” for the Alunite Hill (left) and Gulfport (right) HIs.
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Figure 3. Left: abundance maps for the Alunite Hill subscene. Right: original
endmembers (solid line) and synthetically generated signatures (dashed line).

Figure 4. Abundance maps of MESMA for the Alunite Hill HI with a spectral
library augmented using the Hapke model with known acquisition conditions.

67% (GLMM). These experiments show that the proposed
data augmentation strategy can lead to significant performance
gains when compared to the plain MESMA algorithm.

To investigate the influence of the parameter Ns on the per-
formance of the proposed method, we repeated this experiment
for different values of Ns ∈ {0, . . . , 8} and evaluated the be-
havior of RMSEA. The results, also seen in Table II, show that
RMSEA decreases with Ns. However, the performance im-
provements get small after about Ns > 3, which indicates that
a value of Ns ≤ 3 can yield a good compromise between abun-
dance estimation performance and computational complexity.

Real data: For the simulations with real data, we con-
sidered the Alunite Hill subscene of the Cuprite HI with
16×28 pixels, and a subscene of the Gulfport HI with 54×70
pixels [22]. Water absorption or low SNR bands were removed
and both the images and the spectral libraries were rescaled to
have the same number of bands, resulting in L = 181 for the
Alunite Hill and L = 192 for Gulfport. These images were
selected since the unmixing results can be evaluated using
high-resolution classification maps available a priori, shown in
Fig. 2. The librariesM were built by selecting two signatures
of each endmember from the USGS library and from field
surveys (for the Alunite Hill and Gulfport HIs, resp.) such that
the MESMA results closely approached (visually) the ground
truth. Ns = 2 additional signatures per EM were generated.

The abundance maps reconstructed by all algorithms are
provided in Figs. 3 and 5. It can be seen that the abundance
maps of the MESMA-based methods are significantly closer to
the ground truth when compared to the GLMM and FCLS re-
sults. Furthermore, the proposed library augmentation strategy
led to a much better representation of the alunite and kaolinite
endmembers when compared to the competing approaches in
the Alunite Hill HI. Similar results were obtained for the
Gulfport HI, where the abundances obtained by the proposed
method for the sidewalk and asphalt EMs approach the ground
truth more closely when compared to those estimated by
FCLS, GLMM and by MESMA with the original library.
The spectral signatures generated using the DGMs, also seen
in Figs. 3 and 5, show that the proposed strategy is able
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Figure 5. Left: abundance maps for the Gulfport subscene. Right: original
endmembers (solid line) and synthetically generated signatures (dashed line).

to generate signatures that accommodate variability seen in
typical scenes from its representation in the original library.
Specifically, a generally agreeable shape but different scaling
variations that act nonuniformly over the spectral space can be
seen in all cases except for the ground/dirt EM in the Gulfport
HI, whose original field surveyed spectra (contained inM) did
not contain a meaningful amount of spectral variability.

The quantitative RMSEY results in Table II show that
the FCLS achieves smaller reconstruction errors in the real
datasets when compared to the synthetic one, which contains
more heavily mixed pixels and thus results in a worse data
fitting for the FCLS (which is based on the VCA). However,
we note that RMSEY is not a good measure of unmixing
performance, as an infinite number of combinations (endmem-
bers, abundances) often leads to the same reconstructed HI.

To compare the proposed method with physics-based li-
brary augmentation, we considered a Lambertian scattering
approximation of the Hapke model to augment the library
used with the Alunite Hill HI. Given prior knowledge about
the laboratory acquisition conditions of the spectra in the
USGS library, we can generate different variations of these
mineral spectra by considering different viewing geometries
as detailed in [3]. The abundances estimated by MESMA
using the augmented library are shown in Fig. 4. Although
a clear improvement can be seen in the alunite and muscovite
EMs when compared to the original library, the kaolinite
abundances were completely absorbed into the muscovite
abundance map. Moreover, the alunite region is smaller than
what is indicated in the ground truth, which is more closely
matched by the results obtained using the proposed method.
This shows that the proposed strategy can be competitive with
physics-based models in practice.

V. CONCLUSIONS

In this work, a novel spectral library augmentation strategy
was proposed for MESMA-like algorithms. Using the spectral
signatures present in existing libraries as training samples, we
applied deep generative models to learn the statistical distri-
bution of endmember spectra. This allowed us to sample new
spectral signatures from the estimated endmember distribution,
which were then included in the augmented library, improving
its ability to properly represent the materials present in prac-
tical scenes. Simulation results with both synthetic and real
data showed that the proposed methodology can significantly
improve the performance of the MESMA algorithm.
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