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ASYMPTOTIC ANALYSIS OF LINEARLY ELASTIC ELLIPTIC MEMBRANE SHELLS SUBJECTED TO AN OBSTACLE

In this paper we identify a set of two-dimensional variational inequalities that model the displacement of a linearly elastic elliptic membrane shell subjected to a confinement condition, expressing that all the points of the admissible deformed configurations remain in a given half-space.

Introduction

Unilateral contact problems arise in many fields such as medicine, engineering, biology and material science. For instance, the description of the motion inside the human heart of the three Aorta valves, which can be regarded as linearly elastic shells, is governed by a mathematical model built up in a way such that each valve remains confined in a certain portion of space without penetrating, or being penetrated, by the other two valves. In this direction we cite the recent references [START_REF] Piersanti | Modeling cardiac muscle fibers in ventricular and atrial electrophysiology simulations[END_REF], [START_REF] Regazzoni | Active force generation in cardiac muscle cells: mathematical modeling and numerical simulation of the actin-myosin interaction[END_REF] and [START_REF] Zingaro | Hemodynamics of the heart's left atrium based on a Variational Multiscale-LES numerical method[END_REF].

The displacement of a linearly elastic shell is modelled, in general, via the three-dimensional equations of linearized elasticity (cf., e.g., [START_REF] Ciarlet | Mathematical Elasticity. Vol. I: Three-Dimensional Elasticity[END_REF]). The intrinsic complexity of this model, however, prevents certain situations from being amenably studied like, for instance, when the shell is nonhomogeneous and anisotropic (cf., e.g., [START_REF] Caillerie | A new kind of singular stiff problems and application to thin elastic shells[END_REF] and [START_REF] Caillerie | Elastic thin shells: asymptotic theory in the anisotropic and heterogeneous cases[END_REF]), or its thickness varies periodically (cf., e.g., [START_REF] Telega | Homogenization of linear elastic shells: Γ-convergence and duality. Part I. Formulation of the problem and the effective model[END_REF] and [START_REF] Telega | Homogenization of linear elastic shells: Γ-convergence and duality. Part II. Dual homogenization[END_REF]). It might thus be useful to perform a dimension reduction in order to obtain approximate models which are more amenable to analyze.

The identification of two-dimensional limit models for time-independent linearly elastic shells was extensively treated by Ciarlet and his associates in the seminal papers [START_REF] Ciarlet | A justification of the two-dimensional linear plate model[END_REF][START_REF] Ciarlet | On the ellipticity of linear membrane shell equations[END_REF][START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations[END_REF][START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. III. Justification of koiter's shell equations[END_REF][START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells: "generalized membrane shells[END_REF][START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations[END_REF] for the purpose of justifying Koiter's model. For the justification of Koiter's model in the time-dependent case where the action of temperature is considered, we refer the reader to [START_REF] Piersanti | On the justification of the frictionless time-dependent Koiter's model for thermoelastic shells[END_REF]. In all of the aforementioned papers no confinement conditions were imposed.

In the recent papers [START_REF] Ciarlet | Obstacle problems for Koiter's shells[END_REF][START_REF] Ciarlet | A confinement problem for a linearly elastic Koiter's shell[END_REF][START_REF] Ciarlet | Un problème de confinement pour une coque membranaire linéairement élastique de type elliptique[END_REF][START_REF] Ciarlet | An obstacle problem for elliptic membrane shells[END_REF], Ciarlet and his associates fully justified Koiter's model in the case where the linearly elastic shell under consideration is a linearly elastic elliptic membrane shell subjected to the aforementioned confinement condition. The higher local regularity for the solution of the two-dimensional limit model for linearly elastic elliptic membrane shells subjected to the aforementioned confinement condition was investigated in [START_REF] Piersanti | On the improved interior regularity of the solution of a second order elliptic boundary value problem modelling the displacement of a linearly elastic elliptic membrane shell subject to an obstacle[END_REF].

The confinement condition we are here considering considerably departs from the Signorini condition usually considered in the existing literature, where only the "lower face" of the shell is required to remain above the "horizontal" plane. Such a confinement condition renders the asymptotic analysis considerably more difficult, however, as the constraint now bears on a vector field, the displacement vector field of the reference configuration, instead of on only a single component of this field.

The recovery of a set of two-dimensional variational inequalities as a result of a rigorous asymptotic analysis conducted on a ad hoc three-dimensional model based on the three-dimensional equations of linearized elasticity in the case where the linearly elastic shell under consideration is a linearly elastic elliptic membrane shell was addressed in the paper [START_REF] Ciarlet | An obstacle problem for elliptic membrane shells[END_REF] in the special case where a ad hoc geometrical assumption had been made, and in the paper [START_REF] Rodríguez-Arós | Mathematical justification of the obstacle problem for elastic elliptic membrane shells[END_REF], where the problem was studied by resorting to an approach of Signorini-type.

The purpose of this paper is to propose a method, based on the rigorous asymptotic analysis technique developed by Ciarlet and Lods [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations[END_REF] and the properties of the penalty method for constrained optimization problems (cf., e.g., [START_REF] Ciarlet | Introduction to Numerical Linear Algebra and Optimisation[END_REF]), for recovering the very same set of two-dimensional variational inequalities for linearly elastic elliptic membrane shells, without having to exploit -in the context of the rigorous asymptotic analysis -the ad hoc geometrical assumption introduced in Theorem 4.1 of [START_REF] Ciarlet | An obstacle problem for elliptic membrane shells[END_REF]. It also appears that the method here presented involves a less lengthy argument than the one presented in [START_REF] Ciarlet | An obstacle problem for elliptic membrane shells[END_REF].

More precisely, in this paper we recover, via a rigorous asymptotic analysis as the thickness approaches zero over a ad hoc three-dimensional model (three-dimensional in the sense that it is defined over a threedimensional subset of R 3 ), a set of two-dimensional (two-dimensional in the sense that it is defined over a two-dimensional subset of R 2 ) variational inequalities governing the displacement of a linearly elastic elliptic membrane shell subjected to remain confined in a half-space. The problem under consideration is an obstacle problem.

The paper is divided into five sections (including this one). In section 2 we recall some background and notation. In section 3 we recall the formulation and the properties of a three-dimensional obstacle problem for "general" linearly elastic shell. In section 4 we specialize the formulation presented in the previous section to the case where a linearly elastic elliptic membrane shell is take into account, and then we scale the three-dimensional obstacle problem in a way such that the integration domain becomes independent of the thickness parameter. The penalized version of the three-dimensional obstacle problem is introduced at the end of this section. Finally, in section 5, a rigorous asymptotic analysis is carried out and the desired set of two-dimensional variational inequalities is recovered.

Geometrical preliminaries

For details about the classical notions of differential geometry used in this section and the next one, see, e.g. [START_REF] Ciarlet | Mathematical Elasticity[END_REF] or [START_REF] Ciarlet | An Introduction to Differential Geometry with Applications to Elasticity[END_REF].

Greek indices, except ε, take their values in the set {1, 2}, while Latin indices, except when they are used for indexing sequences, take their values in the set {1, 2, 3}, and the summation convention with respect to repeated indices is systematically used in conjunction with these two rules. The notation E 3 designates the three-dimensional Euclidean space whose origin is denoted by O; the Euclidean inner product and the vector product of u, v ∈ E 3 are denoted u • v and u × v; the Euclidean norm of u ∈ E 3 is denoted |u|. The notation δ j i designates the Kronecker symbol. Given an open subset Ω of R n , notations such as L 2 (Ω), H 1 (Ω), or H 2 (Ω), designate the usual Lebesgue and Sobolev spaces, and the notation D(Ω) designates the space of all functions that are infinitely differentiable over Ω and have compact supports in Ω. The notation • X designates the norm in a normed vector space X. Spaces of vector-valued functions are denoted with boldface letters.

