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Abstract

In this work, we consider the momentum transport of a incompressible fluid in a like Beavers

and Joseph (1967) system. For this purpose, in the context of the volume averaging method,

we use a one-domain approach (ODA). Thus, the momentum generalized transport equations

(GTE), which are written in terms of position-dependent effective medium coefficients, are valid

everywhere in the system and contains two Brinkman corrections in addition to a Darcy’s term.

The ODA predictions are tested against the results obtained from averaging the local profiles

resulting from pore-scale simulations. One of the key points for solving the ODA remains

on the prediction of the permeability, which in this work is obtained either by solving the

associated local closure problem or from pore-scale profiles. Our analysis shows that the GTE

for momentum transport accurately predicts the average velocity profiles everywhere in the

system. To this end, the first and the second Brinkman’s corrections, as well as a position-

dependent intrinsic permeability tensor in Darcy’s term must be included.

Keywords: momentum transport, one-domain approach, free flow/porous medium

inter-region, local closure problem

1. Introduction

Momentum transport at a free flow/porous medium inter-region has been the object of in-2

tense research activity from the pioneering study by Beavers & Joseph (1967), where a Poiseuille

flow over a permeable medium was considered. In fact, most of the theoretical and experimental4

∗Corresponding author
Email address: jaot@xanum.uam.mx (J. Alberto Ochoa-Tapia)

Preprint submitted to Journal of Chemical Engineering Science July 2, 2021



studies (see the recent state of the art in Angot et al. (2017)) concerning momentum transport

have used this configuration in order to characterize velocity fields at the different scales of the6

inter-region.

From a macroscopic point of view, two main approaches to characterize the fluid flow in a8

coupled flow system can be found in the literature: the two-domain approach (TDA) and the

one-domain approach (ODA). In the TDA (see Fig. 1(b)), the free flow/porous medium system10

is treated as two continuous regions separated by a diving surface, and different equations are

applied in each domain. In addition, such equations need to be coupled at the dividing surface12

through the use of appropriate boundary conditions. Beavers & Joseph (1967) considered a

TDA, where the momentum in the free flow and porous regions are governed by the Stokes14

and Darcy equations, respectively. In addition, since these differential equations are not of the

same order, an empirical slip boundary condition is introduced. This jump condition involves16

a dimensionless slip coefficient that depends on the microstructure of the inter-region. Several

studies have focused on its experimental and theoretical determination (Beavers et al., 1970;18

Taylor, 1971; Richardson, 1971; Sahraoui & Kaviany, 1992).

The TDA has been significantly improved during the last two decades. In the context of the20

volume averaging method, using the Darcy-Brinkman equation instead of Darcy’s law in the

porous medium and assuming continuity of velocities at the interface, Ochoa-Tapia & Whitaker22

(1995a) derived a stress jump condition whose jump coefficient also depends on the microstruc-

ture of the inter-region (Goyeau et al., 2003). Chandesris & Jamet (2006, 2007, 2009) developed24

a matched asymptotic expansion method to show that jump conditions at the dividing sur-

face both concern the velocity and the shear stress and that the jump coefficients do not only26

depend on the microstructure of the porous medium but also on the location of the dividing

surface. The same conclusions have been recently drawn by using the volume averaging method28

(Valdés-Parada et al., 2013). In addition, the jump conditions have been recently generalized for

multi-dimensional free flow/porous medium configurations (Angot et al., 2017). Other multidi-30

mensional boundary conditions have also been derived by using the multiscale homogenization

method (Jäger et al., 2001; Jäger & Mikelić, 2009; Carraro et al., 2015; Zampogna & Bottaro,32

2016; Lācis & Bagheri, 2017), which have been validated and calibrated for two-dimensional

flows in different coupled free flow/porous medium systems (Rybak et al., 2020; Eggenweiler &34

Rybak, 2020).

On the other hand, in the ODA (see Fig. 1(a)), the free flow/porous medium system is36

viewed as a pseudo-continuum domain, and the transport is governed by generalized transport
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Figure 1: View of domains and velocity profiles in (a) the one-domain approach and (b) the two-domain approach.

equations (GTE) valid everywhere in the system. This approach has been applied, among38

others, by Caltagirone (1994); Angot et al. (1999); Bruneau & Mortazavi (2004, 2008); Bruneau

et al. (2010); Hussong et al. (2011), but it is still not clear how the permeability in the inter-40

region should vary, thus different heuristic expressions for permeability has been commonly used

(e.g., Heaviside, linear, sinusoidal, error, or hyperbolic tangent function). However, there is no42

guarantee that such models can provide an accurate description of the fluid velocity in the

homogeneous regions and mainly in the free flow/porous medium inter-region. In their works,44

Cimolin & Discacciati (2013) and Hussong et al. (2011) showed that even if the predictions

a GTE in the homogeneous regions can be similar to those obtained from averaging the local46

fields or a TDA, the comparison near the interface can not be satisfactory. This exhibits the

relevance of taking into account the correct spatial dependence of permeability everywhere in the48

system. In addition, it is unknown up to now how the spatial variations of effective coefficients

are related to the size of the averaging volume used to derive the macroscopic equations, which50

can influence the comparison of theoretical predictions with experimental observations.

A formal derivation of the GTE for total mass and momentum transport has been done52

by using the volume averaging method (Ochoa-Tapia & Whitaker, 1995a; Valdés-Parada et al.,

2007a). The resulting equations are free of length scale constraints and, therefore, valid every-54

where in the system (i.e., in the homogeneous regions and at the inter-region). This GTE is, in

fact, a general form of the Darcy-Brinkman equation since the porosity and intrinsic permeabil-56

ity tensor are continuously position-dependent. Moreover, it interestingly includes a first but

also a second Brinkman correction, where the latter arises due to the porosity variations in the58

inter-region. There are several attempts to validate this GTE, but they have not been able to

provide satisfactory results (Ochoa-Tapia & Whitaker, 1995b). Some authors have suggested60
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that the second Brinkman correction can be neglected, arguing that its contribution is indirectly

included through other terms in the equations (Chandesris & Jamet, 2006, 2007, 2009), although62

this has not been proven. Furthermore, since a satisfactory validation of the GTE has not been

presented so far, the additional terms may be regarded just as a result of the up-scaling method64

used to derive the macroscopic equations.

From the above, including or not the additional terms in the GTE for momentum transport66

is crucial in the study of many processes of interest since erroneous predictions in the average

velocity profiles can also introduce errors in the prediction of heat and mass transport in such68

systems. On the other hand, in many cases, the GTE is crucial for the derivation of the jump

conditions that complete the TDA, and including or not the additional terms can determine an70

accurate prediction of the associated jump coefficients and as well as the position of the dividing

surface. In this way, it is first necessary to derive a reliable GTE that allows to accurately72

describe the momentum transport between a free flow and a porous medium.

The aim of this work is to demonstrate that the ODA, where the GTE is derived by using the74

volume averaging method and with a detailed prediction of the spatial variations of the effective

properties, is suitable to provide an accurate description of the momentum transport between a76

free flow region and a porous medium. We validate the GTE by comparing the average velocity

profiles resulting from the solution of the ODA with those obtained from averaging pore-scale78

profiles arising from pore-scale simulations (PSS) in a free flow/porous medium system with

different porous medium models.80

Thus, this work is organized as follows. First, in Section 2, we present the free flow/porous

medium system under consideration and the governing equations and boundary conditions for82

the total mass and momentum transport at the microscale. In addition, at the macroscale,

we derive the unclosed form of the corresponding GTE, where in order to close them, we also84

derive and formally solve the associated local closure problem (LCP). After that, in Section 3,

the closed form of the GTE and the spatial dependence of the permeability in the inter-region86

from the solution of the LCP are presented. Then, in Section 4, we compare and validate

the average velocity profiles obtained from the solution of the ODA with those resulting from88

averaging the local velocity profiles. Later on, in Section 5, we predict the spatial dependence of

the permeability by using the PSS, and we compare again the solution of the ODA with those90

resulting from averaging the local profiles. Moreover, the effect of the particle size variation near

the porous boundary on the intrinsic permeability and the average velocity profiles is analyzed92

in Section 6. Finally, the corresponding discussion and the conclusions are drawn in Sections 7
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and 8, respectively.94

2. Pore-scale and macro-scale problems

2.1. Pore-scale problem96

Let us consider the flow of a fluid phase (β−phase) through a channel bounded by two

impermeable walls (i.e., at the top and the bottom) and partially filled with a homogeneous

porous medium made of a rigid solid phase (σ−phase), similar to the one used by Beavers &

Joseph (1967), as shown in Fig. 2. The flow is assumed to be stationary, incompressible, fully

developed, and for a particle Reynolds number less than the unity (i.e., under a Stokes flow

regime). Hereafter, the zone occupied by the porous medium, with a height of Lω, will be

referred to as the ω−region and the zone of the free flow, with a height of Lη, will be referred

to as the η−region. In this way, the local governing equations for total mass and momentum

transport for a Newtonian fluid are given by

∇ · vβ =0 in the β − phase (1a)

0 = −∇pβ+ρβg + μβ∇2vβ in the β − phase (1b)

where vβ is the local velocity, pβ is the local pressure, μβ is the dynamic viscosity, ρβ is the

density and g is the gravity vector. The Eqs. (1a) and (1b) must be solved subject to the non-

slip boundary condition at the solid-fluid interface (Aβσ,M ) contained in the porous medium,

which is given by

vβ = 0 at Aβσ,M (1c)

This boundary condition must also be satisfied at the surface of the impermeable walls that

bound the channel. In addition, to complete the statement of the boundary value problem, it is98

necessary to provide the boundary conditions at entrances and exits of the system (Aβe,M ). In

this case, the flow in the η and ω−regions is driven by the same constant pressure drop in the100

horizontal direction (i.e., x−direction).