The positive and negative parts of a function f : Ω → R are respectively denoted by:

f + (x) := max{f (x), 0} and f -(x) := -min{f (x), 0} x ∈ Ω.
The boundary Γ of an open subset Ω in R n is said to be Lipschitz-continuous if the following conditions are satisfied (cf., e.g., Section 1.18 of [START_REF] Ciarlet | Linear and Nonlinear Functional Analysis with Applications[END_REF]): Given an integer s ≥ 1, let 1 ≤ r ≤ s; there exist constants α 1 > 0 and L > 0, and a finite number of local coordinate systems, with coordinates We observe that the second last formula takes into account overlapping local charts, while the last set of inequalities express the Lipschitz continuity of the mappings θr .

φ r = (φ r 1 , . . . , φ r n-1 ) ∈ R n-1 and φ r = φ r n , sets ωr := {φ r ∈ R n-1 ; |φ r | < α 1 }, 1 ≤ r ≤ s,
An open set Ω is said to be locally on the same side of its boundary Γ if, in addition, there exists a constant α 2 > 0 such that {(φ r , φ r ); φ r ∈ ωr and θr (φ r ) < φ r < θr (φ r ) + α 2 } ⊂ Ω, for all 1 ≤ r ≤ s, {(φ r , φ r ); φ r ∈ ωr and θr (φ r ) -α 2 < φ r < θr (φ r )} ⊂ R n \ Ω, for all 1 ≤ r ≤ s.

A domain in R n is a bounded and connected open subset Ω of R n , whose boundary ∂Ω is Lipschitzcontinuous, the set Ω being locally on a single side of ∂Ω.

Let ω be a domain in R 2 , let y = (y α ) denote a generic point in ω, and let ∂ α := ∂/∂y α and

∂ αβ := ∂ 2 /∂y α ∂y β . A mapping θ ∈ C 1 (ω; E 3 ) is an immersion if the two vectors a α (y) := ∂ α θ(y)
are linearly independent at each point y ∈ ω. Then the image θ(ω) of the set ω under the mapping θ is a surface in E 3 , equipped with y 1 , y 2 as its curvilinear coordinates. Given any point y ∈ ω, the vectors a α (y) span the tangent plane to the surface θ(ω) at the point θ(y), the unit vector

a 3 (y) := a 1 (y) ∧ a 2 (y) |a 1 (y) ∧ a 2 (y)|
is normal to θ(ω) at θ(y), the three vectors a i (y) form the covariant basis at θ(y), and the three vectors a j (y) defined by the relations a j (y) • a i (y) = δ j i form the contravariant basis at θ(y); note that the vectors a β (y) also span the tangent plane to θ(ω) at θ(y) and that a 3 (y) = a 3 (y).

The first fundamental form of the surface θ(ω) is then defined by means of its covariant components

a αβ := a α • a β = a βα ∈ C 0 (ω),
or by means of its contravariant components

a αβ := a α • a β = a βα ∈ C 0 (ω).
Note that the symmetric matrix field (a αβ ) is then the inverse of the matrix field (a αβ ), that a β = a αβ a α and a α = a αβ a β , and that the area element along θ(ω) is given at each point θ(y), y ∈ ω, by a(y) dy, where a := det(a αβ ) ∈ C 0 (ω).

Given an immersion θ ∈ C 2 (ω; E 3 ), the second fundamental form of the surface θ(ω) is defined by means of its covariant components

b αβ := ∂ α a β • a 3 = -a β • ∂ α a 3 = b βα ∈ C 0 (ω),
or by means of its mixed components b β α := a βσ b ασ ∈ C 0 (ω), and the Christoffel symbols associated with the immersion θ are defined by

Γ σ αβ := ∂ α a β • a σ = Γ σ βα ∈ C 0 (ω).
The Gaussian curvature at each point θ(y), y ∈ ω, of the surface θ(ω) is defined by

K(y) := det(b αβ (y)) det(a αβ (y)) = det b β α (y)
(the denominator in the above relation does not vanish since θ is assumed to be an immersion). Note that the Gaussian curvature K(y) at the point θ(y) is also equal to the inverse of the product of the two principal radii of curvature at this point. Given an immersion θ ∈ C 2 (ω; E 3 ) and a vector field η = (η i ) ∈ C 1 (ω; R 3 ), the vector field η := η i a i can be viewed as a displacement field of the surface θ(ω), thus defined by means of its covariant components η i over the vectors a i of the contravariant bases along the surface. If the norms η i C 1 (ω) are small enough, the mapping (θ + η i a i ) ∈ C 1 (ω; E 3 ) is also an immersion, so that the set (θ + η i a i )(ω) is also a surface in E 3 , equipped with the same curvilinear coordinates as those of the surface θ(ω), called the deformed surface corresponding to the displacement field η = η i a i . One can then define the first fundamental form of the deformed surface by means of its covariant components

a αβ (η) :=(a α + ∂ α η) • (a β + ∂ β η) =a αβ + a α • ∂ β η + ∂ α η • a β + ∂ α η • ∂ β η.
The linear part with respect to η in the difference 1 2 (a αβ (η) -a αβ ) is called the linearized change of metric tensor associated with the displacement field η i a i , the covariant components of which are thus defined by

γ αβ (η) := 1 2 (a α • ∂ β η + ∂ α η • a β ) = 1 2 (∂ β η α + ∂ α η β ) -Γ σ αβ η σ -b αβ η 3 = γ βα (η).
In this paper, we shall consider a specific class of surfaces, according to the following definition: Let ω be a domain in R 2 . Then a surface θ(ω) defined by means of an immersion θ ∈ C 2 (ω) is said to be elliptic if its Gaussian curvature K is strictly positive everywhere in ω, or equivalently, if there exists a constant K 0 such that 0 < K 0 ≤ K(y) for all y ∈ ω.

It turns out that, when an elliptic surface is subjected to a displacement field η i a i whose tangential covariant components η α vanish on the entire boundary of the domain ω, the following inequality holds (this inequality plays an essential role in our convergence analysis; cf. the proof of Theorem 4.3). Note that the components of the displacement fields and linearized change of metric tensors appearing in the next theorem are no longer assumed to be continuously differentiable functions; they are instead to be understood in a generalized sense, since they now belong to ad hoc Lebesgue or Sobolev spaces.

Theorem 2.1. Let ω be a domain in R 2 and let an immersion θ ∈ C 3 (ω; E 3 ) be given such that the surface θ(ω) is elliptic. Define the space

V M (ω) := H 1 0 (ω) × H 1 0 (ω) × L 2 (ω). Then there exists a constant c 0 = c 0 (ω, θ) > 0 such that α η α 2 H 1 (ω) + η 3 2 L 2 (ω) 1/2 ≤ c 0    α,β γ αβ (η) 2 L 2 (ω)    1/2 for all η = (η i ) ∈ V M (ω).
The above inequality, which is due to [START_REF] Ciarlet | On the ellipticity of linear membrane shell equations[END_REF] and [START_REF] Ciarlet | An existence and uniqueness theorem for the two-dimensional linear membrane shell equations[END_REF] (see also Theorem 2.7-3 of [5]), constitutes an example of a Korn inequality on a surface, in the sense that it provides an estimate of an appropriate norm of a displacement field defined on a surface in terms of an appropriate norm of a specific "measure of strain" (here, the linearized change of metric tensor) corresponding to the displacement field considered.

The three-dimensional obstacle problem for a "general" linearly elastic shell

Let ω be a domain in R 2 , let γ := ∂ω, and let γ 0 be a nonempty relatively open subset of γ. For each ε > 0, we define the sets

Ω ε = ω × ]-ε, ε[ and Γ ε 0 := γ 0 × [-ε, ε] , we let x ε = (x ε
i ) designate a generic point in the set Ω ε , and we let ∂ ε i := ∂/∂x ε i . Hence we also have x ε α = y α and ∂ ε α = ∂ α . Equivalently, we can write x ε = (y, x ε 3 ).

Given an immersion θ ∈ C 3 (ω; E 3 ) and ε > 0, consider a shell with middle surface θ(ω) and with constant thickness 2ε. This means that the reference configuration of the shell is the set Θ(Ω ε ), where the mapping Θ : Ω ε → E 3 is defined by Θ(x ε ) := θ(y) + x ε 3 a 3 (y) at each point x ε = (y, x ε 3 ) ∈ Ω ε . One can then show (cf., e.g., Theorem 3.1-1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF]) that, if ε > 0 is small enough, such a mapping Θ ∈ C 2 (Ω ε ; E 3 ) is an immersion, in the sense that the three vectors

g ε i (x ε ) := ∂ ε i Θ(x ε
), are linearly independent at each point x ε ∈ Ω ε ; these vectors then constitute the covariant basis at the point Θ(x ε ), while the three vectors g j,ε (x ε ) defined by the relations

g j,ε (x ε ) • g ε i (x ε ) = δ j i
, constitute the contravariant basis at the same point. It will be implicitly assumed in the sequel that ε > 0 is small enough so that Θ : Ω ε → E 3 is an immersion.

One then defines the metric tensor associated with the immersion Θ by means of its covariant components

g ε ij := g ε i • g ε j ∈ C 1 (Ω ε ), or by means of its contravariant components g ij,ε := g i,ε • g i,ε ∈ C 1 (Ω ε ).
Note that the symmetric matrix field (g ij,ε ) is then the inverse of the matrix field (g ε ij ), that g j,ε = g ij,ε g ε i and

g ε i = g ε ij g j,ε , and that the volume element in Θ(Ω ε ) is given at each point Θ(x ε ), x ε ∈ Ω ε , by g ε (x ε ) dx ε , where g ε := det(g ε ij ) ∈ C 1 (Ω ε
). One also defines the Christoffel symbols associated with the immersion Θ by

Γ p,ε ij := ∂ i g ε j • g p,ε = Γ p,ε ji ∈ C 0 (Ω ε ). Note that Γ 3,ε α3 = Γ p,ε 33 = 0. Given a vector field v ε = (v ε i ) ∈ C 1 (Ω ε ; R 3 ), the associated vector field ṽε := v ε i g i,ε
, can be viewed as a displacement field of the reference configuration Θ(Ω ε ) of the shell, thus defined by means of its covariant components v ε i over the vectors g i,ε of the contravariant bases in the reference configuration. If the norms

v ε i C 1 (Ω ε ) are small enough, the mapping (Θ + v ε i g i,ε
) is also an immersion, so that one can also define the metric tensor of the deformed configuration (Θ + v ε i g i,ε )(Ω ε ) by means of its covariant components

g ε ij (v ε ) := (g ε i + ∂ ε i ṽε ) • (g ε j + ∂ ε j ṽε ) = g ε ij + g ε i • ∂ j ṽε + ∂ ε i ṽε • g ε j + ∂ i ṽε • ∂ j ṽε .
The linear part with respect to ṽε in the difference

1 2 (g ε ij (v ε ) -g ε ij )
is then called the linearized strain tensor associated with the displacement field v ε i g i,ε , the covariant components of which are thus defined by

e ε i j (v ε ) := 1 2 g ε i • ∂ ε j ṽε + ∂ ε i ṽε • g ε j = 1 2 (∂ ε j v ε i + ∂ ε i v ε j ) -Γ p,ε ij v ε p = e ε j i (v ε ).
The functions e ε i j (v ε ) are called the linearized strains in curvilinear coordinates associated with the displacement field v ε i g i,ε . We assume throughout this paper that, for each ε > 0, the reference configuration Θ(Ω ε ) of the shell is a natural state (i.e., stress-free) and that the material constituting the shell is homogeneous, isotropic, and linearly elastic. The behavior of such an elastic material is thus entirely governed by its two Lamé constants λ ≥ 0 and µ > 0 (for details, see, e.g., Section 3.8 of [START_REF] Ciarlet | Mathematical Elasticity. Vol. I: Three-Dimensional Elasticity[END_REF]).

We will also assume that the shell is subjected to applied body forces whose density per unit volume is defined by means of its covariant components f i,ε ∈ L 2 (Ω ε ), and to a homogeneous boundary condition of place along the portion Γ ε 0 of its lateral face (i.e., the displacement vanishes on Γ ε 0 ). In this paper we consider a specific obstacle problem for such a shell, in the sense that the shell is also subjected to a confinement condition, expressing that any admissible displacement vector field v ε i g i,ε must be such that all the points of the corresponding deformed configuration remain in a half-space of the form

H := {x ∈ E 3 ; Ox • q ≥ 0},
where q is a nonzero vector given once and for all. In other words, any admissible displacement field must satisfy

Θ(x ε ) + v ε i (x ε )g i,ε (x ε ) • q ≥ 0, for all x ε ∈ Ω ε , or possibly only for almost all (a.a. in what follows) x ε ∈ Ω ε when the covariant components v ε
i are required to belong to the Sobolev space H 1 (Ω ε ) as in Theorem 3.1 below. We will of course assume that the reference configuration satisfies the confinement condition, i.e., that

Θ(Ω ε ) ⊂ H.
It is to be emphasized that the above confinement condition considerably departs from the usual Signorini condition favored by most authors, who usually require that only the points of the undeformed and deformed "lower face" ω × {-ε} of the reference configuration satisfy the confinement condition (see, e.g., [START_REF] Léger | Mathematical justification of the obstacle problem in the case of a shallow shell[END_REF], [START_REF] Léger | A linearly elastic shell over an obstacle: The flexural case[END_REF], [START_REF] Rodríguez-Arós | Mathematical justification of the obstacle problem for elastic elliptic membrane shells[END_REF]). Clearly, the confinement condition considered in the present paper is more physically realistic, since a Signorini condition imposed only on the lower face of the reference configuration does not prevent -at least "mathematically" -other points of the deformed reference configuration to "cross" the plane {x ∈ E 3 ; Ox • q = 0} and then to end up on the "other side" of this plane. It is evident that the vector q is thus orthogonal to the plane associated with the half-space where the linearly elastic shell is required to remain confined.

Such a confinement condition renders the asymptotic analysis considerably more difficult, however, as the constraint now bears on a vector field, the displacement vector field of the reference configuration, instead of on only a single component of this field.