As mentioned above, to avoid the high computational cost required for the solution of the102

pore-scale problem, as well as the treatment of the resulting information, the ODA can be

used. For the problem given by Eqs. (1), the derivation of the corresponding GTE for the104

ODA, using the method of volume averaging (Whitaker, 1999), was first carried out by Ochoa-

Tapia & Whitaker (1995a) and more recently by Valdés-Parada et al. (2007a). This latter work106

also provided the associated LCP to predict the spatial variations of the intrinsic permeability
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Figure 2: Sketch of the channel partially filled with a porous medium and samples in the two homogeneous

regions ((b) homogeneous porous medium and (d) homogeneous free flow) and in the inter-regions ((a)

impermeable wall/porous medium, (c) free flow/porous medium and (e) free flow/impermeable wall).

tensor. Therefore, the main originalities of our work consist of the strict validation of the LCP108

and the additional terms involved in the GTE of such methodology. For such reason, in the

following section, we revisit the derivation of the GTE for total mass and momentum transport,110

and we predict the effective coefficients from both the solution of the LCP and the pore-scale

information obtained by performing a PSS. For conciseness, we only present here those steps of112

the derivation where modifications are required.

2.2. Averaging114

The first step of the development is to define an averaging volume of size V and locus V (x)

at every point of the system, as those shown in Fig. 2. Notice that V may be located in the

homogeneous regions and the inter-regions, so it may contain the β and σ−phases but also the

solid phase of the upper or lower wall. In this way, in terms of the averaging domain, the

superficial averaging operator for a local variable ψβ defined in the β−phase can be written as

〈ψβ〉|x =
1

V

∫
yβ∈Vβ(x)

ψβ |x+yβ
dV (2)
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which is related to the intrinsic average by

〈ψβ〉|x = εβ(x) 〈ψβ〉β
∣∣∣
x

(3)

where εβ(x) = Vβ(x)/V is the volume fraction of the β−phase contained in the averaging

volume. Notice that the value of εβ is reduced to the porosity of the bulk of the porous medium116

(εβω) in the homogeneous ω−region and to 1 in the homogeneous η−region. In the above

equations, the vector x locates the position of the centroid of the averaging volume relative to118

an arbitrary reference system, the vector rβ = x+ yβ locates points of the β−phase contained

in the averaging volume relative to the same reference system, and the vector yβ locates points120

in the β−phase contained in the averaging volume but relative to the vector x.

2.3. Generalized transport equations122

Now, let us apply the superficial averaging operator given by Eq. (2) to Eqs (1a) and (1b),

where by using the spatial averaging theorem (Howes & Whitaker, 1985), incorporating the

non-slip boundary condition given by Eq. (1c) and after of some algebraic manipulations, yields

∇ · 〈vβ〉|x = 0 (4a)

0 = −∇ 〈pβ〉β
∣∣∣
x
+ ρβg + ε−1

β (x)μβ∇2 〈vβ〉|x
− μβε

−1
β (x)∇εβ · ∇

(
ε−1
β (x) 〈vβ〉

∣∣∣
x

)
+ fβ (x) (4b)

Here μβ and ρβ were assumed to be constant within the averaging volume. The details of the

derivation of these equations can be seen elsewhere (Ochoa-Tapia & Whitaker, 1995a; Valdés-

Parada et al., 2007a). In addition, in the above equations we have introduced the position-

dependent vector fβ(x) defined as

fβ (x) =
1

Vβ (x)

∫
Aβσ(x)

nβσ ·
[
−I

(
pβ |rβ − 〈pβ〉β

∣∣∣
x

)
+ μβ

(
∇vβ |rβ −∇〈vβ〉β

∣∣∣
x

)]
dA (5)

where Aβσ(x) denotes the solid-fluid interfaces contained in the averaging volume. Notice that

Eq. (4a) resembles its pore-scale counterpart given by Eq. (1a). However, in Eq. (4b) this124

is only true for the first three terms, where the last of them is a macroscopic viscous term

known in the literature as the first Brinkman correction with the effective viscosity give by126

μeff = μβ/εβ(x). Furthermore, two new terms appear as result of the averaging procedure: the

term μβε
−1
β (x)∇εβ · ∇

(
ε−1
β (x) 〈vβ〉

∣∣∣
x

)
is referred to as the second Brinkman correction that128
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captures other macroscopic viscous forces due to the spatial variations of εβ(x) and the term

fβ(x) is referred to as the friction term that captures all the resistances offered by the solid130

phase to the fluid motion (Ochoa-Tapia & Whitaker, 1995a).

It is worth noting that, at this point in the derivation of Eqs. (4), no length-scale constraint132

has been imposed, so they are valid everywhere in the free flow/porous medium system. The

Eqs. (4) are thus the exact generalized transport equations (GTE) for total mass and momentum134

transport (Ochoa-Tapia & Whitaker, 1995a,b; Valdés-Parada et al., 2007a). However, Eq. (4b)

still depends on the pore-scale problem given by Eqs. (1) due to the vector fβ(x), so it is more136

complex than the original problem. This difficulty has often been addressed in the literature by

postulating the form of the vector fβ(x), and then evaluating the consequences of such a choice.138

For instance, for a Stokes flow, the vector fβ(x) is often replaced by the Darcy’s equation, while

for an inertial flow, it is commonly replaced by Ergun’s equation. These approaches are the most140

widely used in modeling of fluid flows over porous media (Beckermann et al., 1988; Khalili et al.,

1998; Gobin et al., 1998, 2005; Jiménez-Islas et al., 2009) but also through fixed bed reactors142

(Vafai & Tien, 1981, 1982; Cheng et al., 1991; Das et al., 2018; George et al., 2021). Nevertheless,

in these approaches there is no guideline to predict the spatial variations of permeability and144

the volume fraction, leading to the usage of empirical expressions for it.

In order to overcome this difficulty, it is necessary to derive and formally solve an associated

LCP. To this end, let us introduce the spatial decomposition of a local variable ψβ , in terms of

its intrinsic average 〈ψβ〉β and local deviations ψ̃β , as follows (Gray, 1975)

ψβ |rβ = 〈ψβ〉β
∣∣∣
rβ

+ ψ̃β

∣∣∣
rβ

(6)

This allows us to write Eq. (5) as

fβ (x) =
1

Vβ (x)

∫
Aβσ(x)

nβσ ·
[
−I

(
p̃β |rβ +Δ〈pβ〉β

)
+ μβ

(
∇ ṽβ |rβ +Δ〈vβ〉β

)]
dA (7)

where the following definition has been introduced

Δ〈ψβ〉β = 〈ψβ〉β
∣∣∣
rβ

− 〈ψβ〉β
∣∣∣
x

for ψβ = vβ , pβ (8)

Now Eq. (4b) is an unclosed average equation valid everywhere, since Eq. (7) involves two

kind of dependent variables (i.e., the averages and the deviations) and only one set of governing

equations. In this way, it is necessary to find expressions for the local velocity ṽβ and local

pressure p̃β deviations in terms of the average quantities, which is a procedure known as the

closure problem. The details of the derivation and the formal solution of the deviations problem

8



are provided in Appendix A. Here it is enough to mention the formal solution for the local

velocity and local pressure deviations can be written as (Valdés-Parada et al., 2007a, 2009a)

ṽβ = Bβ · 〈vβ〉β
∣∣∣
x

(9a)

p̃β = μβbβ · 〈vβ〉β
∣∣∣
x

(9b)

where the vector bβ and the second order tensor Bβ are referred to as local closure variables,

which can be predicted from the solution of the associated LCP reported in Appendix A. It is

worth mentioning that the formal solution for the local deviations are valid provided the length-

scale constraints given by r0/L � 1, r20/L
2 � 1 and 	2/(r0L) � 1 are satisfied (Valdés-Parada

et al., 2007a, 2009a). Here 	 is the largest characteristic length associated to the pore-scale, r0 is

characteristic size of the averaging volume, and L the smallest characteristic length associated to

the macroscale. In addition, it should be noticed that, under the same length-scale constraints,

the term fβ(x) given by Eq. (7) can be reduced to

fβ (x) =
1

Vβ (x)

∫
Aβσ(x)

nβσ ·
[
− I p̃β |rβ + μβ∇ ṽβ |rβ

]
dA (10)

146

3. Closed generalized transport equation

To obtain the closed form of the GTE for momentum transport, let us introduce the formal

solution for the deviations given by Eqs. (9) into Eq. (10), which leads to express the Eq. (4b)

as

0 = −∇ 〈pβ〉β
∣∣∣
x
+ ρβg + ε−1

β (x)μβ∇2 〈vβ〉|x
− μβε

−1
β (x)∇εβ · ∇

(
ε−1
β (x) 〈vβ〉

∣∣∣
x

)

− μβεβ (x) K−1
β (x) · 〈vβ〉β

∣∣∣
x

(11)

where the term fβ(x) is now written as a Darcy’s term with a position-dependent intrinsic

permeability tensor Kβ(x). This coefficient is defined in terms of the local closure variables

according to the following expression

−εβ(x)K
−1
β (x) =

1

Vβ(x)

∫
Aβσ(x)

nβσ · (−Ibβ +∇Bβ) dA (12)

Thus, to compute the spatial variations of the permeability tensor it is necessary to solve the148

associated LCP given by Eqs. (A.3), in a periodic representative domain of the free flow/porous
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medium boundary. Notice that K−1
β (x) reduces to the inverse of the permeability of the bulk of150

the porous medium K−1
βω in the homogeneous ω−region and reduces to zero in the homogeneous

η−region. The value of Kβω can also be computed by solving the associated LCP in a unit152

cell of the bulk of the porous medium. In that case, for the local closure variables, periodic

boundary conditions need to be imposed at all boundaries (Whitaker, 1999).154

Hence Eqs. (4a) and (11) are respectively the closed GTE for total mass and momentum

transport and they constitute the base of the ODA. It is worth stressing that Eq. (11) is valid156

in the η − ω inter-region as long as the constrains given by Eq. (A.2) are satisfied. Goyeau

et al. (2003) considered a simplified form of Eq. (11) as the GTE for momentum transport of158

an ODA, where the effective medium coefficients were heuristic functions of position.