The mathematical modeling of such an obstacle problem for a linearly elastic shell is then clear; since, apart from the confinement condition, the rest, i.e., the function space and the expression of the quadratic energy J ε , is classical (see, e.g. [START_REF] Ciarlet | Mathematical Elasticity[END_REF]). More specifically, let

A ijk ,ε := λg ij,ε g k ,ε + µ g ik,ε g j ,ε + g i ,ε g jk,ε = A jik ,ε = A k ij,ε ,
denote the contravariant components of the elasticity tensor of the elastic material constituting the shell. Then the unknown of the problem, which is the vector field u ε = (u ε i ) where the functions u ε i : Ω ε → R are the three covariant components of the unknown "three-dimensional" displacement vector field u ε i g i,ε of the reference configuration of the shell, should minimize the energy

J ε : H 1 (Ω ε ) → R defined by J ε (v ε ) := 1 2 Ω ε A ijk ,ε e ε k (v ε )e ε i j (v ε ) √ g ε dx ε - Ω ε f i,ε v ε i √ g ε dx ε , for each v ε = (v ε i ) ∈ H 1 (Ω ε
) over the set of admissible displacements defined by:

U (Ω ε ) := {v ε = (v ε i ) ∈ H 1 (Ω ε ); v ε = 0 on Γ ε 0 , (Θ(x ε ) + v ε i (x ε )g i,ε (x ε )) • q ≥ 0 for a.a. x ε ∈ Ω ε }.
The solution to this minimization problem exists and is unique, and it can be also characterized as the unique solution of the following problem:

Problem P(Ω ε ). Find u ε ∈ U (Ω ε
) that satisfies the following variational inequalities:

Ω ε A ijk ,ε e ε k (u ε ) e ε i j (v ε ) -e ε i j (u ε ) √ g ε dx ε ≥ Ω ε f i,ε (v ε i -u ε i ) √ g ε dx ε , for all v ε = (v ε i ) ∈ U (Ω ε ).
The following result can be thus straightforwardly proved.

Theorem 3.1. The quadratic minimization problem: Find a vector field

u ε ∈ U (Ω ε ) such that J ε (u ε ) = inf v ε ∈U (Ω ε ) J ε (v ε ),
has one and only one solution. Besides, u ε is also the unique solution of Problem P(Ω ε ).

Proof. Define the space

V (Ω ε ) := {v ε = (v ε i ) ∈ H 1 (Ω ε ); v ε = 0 on Γ ε 0 }.
Then, thanks to the uniform positive-definiteness of the elasticity tensor (A ijk ,ε ) and to the boundary condition of place satisfied on Γ ε 0 = γ 0 × [-ε, ε] (recall that λ ≥ 0, µ > 0, and that γ 0 is a nonempty relatively open subset of γ = ∂ω), it can be shown (see Theorems 3.8-3 and 3.9-1 of [START_REF] Ciarlet | An Introduction to Differential Geometry with Applications to Elasticity[END_REF]) that the continuous and symmetric bilinear form

(v ε , w ε ) ∈ H 1 (Ω ε ) × H 1 (Ω ε ) → Ω ε A ijk ,ε e ε k (v ε )e ε i j (w ε ) √ g ε dx ε , is V (Ω ε )-elliptic; besides, the linear form v ε ∈ H 1 (Ω ε ) → Ω ε f i,ε v ε i √ g ε dx ε , is clearly continuous. Finally, the set U (Ω ε ) is nonempty (by assumption), closed in H 1 (Ω ε ) (any convergent sequence in V (Ω ε
) contains a subsequence that pointwise converges almost everywhere to its limit), and convex (as is immediately verified).

The existence and uniqueness of the solution to the minimization problem and its characterization by means of variational inequalities is then classical (see, e.g., [START_REF] Ciarlet | Linear and Nonlinear Functional Analysis with Applications[END_REF], [START_REF] Duvaut | Inequalities in Mechanics and Physics[END_REF] or [START_REF] Glowinski | Numerical Methods for Nonlinear Variational Problems[END_REF]).

Since θ(ω) ⊂ Θ(Ω ε ), it evidently follows that θ(y) • q ≥ 0 for all y ∈ ω. But in fact, a stronger property holds.

Lemma 3.1. Let ω be a domain in R 2 , let θ ∈ C 1 (ω; E 3 ) be an immersion, let q ∈ E 3 be a nonzero vector, and let ε > 0. Then the inclusion

Θ(Ω ε ) ⊂ H = {x ∈ E 3 ; Ox • q ≥ 0} implies that inf y∈ω (θ(y) • q) > 0.
Proof. For a proof, see Lemma 2.1 of [START_REF] Ciarlet | An obstacle problem for elliptic membrane shells[END_REF].

Clearly, the assumed inclusion Θ(Ω ε ) ⊂ H implies that inf y∈ω (θ(y) • q) depends on ε > 0 and approaches zero as ε approaches zero. In the paper [START_REF] Ciarlet | An obstacle problem for elliptic membrane shells[END_REF], the authors assumed that the quantity inf y∈ω (θ(y) • q) was actually independent of ε. This very assumption was exploited in the context of the rigorous asymptotic analysis conducted starting from Problem P(Ω ε ) (see part (viii) in Theorem 4.1 of [START_REF] Ciarlet | An obstacle problem for elliptic membrane shells[END_REF]).

In this paper, we will resort to a method which does not make use of this assumption in the context of the asymptotic analysis we shall be carrying out in section 5. This constitutes the main improvement to the result established in [START_REF] Ciarlet | An obstacle problem for elliptic membrane shells[END_REF].

We now consider the "penalized" version of Problem P(Ω ε ). One such penalization transforms the set of variational inequalities in Problem P(Ω ε ) into a set of nonlinear variational equations posed over a vector space, where the nonlinearity is defined in terms of the measure of the "violation" of the constraint (cf., e.g., [START_REF] Temam | Theory and numerical analysis[END_REF]). Let κ > 0 denote a "penalty parameter". The "penalized" variational formulation corresponding to Problem P(Ω ε ) takes the following form:

Problem P κ (Ω ε ). Find u ε κ ∈ V (Ω ε
) that satisfies the following variational equations:

Ω ε A ijk ,ε e ε k (u ε )e ε i j (v ε ) √ g ε dx ε - 1 κ Ω ε [Θ + u ε i,κ g i,ε ] • q -(v ε i g i,ε • q) √ g ε dx ε = Ω ε f i,ε v ε i √ g ε dx ε , for all v ε = (v ε i ) ∈ V (Ω ε ).
The existence and uniqueness of the solution for Problem P κ (Ω ε ) is classical too, and resorts to the Browder fixed point theorem (cf., e.g., [START_REF] Kikuchi | Contact problems in elasticity: a study of variational inequalities and finite element methods[END_REF] and [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF]).

It can also be shown that, in the same spirit of [START_REF] Scholz | Numerical solution of the obstacle problem by the penalty method[END_REF], for each δ > 0 and for each ε > 0, we can find a number κ 0 = κ 0 (δ, ε) > 0 such that, for each 0 < κ < κ 0 , it results

(1)

u ε -u ε κ H 1 (Ω ε ) < δ 2 ,
where u ε and u ε κ respectively denote the solutions of Problem P(Ω ε ) and Problem P κ (Ω ε ).

4. The scaled three-dimensional problem for a family of linearly elastic elliptic membrane shells

In section 3, we considered an obstacle problem for "general" linearly elastic shells. From now on, we will restrict ourselves to a specific class of shells, according to the following definition (proposed in [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations[END_REF]; see also [START_REF] Ciarlet | Mathematical Elasticity[END_REF]).

Consider a linearly elastic shell, subjected to the various assumptions set forth in section 3. Such a shell is said to be a linearly elastic elliptic membrane shell if the following two additional assumptions are satisfied: first, γ 0 = γ, i.e., the homogeneous boundary condition of place is imposed over the entire lateral face γ × [-ε, ε] of the shell, and second, its middle surface θ(ω) is elliptic, according to the definition given in section 2.