Solution of the local closure problem160

From the above, to solve the ODA, the spatial variations of the effective medium coefficients

must be already known. In this sense, the spatial variation of Kβ in the η − ω inter-region can162

be predicted from the solution of the associated LCP. To this end, the periodic representative

domain of the free flow/porous medium boundary shown in Fig. 3 was considered. The geometry164

of the porous medium consists of a periodic array of a two-dimensional unit cell with a centered

circular particle. Thus, a rectangular domain with a height h = hω + hη and a width equal to166

the side length of a unit cell 	 was enough to take as the solution domain for the LCP. It is

worth mentioning that h must be large enough to include the η − ω inter-region and that the168

permeability predictions at the top and bottom correspond to those of the homogeneous regions.

Before moving on, it should be noticed that to predict the permeability by using Eqs. (12),170

it is necessary to define the shape and size of an averaging volume. To this end, a cross-section

area equal to 2r0	 was used (see Fig. 3). For simplicity, in all the calculations, the ratio r0/	172

was chosen to be an integer number. It is pertinent to point out that the locus chosen here must

be consistent with those used for averaging the local fields resulting from the PSS, as shown174

below and by Hernandez-Rodriguez et al. (2020). Using the same size and geometry of the

averaging volume avoids introducing additional uncertainty sources when the average velocity176

profiles obtained from the solution of ODA are compared with those resulting from averaging

the local velocity profiles.178

The LCP given by Eqs. (A.5), obtained after a change of variable as suggested by Whitaker

(1999), was numerically solved using the finite element software COMSOL Multiphysics 5.2. A180

free triangular unstructured mesh was employed, and the direct PARADISO solver was chosen.

10
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Figure 3: Periodic representative domain of the free flow/porous medium boundary used for the solution of the

LCP and samples at (a) y = −r0, (b) y = 0 and (c) y = +r0. The porous medium is made of a periodic array

of a unit cell with a centered circular particle.

An adaptive mesh refinement technique was used to ensure that all the results were independent182

of the number of computational nodes. Here, the heights of the free-flow and the porous medium

regions contained in the solution domain are related to the characteristic size of the averaging184

volume. They must be at least equal to hη = 2r0 and hω = 2r0 + 3	. Hence, the position of

the centroid of the samples is constrained to the positions given by −(3	 + r0) ≤ y ≤ +r0.186

Then, with the closure variables fields, the spatial variations of permeability were predicted

using Eq. (A.6). It should be noticed that, because in the system under consideration, the188

flow is assumed to be fully developed, the only needed component of the permeability tensor to

predict the average velocity is the xx−component (i.e., Kβ = ex ·Kβ · ex). Besides, due to the190

periodicity of the porous medium geometry in the horizontal direction, the spatial variations of

the permeability take place only along the vertical axis (i.e., y−direction).192

In Fig. 4 we show the spatial variations of K−1
β in the η−ω inter-region taking different sizes

of the averaging volume for two values of εβω. From these results, one can observe that K−1
β194

undergoes abrupt changes between its value in one homogeneous region to the other. Notice

that K−1
β reaches the value of K−1

βω when the averaging volume is located at y ≈ −(	 + r0)196

and zero when the averaging volume is located at y ≈ +r0. Thus, the zone of changes of

permeability predicted from the solution of the LCP is constrained to the positions given by198

−(	+ r0) ≤ y ≤ +r0, and that it has a thickness equal to 2r0 + 	. The value of the lower limit

is more evident when r0 tends to the size of the side length of a unit cell 	. In addition, one can200

appreciate that K−1
β decreases as the value of r0 is increased, and it increases as the value of

11
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Figure 4: Spatial variations of permeabilities ratio Kβω/Kβ (Y ) in the free flow/porous medium inter-

region. The porous medium model is made of a periodic array of a unit cell with a centered circle. All

the calculations are obtained from the solution of the LCP taking different values of r0 for two values

of εβω: (a) 0.4 and (b) 0.8.

εβω is increased. All these observations contrast sharply with those presented by Valdés-Parada202

et al. (2009a); Aguilar-Madera et al. (2011), where the strategy used to solve the LCP led them

to obtain smoothed permeability predictions for porous medium models consisting of a periodic204

array of two and three-dimensional unit cells with non-touching squares and cubes, respectively.

Finally, other needed coefficient for the ODA solution is the fluid volume fraction εβ . This206

can be obtained by applying Eq. (2) for ψβ = 1 along the vertical direction of the domain

shown in Fig. 3. As mentioned above, the corresponding values of εβ in the bulk of the porous208

medium and free flow are εβω and 1, respectively. However, in the η−ω inter-region, it exhibits

an oscillatory behavior tending to a straight line as the value of r0 increases. For the geometry210

of the porous medium here considered, the zone of changes is restricted to the positions given by

−r0 ≤ y ≤ +r0, which does not necessarily coincide with the zone of changes of Kβ predicted212

from the solution of the LCP. It should be noticed that it is possible to derive an algebraic

expression, that includes the floor function, to describe the dependence of εβ on y. However,214

for practical purposes, a linear interpolation between εβω and 1 can be used. This was tested

by solving the ODA using the exact and linear predictions of εβ . The differences between both216

average velocity profiles were negligible.

In the following section, for the system like the one used by Beavers & Joseph (1967), we218

compare the average velocity profiles obtained from solving an ODA written in terms of Eqs.

(11) and those obtained from averaging the local velocity profiles resulting from a PSS.220
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Figure 5: Periodic domain for the solution of the microscopic problem and samples in different positions

of the system: (a) impermeable wall/porous medium inter-region, (b) homogeneous porous medium, (c)

free flow/porous medium inter-region, (d) homogeneous free flow region, and (e) free flow/impermeable

wall.

4. ODA solution I: GTE in terms of Kβ obtained from the local closure problem

Now that the GTE for momentum transport is already closed, it is necessary to evaluate222

its predictive capabilities. To this end, in this section, we compare the average velocity profiles

resulting from the solution of the ODA with those resulting from averaging, using an averaging224

volume of characteristic size r0, the local velocity profiles obtained by performing a PSS.

For purposes of this comparison, a channel partially filled with a porous medium (see Fig. 2)226

consisting of a free flow and porous medium regions, respectively, with the heights of Lη = 103	

and Lω = 102	 was considered. Thus the free flow/porous medium system has a total height228

of LT = Lη + Lω = 1.1 × 103	. This satisfies the disparity of characteristic lengths given by

	 � L. For the sake of consistency with the effective medium coefficients predicted in the230

previous section, at the microscale, a porous medium region made of a periodic array of a

two-dimensional unit cell with a centered circular particle was used. With this mind, the PSS232

consist of numerically solving the pore-scale problem given by Eq. (1), along with the non-slip

boundary condition at the top and the bottom impermeable walls, everywhere in the system.234

However, due to the fully developed flow assumption and the periodic nature of the porous

medium, a periodic domain of the whole channel with a height LT and a width 	 was enough236

to take as the solution domain for the PSS, such as the one shown in Fig. 5. To generate the
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flow a dimensionless average pressure drop given by C =
(
	3ρβΔ〈pβ〉β

)
/
(
Lμ2

β

)
= 10−5 was238

imposed. With this value of C the Reynolds number of the porous medium region, based on the

particle size, is restricted to Rep � 1, while the Reynolds number of the free flow region, based240

on the height of such a region, satisfies that Reη ≤ 1250. Finally, periodic boundary conditions

for the local pressure deviations and local velocity were enforced in the x and z directions. The242

details of the numerical solution can be seen elsewhere (Hernandez-Rodriguez et al., 2020).

In this way, the PSS was carried out using a strategy similar to that used to solve the LCP.244

Once the local velocity profiles were available, they were substituted into Eq. (2) to obtain the

superficial average velocity profiles in the whole system. To this end, the shape and size of246

the averaging volume were chosen to be equal to those used to compute the spatial variations

of the effective medium coefficients. It is worth noting that the local fields does not depend on248

the size of the averaging volume while the average quantities do.

On the other hand, at the macroscale, the governing equations for the system under con-

sideration are given by Eqs. (4a) and (11). For simplicity, it is convenient to write them in

dimensionless form by using the dimensionless variables given by

X =
x

	
; Y =

y

	
; 〈u〉 = 〈vβ〉	ρβ

μβ
; 〈p〉β =

	2ρβ(〈pβ〉β + ρβyg)

μ2
β

; K∗
β =

Kβ

	2
(13)

Thus the GTE for total mass and momentum transport take the following form

∇ · 〈u〉 = 0 (14a)

0 = −∇〈p〉β + ε−1
β (X)∇2 〈u〉 − ε−1

β (X)∇εβ · ∇
(
ε−1
β (X) 〈u〉

)
−K∗−1

β (X) · 〈u〉 (14b)

where ∇ now represents the dimensionless differential operator. However, since the flow is fully

developed and unidirectional, similar to the system used by Beavers & Joseph (1967), the only

non-zero component of the average velocity vector is the horizontal one to the surface of the

porous medium (i.e., the x−component). Thus taking the scalar product of Eqs. (14) with the

unit vector in the x−direction (i.e., ex), yields

0 = −d〈p〉β
dX

+ ε−1
β (Y )

d2 〈u〉
dY 2

− ε−1
β (Y )

dεβ
dY

d

dY

(
ε−1
β (Y ) 〈u〉

)
−K∗−1

β (Y ) 〈u〉 (15)

where 〈u〉 = 〈u〉 · ex and K∗−1
β (Y ) = ex ·K∗−1

β (X) · ex. In addition, to complete the statement

of the macroscopic problem, the following boundary conditions at the top and the bottom of
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the channel are imposed

〈u〉 = 0 at Y = (Lη + r0) /	 (16a)

〈u〉 = 〈u〉ω,∞ at Y = −(Lω − r0)/	 (16b)

where 〈u〉ω,∞ is the average velocity in the bulk of the porous medium (i.e., Darcy’s velocity)

which is given by 〈u〉ω,∞ = −K∗
βωd 〈p〉βω /dX. On the one hand, notice that instead of using

the non-slip boundary condition at the lower impermeable wall (i.e., at y = −Lω), the velocity

existing in the bulk of the porous medium was imposed at y = −Lω + r0. This is to avoid

unnecessary calculations since sufficiently below the beginning of the porous medium, the local

velocity fields are periodic, and therefore Darcy’s velocity is reached. In fact, in previous work,

we have found that the bulk conditions are reached at a distance δB ≈ r0 + 3	 below the

surface of the porous medium (Hernandez-Rodriguez et al., 2020). On the other hand, notice

that the upper boundary condition was located inside of the upper impermeable wall. This

is because, in the average sense, the average velocity is not necessarily zero at y = Lη since,

in that position, the averaging domain still contains portions of the η−region, as shown by

Ochoa-Tapia et al. (2017). However, the above is only for purposes of the ODA solution, so

that the results will be presented only from the position of the bulk of the porous medium (i.e.,

y = −Lω + r0) up to the upper impermeable wall (i.e., y = Lη). Finally, due to the type of

flow and experimental configuration considered by Beavers & Joseph (1967), it is reasonable to

assume that the macroscopic pressure drop is given by

d 〈p〉β
dX

=
d 〈p〉βη
dX

=
d 〈p〉βω
dX

(17)

In this way, the ODA consist of the GTE for the momentum transport given by Eq. (15),250

which is subject to the boundary conditions given by Eqs. (16). With this in mind, due to

the position dependence of the effective medium coefficients (porosity and permeability), the252

ODA was numerically solved. To this end, a finite difference scheme to discretize the governing

equation and a Gaussian-elimination method to solve the resulting algebraic equations were254

used. Standard tests of convergence and uniqueness were performed in order to guarantee the

reliability of the numerical results.256

In Fig. 6 we plot the average velocity profiles of the free flow/porous medium system obtained

from both solving the ODA and averaging the local velocity fields resulting from the PSS taking

different values of r0 for εβω = 0.4. The intrinsic average velocity profiles are reported as follows
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Figure 6: Comparison of intrinsic average velocity profiles in the channel partially filled with a porous

medium obtained from averaging the PSS and ODA solution (with Kβ predicted from the solution of

the LCP) using different values of r0 for εβω = 0.4. The velocity profiles are (a) in the whole channel,

(b) around the maximum velocity and (c) in η − ω inter-region.The porous medium model consist of

a periodic array of a unit cell with a centered circle. In all the calculations we used Lη = 103� and

Lω = 102�.

Ui =
〈u〉βi

max(〈u〉βPSS)
; i = PSS,ODA (18)

A first assessment of the results can be obtained from Fig. 6(a), where the velocity profiles in

the whole channel are presented. From this result, one can observe that the velocity profiles258

obtained from the ODA are similar to those obtained from averaging the local fields. However,

the amplifications plotted in Figs. 6(b) and 6(c) show that the ODA predictions exhibit some260

deviations around the maximum velocity and in the free fluid/porous medium inter-region,

respectively. These deviations are larger in the free flow/porous medium inter-region than those262
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Table 1: Relative error percentage of the ODA, with Kβ predicted from the solution of the LCP, with

respect to the average of the local fields, to predict the average velocity profile in the free fluid/porous

medium inter-region for several values of r0 and two values of εβω.

centered circle

r0/	 εβω = 0.4 εβω = 0.8

1 21.47 19.15

2 21.13 17.95

5 22.52 17.26

10 23.33 16.41

15 23.73 15.67

around the maximum velocity. Notice that the deviations seem to increase as the r0 value is

increased and when the averaging volume moves from the position located at y = −r0 to that264

located at y = +r0.

In order to quantify the predictive capabilities of the ODA, we computed the relative error

percentage of the ODA to describe the average velocity profile in the η−ω inter-region according

to the following expression

Error1 % =
100

2r0/	

Y=+r0/�∫
Y=−r0/�

∣∣∣〈u〉βPSS − 〈u〉βODA

∣∣∣
〈u〉βPSS

dY (19)

In Table 1 we present the values of Error1% as function of r0 for two values of εβω. These266

results are for the porous medium made of the unit cell shown in Fig. 5. As one can observe

for εβω = 0.4 the relative error percentage is 22± 2 %. On the other hand, for εβω = 0.8268

the relative percentage error decreases until 16± 2 %. This can be attributed to the fact that

when porosity increases, flow resistances also decrease, and therefore, the accuracy of the LCP270

increases. These results suggest that the use of the LCP for permeability prediction may be

restricted to high enough values of εβω.272

To conclude this section, as indicated by Hernandez-Rodriguez et al. (2020), when the in-

equality given by 	 � Lη is satisfied, one can expect that the errors in the predictions of the av-

erage velocity in the inter-region will not have significant effects on those located approximately

in the middle of the free-flow region. To analyze this, we introduced the relative percentage

error of the ODA to predict the maximum average velocity with respect to the average of the
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local fields, as follows

Error2 % = 100

∣∣∣〈u〉βPSS − 〈u〉βODA

∣∣∣
〈u〉βPSS

(20)

In Table 2 we show the values of Error2 % as function of r0 for two values of εβω. In general,

one can observe that in all cases, the error is lower than O(10−2). Thus one can confirm that274

the errors in the velocity profiles of the free fluid/porous medium inter-region introduced in

the ODA, when Kβ is obtained from the solution of the LCP, do not significantly affect the276

predictions of the maximum velocity in the free flow region.

From the above, it has been shown that the ODA solution exhibits some deviations with278

respect to the average profiles obtained from the PSS. This could suggest that the LCP can not

accurately predict the spatial variations of Kβ in the η−ω inter-region or that the GTE derived280

using the volume averaging method is not completely valid. To address these questions, in the

next section, we predict the spatial variations of Kβ by using the pore-scale fields arising from282

the PSS, and we solve the ODA again.

Table 2: Relative error percentage of the ODA, using Kβ obtained from the solution of the LCP, with

respect to the average of the local fields to predict the maximum velocity in the homogeneous free fluid

region for several values of r0 and two values of εβω.

centered circle

r0/	 εβω = 0.4 εβω = 0.8

1 4.01× 10−2 4.82× 10−2

2 7.10× 10−2 7.23× 10−2

5 1.62× 10−1 1.43× 10−1

10 3.09× 10−1 2.56× 10−1

15 4.49× 10−1 3.63× 10−1

5. ODA solution II: GTE in terms of Kβ from the pore-scale solution284

5.1. Prediction of Kβ from the pore-scale solution

As seen in the previous section, when the spatial variations of Kβ predicted from the solution

of the LCP are used, the ODA solution exhibit some deviations in the η − ω inter-region. An

alternative approach to overcome such a problem is to compute the spatial variations of Kβ by

using the pore-scale fields arising from the PSS. This will allow evaluating both the predictive

capabilities of the LCP and the validity of the GTE derived using the volume averaging method.
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To this end, by introducing Eq. (9) into Eq. (10) and using the definition given by (12), the

permeability tensor can be written as

−μβεβ(x)K
−1
β (x) · 〈vβ〉β = fβ(x) (21)

Notice that the left-hand side of the above equation results from the development of the LCP,286

while the right-hand side results from the averaging procedure. In this way, to predict the

spatial variation of the permeability, the intrinsic average velocity and the vector fβ(x) should288

be computed using the pore-scale fields arising from the PSS. Here, for the sake of consistency,

the PSS performed in the previous section was used. In addition, the shape and size of the290

averaging volume were chosen to be equal to those used to compute Kβ from the LCP and 〈u〉β
from the PSS. It is worth mentioning that a similar strategy was used by Breugem (2005), using292

a porous medium model which only consists of seven squares, so their system does not satisfy

the disparity of characteristic length-scale given by 	 � r0 � L.294

In Fig. 7 we plot the spatial variations of the the xx−component of K−1
β in the η−ω inter-

region taking different values of r0 for two values of εβω. Notice that these results are similar296

to those obtained from the solution of the LCP. Here K−1
β also undergoes abrupt changes from

its value in bulk of the porous medium (i.e., at y ≤ −(r0 + 3	)) to that in the bulk of free flow298

region (i.e., y ≥ r0). In addition, the value of K−1
β decreases as the size of r0 is increased, and it

increases as εβω is increased. On the other hand, it should be noticed that K−1
β obtained from300

the PSS reaches the value of K−1
βω approximately at y ≈ −(3	+r0) instead of at y ≈ −(	+r0), as

shown by predictions obtained from the solution of the LCP (see Fig. 4). This is attributed to302

some pore-scale information has been lost in the derivation of the LCP. Thus, the zone of changes

of K−1
β predicted from the PSS is restricted to the positions given by −(3	 + r0) ≤ y ≤ +r0,304

and therefore it has a thickness equal to 2r0 + 3	 , which is two unit cells larger than the size

of the averaging region, as suggested in several studies (Valdés-Parada et al., 2007b, 2009b,306

2013). This confirms that the zone of changes of Kβ does not necessarily coincide with the one

corresponding to εβ .308

5.2. Solution of the ODA in terms of Kβ obtained from the PSS

Once the spatial variations of the permeability were predicted using the PSS, it is necessary310

to reevaluate the capabilities of the GTE to predict the average velocity profiles in the free

flow/porous medium system shown in Fig. 2. To this end, in this section, we compare again the312

average velocity profiles obtained from the ODA solution with those from averaging the local

velocity profiles resulting from the PSS. It should be recalled that the ODA is given by Eq. (15)314
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Figure 7: Spatial variations of permeabilities ratio Kβω/Kβ (Y ) in the free flow/porous medium inter-

region. The porous medium model consisting of a periodic array of a unit cell with a centered circle.

The calculations were obtained by filtering the microscopic results using different sizes of r0 for two

values of εβω: (a) 0.4 and (b) 0.8.

and the boundary conditions are given by Eqs. (16). In addition, the pressure drop in both the

free flow and the porous medium regions is a constant, which is given by Eq. (17). In this way,316

due to position dependence of the effective coefficients, the ODA was numerically solved again.