In this paper, we consider the obstacle problem (as defined in section 3) for a family of linearly elastic elliptic membrane shells, all sharing the same middle surface and whose thickness 2ε > 0 is considered as a "small" parameter approaching zero. Our basic objective then consists in performing an asymptotic analysis as ε → 0, so as to seek whether we can identify a two-dimensional limit problem. To this end, we shall resort to a (by now standard) methodology first proposed by Ciarlet & Destuynder [START_REF] Ciarlet | A justification of the two-dimensional linear plate model[END_REF]: To begin with, we "scale" each Problem P(Ω ε ), with ε > 0, over a fixed domain Ω, using appropriate scalings on the unknowns and assumptions on the data. Note that these scalings and assumptions definitely depend on the type of shells that are considered; for instance, those used for the linearly elastic flexural shells considered elsewhere (cf., e.g., [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations[END_REF][START_REF] Léger | Mathematical justification of the obstacle problem in the case of a shallow shell[END_REF][START_REF] Piersanti | On the improved interior regularity of the solution of a second order elliptic boundary value problem modelling the displacement of a linearly elastic elliptic membrane shell subject to an obstacle[END_REF]) are different.

More specifically, let

Ω := ω × ]-1, 1[ , let x = (x i
) denote a generic point in the set Ω, and let ∂ i := ∂/∂x i . With each point x = (x i ) ∈ Ω, we associate the point x ε = (x ε i ) defined by

x ε α := x α = y α and x ε 3 := εx 3 , so that ∂ ε α = ∂ α and ∂ ε 3 = 1 ε ∂ 3 .
To the unknown u ε = (u ε i ) and to the vector fields v ε = (v ε i ) appearing in the formulation of Problem P(Ω ε ), we then associate the scaled unknown u(ε) = (u i (ε)) and the scaled vector fields v = (v i ) by letting

u i (ε)(x) := u ε i (x ε ) and v i (x) := v ε i (x ε ),
at each x ∈ Ω. Finally, we assume that there exist functions f i ∈ L 2 (Ω) independent on ε such that the following assumptions on the data hold:

(2)

f i,ε (x ε ) = f i (x), at each x ∈ Ω.
Note that the independence on ε of the Lamé constants assumed in section 3 in the formulation of Problem P(Ω ε ) implicitly constituted another assumption on the data.

In view of the proposed scaling, we define the "scaled" version of the geometrical entities introduced in section 2:

g i (ε)(x) := g i,ε (x ε ) at each x ∈ Ω, g(ε)(x) := g ε (x ε ) and A ijk (ε)(x) := A ijk ,ε (x ε ) at each x ∈ Ω, e α β (ε; v) := 1 2 (∂ β v α + ∂ α v β ) -Γ k αβ (ε)v k = e β α (ε; v), e α 3 (ε; v) = e 3 α (ε; v) := 1 2 1 ε ∂ 3 v α + ∂ α v 3 -Γ σ α3 (ε)v σ , e 3 3 (ε; v) := 1 ε ∂ 3 v 3 , where Γ p ij (ε)(x) := Γ p,ε ij (x ε ) at each x ∈ Ω. Define the space V (Ω) := {v = (v i ) ∈ H 1 (Ω); v = 0 on γ × [-1, 1
]}, and define, for each ε > 0, the set

U (ε; Ω) := {v = (v i ) ∈ V (Ω); θ(y) + εx 3 a 3 (y) + v i (x)g i (ε)(x) • q ≥ 0 for a.a. x = (y, x 3 ) ∈ Ω}.
We are thus in a position to introduced the "scaled" version of Problem P(Ω ε ), that will be denoted in what follows by P(ε; Ω). Problem P(ε; Ω). Find u(ε) ∈ U (ε; Ω) that satisfies the following variational inequalities: Proof. The variational Problem P(ε; Ω) simply constitutes a re-writing of the variational Problem P(Ω ε ), this time in terms of the scaled unknown u(ε), of the vector fields v, and of the functions f i , which are now all defined over the domain Ω. Then the assertion follows from this observation.

Ω A ijk (ε)e k (ε; u(ε)) e i j (ε; v) -e i j (ε; u(ε)) g(ε) dx ≥ Ω f i (v i -u i (ε)) g(ε) dx, for all v = (v i ) ∈ U (ε; Ω).
The functions e i j (ε; v) appearing in Problem P(ε; Ω) are called the scaled linearized strains in curvilinear coordinates associated with the scaled displacement vector field v i g i (ε).

For later purposes (like in Lemma 4.1 below), we also let g i (ε)(x) := g ε i (x ε ) at each x ∈ Ω. Likewise, one can introduce the "scaled" version of Problem P κ (Ω ε ), that will be denoted in what follows by P κ (ε; Ω).

Problem P κ (ε; Ω). Find u κ (ε) ∈ V (Ω) that satisfies the following variational equations:

Ω A ijk (ε)e k (ε; u κ (ε))e i j (ε; v) g(ε) dx - 1 κ Ω [θ + εx 3 a 3 + u i,κ (ε)g i (ε)] • q -(v i g i (ε) • q) g(ε) dx = Ω f i v i g(ε) dx, for all v = (v i ) ∈ V (Ω).
The following existence and uniqueness result can be thus easily proved.

Theorem 4.2. Then the scaled unknown u κ (ε) is the unique solution of the variational Problem P κ (ε; Ω).

Proof. The variational Problem P κ (ε; Ω) simply constitutes a re-writing of the variational Problem P κ (Ω ε ), this time in terms of the scaled unknown u κ (ε), of the vector fields v, and of the functions f i , which are now all defined over the domain Ω. Then the assertion follows from this observation.

A condition similar to (1) can be derived, i.e., for each δ > 0 and for each ε > 0, we can find a number κ 0 = κ 0 (δ, ε) > 0 such that, for each 0 < κ < κ 0 , it results

(3) u(ε) -u κ (ε) H 1 (Ω) < δ 2 ,
where u(ε) and u κ (ε) respectively denote the solutions of Problem P(ε; Ω) and Problem P κ (ε; Ω). Without loss of generality (cf., e.g., [START_REF] Scholz | Numerical solution of the obstacle problem by the penalty method[END_REF]), we restrict ourselves to considering penalty parameters with the following property: [START_REF] Ciarlet | Introduction to Numerical Linear Algebra and Optimisation[END_REF] 0 < κ = Lε, for some 0 < L ≤ 1, so that κ → 0 as ε → 0. We observe that the variational Problem P(ε; Ω) could have been equivalently written as a minimization problem, thus mimicking that found in Theorem 3.1.

It is immediately verified (cf., e.g., [START_REF] Ciarlet | Mathematical Elasticity[END_REF]) that other assumptions on the data are possible that would give rise to the same problem over the fixed domain Ω. For instance, should the Lamé constants (now denoted) λ ε and µ ε appearing in Problem P(Ω ε ) be of the form λ ε = ε t λ and µ ε = ε t µ, where λ ≥ 0 and µ are constants independent of ε and t is an arbitrary real number, the same Problem P(ε; Ω) arises if we assume that the components of the applied body force density are now of the form

f i,ε (x ε ) = ε t f i (x) at each x ∈ Ω,
where the functions f i ∈ L 2 (Ω) are independent of ε.

The next lemma assembles various asymptotic properties as ε → 0 of functions and vector fields appearing in the formulation of Problem P(ε; Ω); these properties will be repeatedly used in the proof of the convergence theorem (Theorem 4.3).