It is important to remark that here the ODA is solved taking into account the spatial variations318

of Kβ predicted using the local fields resulting from the PSS. Some examples of the intrinsic

average velocity profiles are shown below according to Eq. (18).320

In Fig. 8 the average velocity profiles obtained from the solution of the ODA, using the

permeability predicted from the PSS, and the average of the local velocity fields are compared.322

These profiles are for different values of r0 and εβω = 0.4. The average velocity profiles in the

whole domain of the channel are displayed in Fig. 8(a). From this result, it is interesting to note324

that the predictions of the ODA improve significantly when the predictions of the permeability

obtained from the PSS are used. This is confirmed in the amplification of the maximum velocity326

neighborhood shown in Fig. 8(b) and especially by observing the velocity profiles in the η − ω

inter-region shown in Fig. 8(c).328

To have a more quantitative insight about the predictive capabilities of the GTE, the relative

error percentage of the ODA solution with respect to the average of the PSS was computed. To330

this end, we evaluated the Eq. (19) and the result are shown in Table 3, as a function of r0 for two

values of εβω. As one can see, the error percentage in all cases is below 4 %. In addition, notice332

that the error percentages obtained for εβω = 0.4 are larger than those obtained for εβω = 0.8.
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Figure 8: Comparison of the intrinsic average velocity profiles in the channel partially filled with a

porous medium obtained from averaging the PSS and the ODA solution (with Kβ obtained from the

PSS) taking several values of r0 for εβω = 0.4. The velocity profiles are (a) in the whole channel, (b)

around the maximum velocity and (c) in η − ω inter-region. The porous medium model consist of a

periodic array of a unit cells with a centered circle. In all the calculation we used Lη = 103� and

Lω = 102�.

As mentioned above, this is because when porosity increases, flow resistances decrease, and334

therefore the error in permeability predictions decreases. This error can be reduced if a larger

number of points to sample the permeability are used. In our calculations, the distance between336

sampling points was 	/4. We have evidence that by increasing the number of sampling points,

the error percentage tends to zero.338

As before, we also used Eq. (20), to compute the relative error percentage of the ODA

solution with respect to the average of the PSS to predict the maximum velocity in the free flow340

region. These results are shown in Table 4 for different values of r0 and two values of εβω. There,

we can appreciate that all the relative error percentages are smaller than 10−2, which confirms342
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Table 3: Relative error percentage of the ODA, with Kβ predicted from filtering the PSS, with respect

to the average of the PSS to predict the average velocity profiles in the free flow/porous medium inter-

region for several values of r0 and two-values of εβω.

centered circle

r0/	 εβω = 0.4 εβω = 0.8

1 3.36 1.87

2 3.00 1.22

5 1.16 0.47

10 0.57 0.26

15 0.36 0.17

that the errors in the predictions in the η− ω inter-region do not have significant effects on the

predictions of the velocity profiles in the homogeneous η−region. As in the previous section, on344

the LCP, these observations are attributed to the dimensions of the free fluid/porous medium

system satisfies a separation of characteristic length scales.346

Thus, one can conclude that the GTE for total mass and momentum transport derived by

using the volume averaging method can accurately predict the average velocity profiles every-348

where in a free fluid/porous medium system (in the homogeneous regions and as well as in the

η − ω inter-region) as long as the spatial variations of permeability are accurate. Therefore,350

the errors in the ODA solution shown in Section 4 are due to the fact that the LCP can only

predict approximate spatial variations of Kβ in the η − ω inter-region. It is worth mentioning352

that all these observations are also valid for 0.25 ≤ εβω ≤ 0.95. In addition, we also performed

the calculations using a porous medium made of a two-dimensional unit cell with a staggered354

arrangement of circles for 0.25 ≤ εβω ≤ 0.95 and a centered square for 0.05 ≤ εβω ≤ 0.95.

In both cases, similar results as those for the unit cell with a centered circle were obtained.356

However, those results are not presented here to preserve the brevity of this work.

In the following section, we analyze the effects of the viscous terms involved in the macro-358

scopic momentum equation, which are results of the averaging method used to derive it at the

macroscale, on the average velocity profiles.360

5.3. Contribution of the first and second Brinkman corrections

As seen earlier, the GTE for momentum transport includes both a first and a second362

Brinkman correction. The first one describes one part of the macroscopic viscous forces due

to the fluid, while the second one describes another part of the macroscopic viscous forces but364
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Table 4: Relative error percentage of the ODA, with Kβ predicted from filtering the PSS, with respect

to the average of the PSS to predict the maximum average velocity in the homogeneous free fluid region

for several values of r0 and two-values of εβω.

centered circle

r0/	 εβω = 0.4 εβω = 0.8

1 7.91× 10−3 1.17× 10−2

2 7.74× 10−3 6.24× 10−4

5 7.59× 10−3 1.19× 10−3

10 7.37× 10−3 2.3× 10−5

15 7.18× 10−3 3.18× 10−4

due to the spatial variations of the porosity in the inter-regions. Notice that when the porous is

homogeneous, the second Brinkman correction exists only in the inter-regions (Whitaker, 1999).366

However, several works suggest that the second Brinkman correction can be neglected in the

inter-regions since its contributions are taken into account through the spatial variations of the368

porosity and the permeability tensor (Chandesris & Jamet, 2006, 2007), although it has not

been demonstrated so far. In order to address this problem, in this section, the contribution of370

each viscous term of the GTE on the prediction of the average velocity profiles are evaluated.

To this end, we solve the ODA twice, first considering the second Brinkman correction in the372

inter-region but not the first, and then in the other way around.

In this way, for the system under consideration, in Fig. 9 we compare the average velocity374

profiles obtained from the ODA solution, under the two conditions mentioned above, with those

from the solution of the complete ODA and averaging the local velocity profiles resulting from376

the PSS. These results were obtained using the porous medium model made of a periodic array

of a unit cell with a centered circle using r0 = 15	 and εβω = 0.4. In the ODA solution the378

spatial variations of Kβ predicted from filtering the PSS were used. Regarding these results,

the following comments are in order380

• On the one hand, by neglecting the first Brinkman correction (FBC), the ODA solution

exhibits significant deviations from the average profiles obtained from the complete ODA382

and the PSS. These deviations can be appreciated even without making amplifications in

the areas of interest (i.e., in the inter-region and around the maximum velocity). Note384

that the ODA without the FBC underestimates the average velocity profiles presenting

an abrupt change around y = 15	. This highlights the relevance of including the FBC in386
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Table 5: Relative error percentage of the ODA by neglecting the first and the second Brinkman

corrections in the inter-region with respect to the average of the PSS to predict the average velocity

profiles in the free fluid/porous medium inter-region for several values of r0 and two values of εβω.

εβω = 0.4 εβω = 0.8

r0/	 without FBC without SBC without FBC without SBC

1 99.75 32.13 99.64 2.85

2 99.50 36.07 99.26 11.09

5 98.72 38.13 98.22 10.83

10 97.44 38.36 96.48 10.73

15 96.20 38.14 94.76 10.70

the inter-region to predict the velocity profiles near porous media boundaries.

• On the other hand, by neglecting the second Brinkman correction (SBC), deviations in the388

prediction of the average velocity profiles are also introduced. However, these deviations

are lower than those obtained by neglecting the FBC, so the average velocity profiles390

from the ODA without the SBC are closer to those obtained from the complete ODA

and the PSS. It should be noticed that the magnitude of the introduced errors decreases392

everywhere in the system as the value of εβω is increased.

In order to have a more quantitative insight about the introduced errors in the prediction394

of the average velocity profiles by neglecting the first and then the second Brinkman correction

with respect to the average of the local fields, we computed the relative percentage error of each396

case using a similar equation to Eq. (19). In Table 5 we show the values of Error% for different

values of r0 and two values of εβω. From these results, we observe that the introduced errors by398

neglecting the FBR are larger than 95 % for all cases here considered, while by neglecting the

SBC, they are larger than 10 %. Notice that these errors increase as the εβω value decreases.400

Finally, in order to appreciate the contribution of each term involved in the GTE for momen-

tum transport, in Fig. 10 we plot the spatial variations of both Brinkman corrections and the402

friction term in the η−ω inter-region taking r0 = 15	 for two values of εβω. As one can see, for

both values of εβω, the FBC is of the same order of magnitude as the Darcy term. However, due404

to their spatial variations are of the opposite sign, their contributions tend to cancel. On the

other hand, although the SBC has an order of magnitude lower than the other viscous terms,406

its contribution may be crucial because the other terms tend to cancel each other. It should be

noted that the magnitude of all terms decreases as the value of εβω increases, which indicates408
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Figure 9: Comparison of intrinsic average velocity profiles in the channel partially filled a with a porous

medium obtained from averaging the PSS and the ODA solution (with Kβ predicted from the PSS) by

neglecting the FBC and then the SBC for r0 = 15� and εβω = 0.4. The velocity profiles are (a) in the

whole channel, (b) around the maximum velocity and (c) in η − ω inter-region. The porous medium

model consist of a periodic array of a unit cell with a centered circle. The size of the free flow/porous

medium system consist of Lη = 103� and Lω = 102�.

that the flow resistances are decreased when more fluid is considered in the unit cells.

From the above, it can be concluded that to accurately predict the average velocity profiles410

between a free flow and a porous medium without a doubt, the first and the second Brinkman

corrections in the momentum equation must be included in the η − ω inter-region. In addition,412

it is clear that the contributions of the second Brinkman correction are not necessarily taken

into account through the spatial variations of the porosity and the permeability, as suggested414

several authors. These results confirm those outlined by Ochoa-Tapia et al. (2017); Hernandez-

Rodriguez et al. (2020).416
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Figure 10: Spatial variations of the viscous terms in the GTE for momentum transport in the free

flow/porous medium inter-region using the porous medium made of unit cells with a centered circle,

r0 = 15� and two two values of εβω: (a) 0.4 and (b) 0.8. The size of the free fluid/porous medium

system consist of Lη = 103� and Lω = 102�.

6. Effect of a porous medium boundary with decreasing particle diameter

So far, the predictions of the spatial variations of the effective medium coefficients in the418

inter-region have been constrained to systems where, at the level of a unit cell, the porous

medium is homogeneous up to its adjacent surface to the free flow region. However, in many420

systems, the porous medium may contain a variable particle size near its boundaries, and as a

consequence, it may have different spatial variations of the effective coefficients and therefore422

different velocity profiles, such as in solidification processes (Goyeau et al., 1997, 1999; Bousquet-

Melou et al., 2002; Roux et al., 2006; Kumar et al., 2013). In fact, in several free fluid/porous424

medium systems, the surface of the porous medium also presents protuberances or roughness

that can modify the spatial variation of the effective coefficients and consequently the flow in the426

open gap, as shown by Valdés-Parada et al. (2009a). In this way, in order to analyze the effects

that may have a variable particle size near the porous medium boundaries, in this section, we428

predict the spatial variations of the porosity and permeability in the free fluid/porous medium

inter-region using a porous medium such as the one shown in Fig. 11.430

The spatial variations of the effective medium coefficients were obtained by performing a

PSS in a periodic representative domain of the whole channel, as described in previous sections.

As shown in Fig. 11, the porous medium also consists of a periodic array of a unit cell with a

centered circle. However, here the particle size in the bulk of the porous medium is constant,

and it varies in a distance Ls below the surface of the porous medium. In this zone the volume
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Figure 11: Sketch of the free flow/porous medium system with variable particle size near the porous medium

boundaries and samples at (a) y = −r0, (b) y = 0, and y = +r0. The porous medium consist of an array of a

unit cell with a centered circle.

fraction of each unit cell εβs, which is a function of the vertical position, is expressed as

εβs =

(
εβmax − εβmin

hη − 	

)(
y + hη − 	

2

)
+ εmin, for − Ls + 	/2 ≤ y ≤ −	/2 (22)

while the radius of the particles is given by

rs
	

=

[
1− εβs

π

]0.5
(23)

In this way, taking different values of r0 for εβmin = εβω = 0.4, εβmax = 0.95, the spatial

variations of the effective medium coefficients were computed. On the one hand, in Fig. 12432

(a) we plot the spatial variations of the fluid volume fraction in the η − ω inter-region. As one

can observe, fluid volume fraction changes sigmoidally from its value in the bulk of the porous434

medium to that in the bulk of the free flow region. The zone of changes of this coefficient

is restricted to the positions given by −r0 − Ls ≤ y ≤ +r0. On the other hand, the spatial436

variations of the permeability in the inter-region are shown in Fig. 12(b). In this case, one can

appreciate that the spatial variations of Kβ exhibits two rates of change, the first one is due438

to the changes in particle size, and the second one due to the averaging volume moves from a

position completely located in the porous medium to that completely located in the free flow.440

The zone of changes of Kβ is restricted to the positions given by −(3	 + Ls + r0) ≤ y ≤ +r0.

In this way, the zones of change of the volume fraction and permeability, when the porous442

medium contains a variable particle size near its boundaries, are larger than that when the

porous medium is homogeneous up to its boundaries.444

Finally, in Fig. 13 (a) we compare the average velocity profiles arising from the ODA solution
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Figure 12: Spatial variations of (a) the volume fraction and (b) the permeabilities ratio Kβω/Kβ(Y ). The porous

medium consist of a periodic array of a unit cell with a centered circle which exhibit a variable particle size near

the its boundaries. The prediction are obtained from filtering the pore-scale profiles taking different values of r0

for εβω = 0.4 and εmax = 0.95. In all the calculations the whole system consist of Lη = 103�, Lω = 102� and

Ls = 10�.

with those from averaging the pore-scale fields for different sizes of r0. Due to the differences are446

negligible in the homogeneous regions, the comparisons are only shown in the η−ω inter-region.

As one can observe, the ODA predictions are in good agreement with the reference profiles for all448

values of r0. These results can be qualitatively confirmed in Fig. 13(b), where the same profiles

are presented on a logarithmic scale. Moreover, to analyze the contribution of the viscous terms450

of the GTE, in Fig. 13 (c) we plot the ODA predictions when the SBC is neglected. These

profiles are also shown on a logarithmic scale in Fig. 13 (d). Notice that not including the SBC452

in the GTE again introduces deviations in the ODA predictions. However, these deviations are

larger when the particle size is variable than those obtained when the particle size is constant454

(see Fig. 9).

7. Discussion456

Based on the above, we can make the following observations

• On the one hand, by comparing the average velocity profiles obatined from the solution of458

the ODA with those from averaging the local fields, it has been shown that the ODA can

be suitable alternative to predict the fully developed flow in a free fluid/porous medium460

system, like the one studied by Beavers & Joseph (1967). To this end, the GTE for mo-

mentum transport must include two viscous terms (i.e., the first and the second Brinkman462
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Figure 13: Comparison of the intrinsic average velocity profiles in the free flow/porous medium inter-region

obtained from solving the ODA and averaging the PSS taking different values of r0 for εβω = 0.4 and εmax = 0.95.

The porous medium model consist of a periodic array of a unit cell with a centered circle presenting a variable

particle size in the porous medium boundary. The results in (a) an (b) are using the complete GTE and those

in (c) and (d) are using GTE without the SBC. In all the calculations Lη = 103�, Lω = 100� and Ls = 10�.

corrections) and a Darcy’s term with a position-dependent intrinsic permeability tensor.

In this way, the additional terms arising from the up-scaling method used to derive the464

governing equations at the macroscale can certainly be justified. It is worth stressing

that including or not the additional terms in the macroscopic momentum equations could466

change the description of other transport quantities as heat or mass transport in a free

fluid/porous medium system. In our opinion, this contributes to clarifying the range of va-468

lidity of the Brinkman correction to Darcy’s law that has been the subject of great debate in

the literature (Vafai & Kim, 1990; Nield, 1991; Sahraoui & Kaviany, 1992; Auriault, 2009;470

Zampogna & Bottaro, 2016). The Brinkman corrections must be included in the inter-

regions, and they can be neglected with respect to Darcy’s term in the bulk of the porous472
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medium, as has been previously indicated by many authors (Whitaker, 1999). In addition,

the effective viscosity of a porous medium must be given by μeff = ε−1
β (x)μβ . All these474

results were obtained for different values of r0 (	, 2	, 5	, 10	, 15	) and using a porous

medium made of a periodic array of a unit cell with a centered circle (0.25 ≤ εβω ≤ 0.95)476

but also with a staggered arrangement of circles (0.25 ≤ εβω ≤ 0.95 ) and a centered

square (0.05 ≤ εβω ≤ 0.95 ). For the sake of conciseness, the results for the last two unit478

cells are not presented here.

• In Fig. 14 we plot the spatial variations of Kβ in the free flow/porous medium inter-480

region predicted from the solution of the LCP and those resulting from the PSS using two

values of r0 for two values of εβω. From this comparison, some differences can be observed482

between both predictions, indicating that the LCP is just an approximate alternative

to predict the spatial variations of Kβ in the inter-region. However, as it is shown in484

the same figure, the LCP provides better predictions of Kβ than the empirical functions

widely used in literature. For instance, an extension of the Carman-Kozeny equation, a486

step-jump function, and a linear function (Ochoa-Tapia & Whitaker, 1995b; Angot, 1999;

Goyeau et al., 2003; Chandesris & Jamet, 2006, 2007; Chen & Wang, 2014). In addition,488

when these empirical predictions of Kβ are used for solving the ODA, the resulting average

velocity profiles are further away from the averages of the local profiles than those obtained490

when Kβ predicted from the solution of the LCP is used. For the sake of conciseness, these

average velocity profiles are not shown in this work. Therefore, until better alternatives492

are found to predict the spatial variations of the permeability in the inter-region, the LCP

will be the best alternative available for it.494

• It has been shown that the permeability variations in the free flow/porous medium inter-

region depend on the size of the sampling region. This is shown by the results obtained496

from the LCP, Fig. 4, but also by those obtained from the PSS, Fig. 7. In addition, by

using larger values of r0, we have also found that the permeability variations in the free498

fluid/porous medium inter-region do not present an asymptotic behavior with respect to

the size of the averaging sample. This result can be attributed to the fact that when the500

value of r0 is increased more fluid is included in the averaging sample. However, it should

be recalled that r0 must be constrained by the inequality given by r0 � Lη in order to502

provide appropriate permeability and velocity predictions. Analogous observations can be

also made on the average velocity profiles in the same inter-region. This was shown by504
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Figure 14: Comparison of the spatial variations of permeabilities ratio Kβω/Kβ(Y ) in the free flow/porous

medium inter-region predicted from the PSS with those predicted from the LCP, an extension of CK equation,

a step-jump function and a linear function. The calculations are taking (a) εβω = 0.4 and r0 = �, (b) εβω = 0.8

and r0 = �, (c) εβω = 0.4 and r0 = 15�, and (d) εβω = 0.8 and r0 = 15�.

our research group in Ochoa-Tapia et al. (2017); Hernandez-Rodriguez et al. (2020). In

fact, the dependency of the average profiles on the size and shape of the samples must be506

considered if the predictions are used for comparing with experimental data (Baveye &

Sposito, 1984; Cushman, 1984).508

• According to Valdés-Parada et al. (2009b), the height of the solution domain for the LCP

must be hη + hω = 40	, where was assumed that hη = hω. These led them to obtain a510

zone of changes of permeability of thickness equal to 2r0 = 20	. However, from the PSS,

we have found that the height of the solution domain for the LCP depends on the size512

of the averaging volume. The height hη must be at least 2r0, while the height hω must

be at least 2r0 + 3	 in all cases. Notice that the porous medium region contained in the514

solution domain is slightly larger than that of the free fluid region (i.e., hη < hω). This
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is in order to reach the value of the permeability of the bulk of the porous medium. As a516

consequence, the thickness of the zone of changes of permeability is equal to 2r0 + 3	.