In the next statement, the notation "O(ε)", or "O(ε 2 )", stands for a remainder that is of order ε, or ε 2 , with respect to the sup-norm over the set Ω, and any function, or vector-valued function, of the variable y ∈ ω, such as a αβ , b αβ , a i , etc. (all these are defined in section 2) is identified with the function, or vectorvalued function, of x = (y, x 3 ) ∈ Ω = ω × [-1, 1] that takes the same value at x 3 = 0 and is independent of x 3 ∈ [-1, 1]; for brevity, this extension from ω to Ω is designated with the same notation.

Recall that ε > 0 is implicitly assumed to be small enough so that Θ : Ω ε → E 3 is an immersion.

Lemma 4.1. Let ε 0 be defined as in Theorem 3.1-1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF]. The functions

A ijk (ε) = A jik (ε) = A k ij (ε)
have the following properties:

A ijk (ε) = A ijk (0) + O(ε), A αβσ3 (ε) = A α333 (ε) = 0,
for all 0 < ε ≤ ε 0 , where A αβστ (0) = λa αβ a στ + µ(a ασ a βτ + a ατ a βσ ),

A αβ33 (0) = λa αβ , A α3σ3 (0) = µa ασ , A 3333 (0) = λ + 2µ,
and there exists a constant C 0 > 0 such that i,j

|t ij | 2 ≤ C 0 A ijk (ε)(x)t k t ij
for all 0 < ε ≤ ε 0 , all x ∈ Ω, and all symmetric matrices (t ij ).

The functions Γ p ij (ε) and g(ε) have the following properties:

Γ σ αβ (ε) = Γ σ αβ -εx 3 (∂ α b σ β + Γ σ ατ b τ β -Γ τ αβ b σ τ ) + O(ε 2 ), Γ 3 αβ (ε) = b αβ -εx 3 b σ α b σβ , ∂ 3 Γ p αβ (ε) = O(ε), Γ σ α3 (ε) = -b σ α -εx 3 b τ α b σ τ + O(ε 2 ), Γ 3 α3 (ε) = Γ p 33 (ε) = 0, g(ε) = a + O(ε),
for all 0 < ε ≤ ε 0 and all x ∈ Ω. In particular then, there exist constants g 0 and g 1 such that 0 < g 0 ≤ g(ε)(x) ≤ g 1 for all 0 < ε ≤ ε 0 and all x ∈ Ω.

The vector fields g i (ε) and g j (ε) have the following properties:

g α (ε) = a α -εx 3 b σ α a σ , g 3 (ε) = a 3 , g α (ε) = a α + εx 3 b α σ a σ + O(ε 2 ), g 3 (ε) = a 3 . Proof.
See the proofs of Theorems 3.3-1 and 3.3-2 in [START_REF] Ciarlet | Mathematical Elasticity[END_REF].

We recall (cf., e.g., [START_REF] Ciarlet | Mathematical Elasticity[END_REF]), that the various relations and estimates in Lemma 4.1 hold in fact for any family of linearly elastic shells, i.e., irrespective of whether these shells are linearly elastic elliptic membrane shells or not.

When one considers a family of linearly elastic elliptic membrane shells whose thickness 2ε approaches zero, a specific Korn's inequality in curvilinear coordinates holds over the fixed domain Ω = ω × ]-1, 1[, according to the following theorem. That the constant C 1 that appears in this inequality is independent of ε > 0 plays a key role in the asymptotic analysis of such a family (see part (i) of the proof of Theorem 5.1).

Theorem 4.3. Let there be given a family of linearly elastic elliptic membrane shells with the same middle surface θ(ω) and thickness 2ε > 0. Define the space

V (Ω) := {v = (v i ) ∈ H 1 (Ω); v = 0 on γ × ]-1, 1[}.
Then there exist constants ε 1 > 0 and

C 1 > 0 such that α v α 2 H 1 (Ω) + v 3 2 L 2 (Ω) 1/2 ≤ C 1    i,j e i j (ε; v) 2 L 2 (Ω)    1/2
for all 0 < ε ≤ ε 1 and all v ∈ V (Ω).

Proof. See Theorem 4.1 of [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations[END_REF] or Theorem 4.3-1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF].

Rigorous asymptotic analysis

The ultimate goal of this paper is to show, in the same spirit as [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations[END_REF] (see also Theorem 4.4-1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF]), that the solutions u(ε) of the (scaled) three-dimensional problems P(Ω ε ) converge -as ε approaches zero -to the solution of a two-dimensional problem, denoted P M (ω) in what follows.

Define the set

U M (ω) := {η = (η i ) ∈ V M (ω); θ(y) + η i (y)a i (y) • q ≥ 0 for a.a. y ∈ ω},
where the space V M (ω) has been defined in Theorem 2.1. We observe that the set U M (ω) is nonempty, closed and convex in the space V M (ω). The vector fields a i and the functions Γ σ αβ , b αβ , a αβ , a, and γ αβ (η), have been defined in section 2. We are thus in a position to define the two-dimensional problem P M (ω) as follows:

Problem P M (ω). Find ζ ∈ U M (ω) that satisfies the following variational inequalities: ω a αβστ γ στ (ζ)γ αβ (η -ζ) √ a dy ≥ ω p i (η i -ζ i ) √ a dy, for all η = (η i ) ∈ U M (ω)
, where

a αβστ := 4λµ λ + 2µ
a αβ a στ + 2µ a ασ a βτ + a ατ a βσ and p i :=

1 -1 f i dx 3 .
In the same spirit as Theorem 3.1, it can be show that Problem P M (ω) admits one and only one solution.

We are now ready to show that, under the assumption (4) according to which κ < ε, the solutions u κ (ε) of Problem P κ (ε; Ω) converge -as ε approaches zero -to the solution of Problem P M (ω).

Theorem 5.1. Let ω be a domain in R 2 , let θ ∈ C 3 (ω; E 3 ) be the middle surface of a linearly elastic elliptic membrane shell (cf. section 4) and let q ∈ E 3 be a nonzero vector given once and for all. Let us consider the space (cf. Theorem 2.1)

V M (ω) := H 1 0 (ω) × H 1 0 (ω) × L 2 (ω)
, and let us define the set

U M (ω) := {η = (η i ) ∈ V M (ω); θ(y) + η i (y)a i (y) • q ≥ 0 for a.a. y ∈ ω}, ŨM (ω) := {η = (η i ) ∈ H 1 0 (ω) × H 1 0 (ω) × H 1 0 (ω); θ(y) + η i (y)a i (y) • q ≥ 0 for a.a. y ∈ ω}.
Assume that the following "density property" holds:

ŨM (ω) is dense in U M (ω) with respect to the norm of • H 1 (ω)×H 1 (ω)×L 2 (ω) .
Let there be given a family of linearly elastic elliptic membrane shells with the same middle surface θ(ω) and thickness 2ε > 0, and let u κ (ε) ∈ V (Ω) denote for each ε > 0 the unique solution of Problem P κ (ε; Ω), where the penalty parameter κ is assumed to be as in [START_REF] Ciarlet | Introduction to Numerical Linear Algebra and Optimisation[END_REF]. Assume that the applied body force densities f i,ε are in the form [START_REF] Caillerie | Elastic thin shells: asymptotic theory in the anisotropic and heterogeneous cases[END_REF].