• The results in Section 4 and those presented in Section 5 show a smooth transition zone in518

the average velocity profiles in the η−ω inter-region, from the velocity when the averaging

volume is completely located in the bulk of the porous medium (i.e., the Darcy velocity)520

to that when it is completely located in the free flow region (i.e., y = +r0). It is worth

stressing that such a transition zone is a result of using average quantities instead of522

the form of the macroscopic equations resulting from up-scaling the pore-scale problem,

although it can certainly be predicted from the solution of the ODA. It should be noticed524

that the portion of the average velocity below the surface of the porous medium (i.e.,

−(3	+ r0) ≤ y ≤ 0) is what is known as the Brinkman boundary layer (Goharzadeh et al.,526

2005; Morad & Khalili, 2009). Recently, we have shown that the thickness of the Brinkman

boundary layer depends on the size of the averaging volume, and it is approximately of528

the order of δB = 3	+ r0 (Hernandez-Rodriguez et al., 2020). Therefore, it could be much

larger than
√
Kβω, as suggested in several studies (Goyeau et al., 2003; Chandesris &530

Jamet, 2006, 2007; Chen & Wang, 2014).

• Finally, as mentioned earlier, an alternative approach to an ODA is a TDA, where it532

is necessary to develop two jump boundary conditions, one for the velocity and one for

the stress. In the context of the volume averaging, these jump boundary conditions are534

written in terms of jump coefficients that depend on the spatial variations of the effective

medium coefficients in the inter-regions (Valdés-Parada et al., 2007a, 2009a, 2013). How-536

ever, prediction the effective medium coefficients have been based on the solution of the

LCP, which can lead to obtain approximate effective medium coefficients, according to the538

results found in this work, and therefore approximate jump coefficients. In this way, the

effective medium coefficients predicted from the PSS provide the opportunity to accurately540

predict the jump coefficients and evaluate the performance of a TDA. This and further

ideas will be explored in future works. It is worth mentioning that others approaches can542

also be used to derive jump boundary conditions, such as the multiscale homogenization

technique (Zampogna & Bottaro, 2016; Lācis & Bagheri, 2017; Bottaro & Naqvi, 2020;544

Sudhakar et al., 2021). In that alternative, the jump coefficients also depend on the mi-

crostructure of the porous medium near the free flow/porous medium boundary, although546

they do not require knowing the spatial variations of the effective medium coefficients. In
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addition, all the jump coefficients can be computed by solving a set of Stokes problems in548

reduced computational domains.

8. Conclusions550

In this work, we applied a one-domain approach to study the momentum transport between

a free flow and a porous medium regions in a similar system to the one studied by Beavers &552

Joseph (1967). Such a model is based on closed generalized transport equations derived from the

microscopic problem by applying the volume averaging method (Whitaker, 1999). In specific,554

for momentum transport, the resulting equation involves two viscous terms (i.e., the first and

the second Brinkman corrections) and a Darcy’s term. In addition, it is expressed in terms of556

position-dependent effective medium coefficients such as the volume fraction and the intrinsic

permeability tensor. Using a system where the porous medium is made of a periodic array of558

a two-dimensional unit cell with solid particles (i.e., centered circle, staggered circles, and cen-

tered square), the first coefficient was predicted by the single integration of the β−phase within560

an averaging volume, and the second one from both the solution of the associated local closure

problem and the pore-scale fields arising from performing pore-scale simulations.562

From the above, we addressed the question about the validity of the two Brinkman’s corrections

and the Darcy’s term expressed in terms of a position-dependent permeability tensor and if564

whether or not these three terms are just results of the up-scaling method used to derive the

governing equations at the macroscale. To this end, we compared the average velocity profiles566

resulting from the solution of the one-domain approach with those arising from averaging the

pore-scale fields obtained by performing pore-scale simulations. From these results, it was inter-568

esting to find out that the ODA satisfactorily reproduces the average velocity profiles obtained

from the pore-scale simulations, as long as the spatial variations of the effective medium co-570

efficients in the inter-region are exact. Therefore, the three terms involved in the generalized

transport equations for momentum transport can certainly be justified. These results stand for572

any size of the averaging volume (r0) and porosity value of the bulk of the porous medium (εβω).

Regarding the two approaches used to predict the permeability in the inter-region different av-574

erage velocity profiles from the solution of the macroscopic model were obtained. On the one

hand, when the spatial variations of the permeability are obtained from the solution of the576

local closure problem, it has been found out that the resulting profiles from the solution of the

macroscopic model exhibit some deviations in the inter-region with respect to the average of the578

local fields. This is attributed to the fact that the local closure problem is only an approximate
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approach to predict the permeability in the inter-region. However, we have found that it pro-580

vides better predictions of the permeability than the empirical expressions commonly used in

the literature (i.e., linear, step-jump or hyperbolic function, etc.). On the other hand, when the582

spatial variations of the permeability are obtained from filtering pore-scale profiles, the average

velocity profiles from the solution of the macroscopic model are in excellent agreement with the584

averages of the pore-scale fields.

Analyzing the two Brinkman’s corrections, we have found that both viscous terms are crucial586

for predicting the average velocity profiles everywhere in the free/fluid porous medium system

but mainly in the inter-region. When one of these two terms is neglected in the inter-region,588

important deviations are introduced in the predictions, which are larger when the first Brinkman

correction is neglected. From the above, we can conclude that both Brinkmans’s corrections590

must be included in order to obtain accurate predictions of the velocity profiles.

On the other hand, we have shown that a Brinkman’s boundary layer appears when the porous592

medium is homogeneous up to its boundaries but also when it presents a variable particle size

near its boundaries. From these results, it is clear that the Brinkman’s boundary layer is a594

result of using average quantities, although it can be reproduced by the solution of the ODA.

In addition, it is interesting to notice that the size of these layers depends on the corresponding596

size of the averaging volume.

Finally, it should be mentioned that the results presented in this work complement those pre-598

sented by Ochoa-Tapia et al. (2017); Hernandez-Rodriguez et al. (2020). Moreover, they con-

stitute the first step on the formal derivation of exact jump boundary conditions that complete600

the statement of the two-domain approach for the momentum transport between a free flow and

a porous medium. This is because now we already know the terms that the generalized trans-602

port equations must include since the jump boundary conditions are usually derived from the

difference between the generalized transport equations and the governing equations of each ho-604

mogeneous region, as shown by Valdés-Parada et al. (2013). This idea can certainly be extended

to study other types of transport situations, such as the study of multiphase flows between two606

homogeneous regions (e.g., between a free flow and a porous medium or between two porous

media). These and other applications will be studied in future works.608
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Ochoa-Tapia, J. A., & Whitaker, S. (1995a). Momentum transfer at the boundary between a742

porous medium and a homogeneous fluid -i. theoretical development. International Journal

of Heat and Mass Transfer , 38 , 2635–2646. doi:10.1016/0017-9310(94)00346-W.744

Ochoa-Tapia, J. A., & Whitaker, S. (1995b). Momentum transfer at the boundary between

a porous medium and a homogeneous fluid-ii. comparison with experiment. International746

Journal of Heat and Mass Transfer , 38 , 2647–2655.

Richardson, S. (1971). A model for the boundary condition of a porous material. part 2. Journal748

of Fluid Mechanics, 49 , 327–336. doi:10.1017/S002211207100209X.

Roux, P., Goyeau, B., Gobin, D., Fichot, F., & Quintard, M. (2006). Chemical non-equilibrium750

modelling of columnar solidification. International journal of heat and mass transfer , 49 ,

4496–4510. doi:10.1016/j.ijheatmasstransfer.2006.05.020.752

Rybak, I., Schwarzmeier, C., Eggenweiler, E., & Rüde, U. (2020). Validation and calibration of
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Nomenclature

Aβσ interfacial domain between the solid and fluid phases within the averaging

volume

Aβσ,M interfacial domain between the solid and fluid phase in the entire fluid-porous

medium system

Aβe,M interfacial domain at the entrances or exits of the β−phase in the entire

fluid-porous medium system

bβ closure variable that maps μβ〈vβ〉β onto p̃β , m
−1

Bβ closure variable that maps 〈vβ〉β onto ṽβ

dβ closure variable that maps μβ〈vβ〉β onto p̃β , m
−1

Dβ closure variable that maps 〈vβ〉β onto ṽβ , m
2

C dimensionless magnitude of the macroscopic pressure drop

fβ(x) non-homogeneous vector in the GTE for momentum transport, N m−3

g gravity vector, m2 s−1

hλ height of the λ−region (λ = η, ω) in the representative domain used for the

solution of the LCP, m

I the identity tensor

Kβ(x) permeability tensor valid everywhere in the system, m2

Kβ(y) xx−component of the permeability tensor valid everywhere in the system,

m2

Kβω permeability tensor of the bulk of the ω−region, m2

Kβω xx−component of the permeability tensor of the bulk of the ω−region, m2

Lj characteristic length of the j-region (j = η, ω), m

	 characteristic length of the side of a unit cell that composes the ω−region,

m

	σ characteristic length of the solid particle in a unit cell that composes the

ω-region, m

nβσ unit normal vector directed from the β−phase toward the σ−phase

p dimensionless local pressure of the β−phase

pβ local pressure of the β−phase, N m−2

p̃β deviations of the local pressure of the β−phase, N m−2

rβ position vector relative to a reference system locating the beta−phase con-

tained in the averaging volume, m

794
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r0 characteristic length of the averaging volume, m

Ui ratio of the tangential component of the dimensionless average velocity

vβ local velocity vector of the β−phase, m s−1

ṽβ deviations of the local velocity vector of the β−phase, m s−1

〈vβ〉ω,∞ Darcy velocity vector, m s−1

V volume of the averaging domain

V domain of the averaging volume

Vβ(x) volume of the β−phase contained within the averaging domain, m3

Vβ(x) domain of the β−phase contained within the averaging volume

Vσ(x) domain of the σ−phase contained within the averaging volume

x position vector relative to a reference system locating the centroid of the

averaging volume, m

x horizontal coordinate, m

X dimensionless horizontal coordinate

yβ position vector relative to the centroid locating the β−phase contained in

the averaging volume, m

y vertical coordinate, m

Y dimensionless vertical coordinate

Greek symbols

β fluid phase

σ solid phase

δB thickness of the Brinkman boundary layer, m

μβ dynamic viscosity of the β−phase, N s m−2

ρβ density of the β−phase, kg m−3

εβ(x) volume fraction of the β−phase valid everywhere in the system

εβω volume fraction of the β−phase in the bulk of the ω−region

ψβ arbitrary function associated to the β−phase

〈ψβ〉 superficial average of ψβ

〈ψβ〉β intrinsic average of ψβ
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Abreviations

GTE generalized transport equations

LCP local closure problem

ODA one-domain approach

TDA two-domain approach

796

Appendix A. The local closure problem

In this section, in order to close the GTE given by Eq. (4b), we derive and formally solve

the boundary-value problem for the local velocity and local pressure deviations. To this end,

the governing equations for the deviations can be obtained by introducing Eq. (6) into Eqs.