Then there exists u = (u i ) independent of the variable x 3 and satisfying

u α = 0 on Γ = γ × [-1, 1] , u α,κ (ε) → u α in H 1 (Ω) as ε → 0, u 3,κ (ε) → u 3 in L 2 (Ω) as ε → 0.
Define the average

u = (u i ) := 1 2 1 -1 u dx 3 . Then u = ζ,
where ζ is the unique solution to the two-dimensional variational Problem P M (ω).

Proof. Strong and weak convergences as ε → 0 are respectively denoted by → and . For brevity, we let e i j (ε) := e i j (ε; u κ (ε)).

The outline of the proof is to a large extent inspired by the proof of Theorem 4.4-1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF] (itself adapted from [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations[END_REF]), where no confinement condition was imposed. This is why some parts of the proof are reminiscent of those in [START_REF] Ciarlet | Mathematical Elasticity[END_REF]; otherwise, considering the confinement condition requires extra care.

(i) There exists a subsequence, still denoted (u κ (ε)) ε>0 , and there exist u α ∈ H 1 (Ω) and u 3 ∈ L 2 (Ω), and there exist e i j ∈ L 2 (Ω) satisfying

u α = 0 on Γ = γ × [-1, 1] , u α,κ (ε) u α in H 1 (Ω) and thus u α,κ (ε) → u α in L 2 (Ω), u 3,κ (ε) u 3 in L 2 (Ω), (θ(y) + u i (y, x 3 )a i (y)) • q ≥ 0 for a.a. x = (y, x 3 ) ∈ Ω, e i j (ε) e i j in L 2 (Ω).
Letting v = u κ (ε) in the variational equations of Problem P κ (ε; Ω). Combining the uniform positivedefiniteness of the tensor (A ijk (ε)) and the asymptotic behavior of the function g(ε) (Lemma 4.1), the Korn inequality of Theorem 4.3, and the fact that

- 1 κ Ω [θ + εx 3 a 3 + u i,κ (ε)g i (ε)] • q -(u i,κ (ε)g i (ε) • q) g(ε) dx = - 1 κ Ω [θ + εx 3 a 3 + u i,κ (ε)g i (ε)] • q -[(θ + εx 3 a 3 + u i,κ (ε)g i (ε)) • q] g(ε) dx + 1 κ Ω [θ + εx 3 a 3 + u i,κ (ε)g i (ε)] • q -[(θ + εx 3 a 3 ) • q] g(ε) dx ≥ 1 κ [θ + εx 3 a 3 + u i,κ (ε)g i (ε)] • q -2 L 2 (Ω)
≥ 0, for all κ > 0 and all ε > 0, we obtain for ε > 0 sufficiently small (cf., e.g., Theorem 3.1-1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF]):

C -2 1 i u i,κ (ε) 2 L 2 (Ω) ≤ C -2 1 α u α,κ (ε) 2 H 1 (Ω) + u 3,κ (ε) 2 L 2 (Ω) ≤ i,j e i j (ε) 2 L 2 (Ω) ≤ C 0 √ g 0 Ω A ijk (ε)e k (ε)e i j (ε) g(ε) dx - C 0 κ √ g 0 Ω [θ + εx 3 a 3 + u i,κ (ε)g i (ε)] • q -(u i,κ (ε)g i (ε) • q) g(ε) dx = C 0 √ g 0 Ω f i u i,κ (ε) g(ε) dx ≤ C 0 g 1 g 0 i f i 2 L 2 (Ω) 1/2 i u i,κ (ε) 2 L 2 (Ω) 1/2 
. This chain of inequalities first shows that the norms u i,κ (ε) L 2 (Ω) are bounded independently of ε, secondly, that the terms e i j (ε) L 2 (Ω) are bounded uniformly with respect to ε and, finally, that the terms

(5) 1 κ [θ + εx 3 a 3 + u i,κ (ε)g i (ε)] • q -2 L 2 (Ω)
are uniformly bounded with respect to ε as well. Recall that κ = O(ε) by the assumption (4). Hence, up to passing to a suitable subsequence, there exists a vector field u ∈ H 1 (Ω) and functions e i j ∈ L 2 (Ω) such that:

(6) u α,κ (ε) u α in H 1 (Ω), u 3,κ (ε) u 3 in L 2 (Ω), e i j (ε) e i j in L 2 (Ω), [θ + εx 3 a 3 + u i,κ (ε)g i (ε)] • q -→ 0 in L 2 (Ω).
The fact that u α,κ (ε) → u α in L 2 (Ω) is a consequence of the Rellich-Kondrašov Theorem (viz., e.g., Theorem 6.6-3 of [START_REF] Ciarlet | Linear and Nonlinear Functional Analysis with Applications[END_REF]).

The convergences in [START_REF] Ciarlet | An Introduction to Differential Geometry with Applications to Elasticity[END_REF] give, on the one hand:

Ω {[θ + εx 3 a 3 + u i,κ (ε)g i (ε)] • q}v dx → Ω {[θ + u i a i ] • q}v dx, as ε → 0 for all v ∈ L 2 (Ω). (7) 
On the other hand, we recall that the following identity holds:

{[θ + εx 3 a 3 + u i,κ (ε)g i (ε)] • q} = {[θ + εx 3 a 3 + u i,κ (ε)g i (ε)] • q} + -{[θ + εx 3 a 3 + u i,κ (ε)g i (ε)] • q} -.
Thanks to the last convergence in the process [START_REF] Ciarlet | An Introduction to Differential Geometry with Applications to Elasticity[END_REF], and thanks to (7), we have that for all v ∈ L 2 (Ω) such that v(x) ≥ 0 for a.a.

x ∈ Ω 0 ≤ Ω {[θ + εx 3 a 3 + u i,κ (ε)g i (ε)] • q} + v dx → Ω {[θ + u i a i ] • q}v dx, as ε → 0, so that Ω {[θ + u i a i ] • q}v dx ≥ 0, for all v ∈ L 2 (Ω) such that v(x) ≥ 0 for a.a. x ∈ Ω.
The application of a standard result in integration theory thus gives the desired conclusion, i.e., (θ(y) + u i (y, x 3 )a i (y)) • q ≥ 0, for a.a. x = (y, x 3 ) ∈ Ω.

The fact that u α = 0 on γ × [-1, 1] follows from the continuity of the trace operator tr :

H 1 (Ω) → L 2 (γ × [-1, 1]).
(ii) The weak limits u i found in (i) are independent of the variable x 3 ∈ [-1, 1], in the sense that they satisfy, respectively,

∂ 3 u α = 0 in L 2 (Ω) and ∂ 3 u 3 = 0 in D (Ω).
Besides, the average u satisfies u ∈ U M (ω), namely,

u = (u i ) ∈ V M (ω) = H 1 0 (ω) × H 1 0 (ω) × L 2 (ω), θ(y) + u i (y)a i (y) • q ≥ 0 for a.a. y ∈ ω.
Apart from the latter property, the proof is identical to that of part (ii) of the proof of Theorem 6.2-1 in [START_REF] Ciarlet | Mathematical Elasticity[END_REF]. Let us thus prove that θ(y) + u i (y)a i (y) • q ≥ 0 for a.a. y ∈ ω.

By part (i), we have that (θ(y) + u i (y, x 3 )a i (y)) • q ≥ 0 for a.a. x = (y, x 3 ) ∈ Ω. Since u = (u i ) is independent of x 3 , we have that an application of Theorem 4.2-1 (a) of [START_REF] Ciarlet | Mathematical Elasticity[END_REF] and part (i) gives (θ(y) + u i (y, x 3 )a i (y)) • q ≥ 0, for a.a. y ∈ ω,

so that u = (u i ) ∈ U M (ω). (iii) The weak limits e i j ∈ L 2 (Ω), u α ∈ H 1 (Ω) and u 3 ∈ L 2 (Ω) found in (i) satisfy e α β = γ αβ (u) in L 2 (Ω), e α 3 = 0 and e 3 3 = - λ λ + 2µ
a αβ e α β in Ω.