(1a) and (1b) and then subtracting to the result the Eqs. (4a) and (4b), respectively, to obtain

∇ · ṽβ = (∇ ln εβ) · 〈vβ〉β
∣∣
x︸ ︷︷ ︸

source

in the β−phase (A.1a)

0 = −∇p̃β + μβ∇2ṽβ − μβε
−1
β (∇εβ) · ∇ 〈vβ〉β

∣∣
x︸ ︷︷ ︸

source

− μβε
−1
β

(∇2εβ
) 〈vβ〉β

∣∣
x︸ ︷︷ ︸

source

−fβ(x) in the β−phase (A.1b)

To achieve the above equations, in Eq. (6), it was assumed that 〈ψβ〉β
∣∣∣
rβ

≈ 〈ψβ〉β
∣∣∣
x
, which is

valid when the length-scale constraints given by r0 � L and r20 � L are satisfied (Valdés-Parada

et al., 2007a). Then, in order to complete the statement of the boundary value problem for the

deviations, the corresponding boundary conditions for the local deviations can be obtained by

introducing Eq. (6) into Eq. (1c), which leads to

B. C. 1: ṽβ = − 〈vβ〉β
∣∣
x︸ ︷︷ ︸

source

at Aβσ,M (A.1c)

Furthermore, far enough away from the surface of the porous medium, the local deviations will

correspond to those of the bulk of each region. First, in the free flow region, at a distance

sufficiently above the surface of the porous medium, the local deviations will be equal to zero.

Second, in the porous medium region, at a distance sufficiently below the surface of the porous

medium, the local deviations will be equal to those of the bulk of the porous medium. Therefore,

the solution domain for the local deviations problem can be restricted to a periodic representative

domain of the free flow/porous medium boundary (Vηω) large enough to contain the η−ω inter-

region, such as the one shown in Fig. A.15. With this in mind, the following boundary conditions
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for the local deviations can also be imposed

B. C. 2: ṽβ = 0 at y = hη (A.1d)

B. C. 3: ṽβ = ṽβω at y = −hω (A.1e)

Periodicity : ṽβ (r) = ṽβ (r+ li) i = x, z (A.1f)

Periodicity : p̃β (r) = p̃β (r+ li) i = x, z (A.1g)

Constraint : 〈ṽβ〉β = 0 (A.1h)

Constraint : 〈p̃β〉β = 0 (A.1i)

where hλ (with λ = η, ω) denotes the height of the portion of the λ−region (Vλ) contained in798

Vηω = Vω +Vη and ṽβω denotes the local velocity deviations in the bulk of the porous medium.

Notice that periodic boundary conditions for the local velocity and local pressure deviations800

are imposed in the horizontal directions (i.e., in the x and z directions), which are given by

Eqs. (A.1f) and (A.1g), respectively. In addition, to have a well-posed deviations problem, the802

local pressure deviations are bounded by an integral constraint given by Eq. (A.1i). The local

velocity deviations satisfy a similar integral constraint, which is given by Eq. (A.1h), although804

it is unnecessary. An example of the solution domain for the local deviations problem using a

periodic porous medium model is shown in Fig. 3.806

y=h�

y= h� �

y

x

L�

L�

y

x

Flow

Figure A.15: Periodic representative domain of the free flow/porous medium boundary, which includes

the free flow/porous medium inter-region, for the solution of the LCP.
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In this way, on the basis of the length-scale constraints given by

r0
L

� 1;
r20
L2

� 1;
	2

r0L
� 1, (A.2)

one can use the principle of superposition to express the local deviations fields in terms of the

source term given by 〈vβ〉β |x, as shown in Eqs. (9). To obtain this result the source term

given by ∇〈vβ〉β |x has been assumed to be negligible provided the third inequality given by Eq.

(A.2) is satisfied (Valdés-Parada et al., 2007a). It should be recalled that in Eq. (9) the vector

bβ and the tensor Bβ are referred to as local closure variables, which maps how the constant

sources are distributed into the local pressure and velocity deviations, respectively. In this way,

by introducing Eqs. (9) into Eqs. (A.1), one can extract the boundary value problem for the

vector bβ and the tensor Bβ given by

∇ · Bβ = ∇ ln εβ in the β−phase (A.3a)

0 = −∇bβ +∇2Bβ − ε−1
β ∇2εβI+ εβ(x)K

−1
β (x) in the β−phase (A.3b)

B. C. 1: Bβ = −I at Aβσ (A.3c)

B. C. 2: Bβ = 0 at y = hη (A.3d)

B. C. 3: Bβ = Bβω at y = −hω (A.3e)

Periodicity : Bβ (r) = Bβ (r+ li) i = x, z (A.3f)

Periodicity : bβ (r) = bβ (r+ li) i = x, z (A.3g)

Constraint : 〈Bβ〉β = 0 (A.3h)

Constraint : 〈bβ〉β = 0 (A.3i)

In Eq. (A.3e), Bβω is the local closure variable in the bulk of the porous medium that can be

computed by solving the corresponding local closure problem in a unit cell (Whitaker, 1999). In808

addition, by substituting Eqs. (9) into Eq. (10), the permeability tensor Kβ(x) can be written

in terms of the local closure variables as shown in Eq. (12). At this point, it should be noticed810

that the boundary-value problem given by Eq. (A.3) only depends on the porosity and the

geometry of the free flow/porous medium boundary and therefore the permeability tensor in the812

inter-region is an intrinsic property of the porous medium boundary similar to the permeability

of the bulk of the porous medium.814

The LCP given by Eqs. (A.3) needs to be solved in a periodic representative domain of

the free flow/porous medium boundary large enough to include the free flow/porous medium816

inter-region, as the one shown in Fig. A.15. To this end, the periodic representative domain of
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the boundary with a porous medium consisting of a periodic array of a unit cell was used, as818

the one shown in Fig. 3. The solution domain has a height h = hη + hω and a width 	.

Before moving on, it should be noticed that the LCP given by Eq. (A.3) involves an inte-

grodifferential equation, so its solution is quite complex. To overcome this issue, it is convenient

to use the following change of variables suggested by Whitaker (1999)

dβ = ε−1
β (x)bβ ·Kβ(x); Dβ = ε−1

β (x) (Bβ + I) ·Kβ(x) (A.4)

which allows us arriving to the following form of the LCP

∇ ·Dβ = 0 in the β−phase (A.5a)

0 = −∇dβ +∇2Dβ + I in the β−phase (A.5b)

B. C. 1: Dβ = 0 in Aβσ (A.5c)

B. C. 2:
∂Dβ

∂y
= 0 at y = hη (A.5d)

B. C. 3:
∂Dβ

∂y
= 0 at y = −hω (A.5e)

Periodicity: Dβ (r) = Dβ (r+ li) i = x, z (A.5f)

Periodicity: dβ (r) = dβ (r+ li) i = x, z (A.5g)

Constraint : 〈dβ〉β = 0 (A.5h)

Notice that because in the bulk of the porous medium the closure variables fields are periodic

and symmetric in the xy−plane, the boundary condition at y = −hω was replaced by a boundary

condition of symmetry, which is given by Eq. (A.5e). In addition, because the permeability is

infinity in the free-flow region, the field of variable Dβ must be infinite there too. Therefore, the

boundary condition at y = hη was replaced by the derivative of the variable Dβ equal to zero,

which is given by Eq. (A.5d). We recognize that this boundary condition at y = hη is more a

convenience than a necessity since the solution of the original problem given by Eqs. (A.3) has

not yet been obtained correctly due to its complexity. Finally, from the integral constraint that

the intrinsic average of Bβ is zero, the intrinsic permeability tensor can now be computed as

Kβ(x) = 〈Dβ〉 (A.6)

In Fig. 14 we plot the spatial variations of K−1
β predicted from the solution of the LCP taking820

two values of r0 for two values of εβω. In addition, in the same figure, we plot those predictions

obtained from filtering the PSS, an extension of the Carman-Kozeny (CK) equation, a linear822

function and a step-jump function (Ochoa-Tapia & Whitaker, 1995b; Angot, 1999; Goyeau et al.,
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2003; Valdés-Parada et al., 2007a). Here the extension of the CK equation is obtained when the824

value of εβω is replaced by εβ . It is interesting to note that the permeability predictions obtained

from the solution of the LCP are the closest to those obtained from the PSS. On the contrary,826

the predictions using the step-jump function exhibit the largest deviations from those of the

PSS. Finally, the predictions using the extension of the CK equation and the linear function828

also exhibit deviations and they are more close to those obtained from using the step-jump

function. Therefore, until better methodologies are found, and when the PSS is not possible,830

the LCP can be the best alternative available to predict the permeability in the inter-region.
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