The equality e α β = γ αβ (u) in L 2 (Ω) is recovered in the same way as part (iii) of Theorem 4.4-1 in [START_REF] Ciarlet | Mathematical Elasticity[END_REF]. Let v = (v i ) ∈ V (Ω) be arbitrarily chosen. It is known (cf., e.g., part (iii) in Theorem 4.4-1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF]) that

εe α β (ε; v) → 0 in L 2 (Ω), εe α 3 (ε; v) → 1 2 ∂ 3 v α in L 2 (Ω), εe 3 3 (ε; v) = ∂ 3 v 3 for all ε > 0.
These relations, combined with the boundedness of the terms e i j (ε) L 2 (Ω) independently of ε > 0 (part (i)) and the asymptotic behavior of the functions A ijk (ε) and g(ε) as ε → 0 (Lemma 4.1), give 5) and ( 6)),

Ω A αβστ (ε)e σ τ (ε) + A αβ33 (ε)e 3 3 (ε) εe α β (ε; v) g(ε) dx → 0 as ε → 0, Ω 4A α3σ3 (ε)e σ 3 (ε) εe α 3 (ε; v) g(ε) dx → Ω 2µa ασ e σ 3 ∂ 3 v α √ a dx as ε → 0, Ω A 33στ (ε)e σ τ (ε) + A 3333 (ε)e 3 3 (ε) εe 3 3 (ε; v) g(ε) dx → Ω λa στ e σ τ + (λ + 2µ)e 3 3 ∂ 3 v 3 √ a dx as ε → 0, - ε κ Ω [θ + εx 3 a 3 + u i,κ (ε)g i (ε)] • q -(v i g i (ε) • q) g(ε) dx → 0 as ε → 0 (cf. (
ε Ω f i v i g(ε) dx → 0 as ε → 0. Consequently, Ω (2µa ασ e σ 3 )∂ 3 v α + λa στ e σ τ + (λ + 2µ)e 3 3 ∂ 3 v 3 √ a dx = 0.
Since this equality holds for any vector field v = (v i ) ∈ V (Ω), it follows by Theorem 3.4-1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF] that:

e σ 3 = 0 and λa στ e σ τ + (λ + 2µ)e 3 3 = 0 in L 2 (Ω).

In particular, the latter gives:

e 3 3 = - λ λ + 2µ
a αβ e α β in L 2 (Ω).

(iv) The weak limit u = (u i ) is the solution of Problem P M (ω). Let w = (w i ) ∈ V (Ω) be fixed in a way such that it is independent of the transverse variable x 3 , and such that: θ(y) + εx 3 a 3 (y) + w i (y, x 3 )g i (ε)(x) • q ≥ 0, for a.a. x = (y, x 3 ) ∈ Ω.

By the asymptotic behavior of Γ p αβ (ε) and Γ σ α3 (ε) we obtain (cf., e.g., part (iv) of Theorem 4.4-1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF])

e α β (ε; w) → γ αβ (w), in L 2 (Ω) as ε → 0, e α 3 (ε; w) → 1 2 ∂ α w 3 + b σ α w σ , in L 2 (Ω) as ε → 0, e (8) 
(ε; w) = 0, for all ε > 0.

For each ε > 0, define Λ(ε) := Ω A ijk (ε) e k (ε) -e k e i j (ε) -e i j g(ε) dx, so that, combining the uniform positive-definiteness of the three-dimensional elasticity tensor A ijk (ε) and the asymptotic behavior of the function g(ε) (Lemma 4.1), we obtain:

0 ≤ i,j e i j (ε) -e i j 2 L 2 (Ω) ≤ C 0 √ g 0 Λ(ε).
An application of the latter to the variational equations of Problem P(ε; Ω) under the specialization v = (w -u κ (ε)) gives:

(9) 0 ≤ Λ(ε) = Ω A ijk (ε)e k (ε)e i j (ε) g(ε) dx -2 Ω A ijk (ε)e k (ε)e i j g(ε) dx + Ω A ijk (ε)e k e i j g(ε) dx = Ω A ijk (ε)e k (ε)e i j (ε; w) g(ε) dx - 1 κ Ω [θ + εx 3 a 3 + u i,κ (ε)g i (ε)] • q -[(w i -u i,κ (ε))g i (ε) • q] g(ε) dx -2 Ω A ijk (ε)e k (ε)e i j g(ε) dx + Ω A ijk (ε)e k e i j g(ε) dx - Ω f i (w i -u i,κ (ε)) g(ε) dx.
The asymptotic behavior of the functions e i j (ε; w) exhibited in [START_REF] Ciarlet | A justification of the two-dimensional linear plate model[END_REF], the asymptotic behavior of the threedimensional elasticity tensor A ijk (ε) and g(ε) (Lemma 4.1), the weak convergences e i j (ε) e i j in L 2 (Ω) established in part (i), and the relations satisfied by e i j (part (iii)) together give:

(10) Ω A ijk (ε)e k (ε)e i j (ε; w) g(ε) dx → Ω (A αβστ (0)e σ τ + A αβ33 (0)e 3 3 )γ αβ (w) √ a dx = 1 2 Ω a αβστ γ στ (u)γ αβ (w) √ a dx, 2 Ω A ijk (ε)e k (ε)e i j g(ε) dx - Ω A ijk (ε)e k e i j g(ε) dx → Ω A ijk (0)e k e i j √ a dx = 1 2 Ω a αβστ γ σ τ (u)γ α β (u) √ a dx, Ω f i (w i -u i,κ (ε)) g(ε) dx → Ω f i (w i -u i ) √ a dx = ω p i (w i -u i ) √ a dy.
Finally, we observe that the asymptotic behavior of the functions g(ε) (Lemma 4.1), the properties of w, (5) and ( 8) and the monotonicity of -{•} -give that the term ( 11)

Ω [θ + εx 3 a 3 + u i,κ (ε)g i (ε)] • q - κ [(w i -u i,κ (ε))g i (ε) • q] g(ε) dx = Ω [θ + εx 3 a 3 + u i,κ (ε)g i (ε)] • q - κ [(θ + εx 3 a 3 + w i g i (ε)) • q] g(ε) dx - Ω [θ + εx 3 a 3 + u i,κ (ε)g i (ε)] • q - κ [(θ + εx 3 a 3 + u i,κ (ε)g i (ε)) • q] g(ε) dx
is nonnegative for all ε > 0.

The asymptotic behaviors observed in ( 9)-( 11), Lemma 3.1, and the uniform positive-definiteness of the fourth order two-dimensional elasticity tensor (a αβστ ) in turn imply:

0 ≤ lim sup ε→0 Λ(ε) ≤ - ω p i (w i -u i ) √ a dy + 1 2 Ω a αβστ γ στ (u)γ αβ (w -u) √ a dx = ω a αβστ γ στ (u)γ αβ (w -u) dy - ω p i (w i -u i ) √ a dy.
In conclusion, the latter yields

0 ≤ ω a αβστ γ στ (u)γ αβ (w -u) dy - ω p i (w i -u i ) √ a dy.
The fact that w = (w i ) ∈ V (Ω) is independent of the variable x 3 allows us to identify w = w(y, x 3 ) with a vector field η = η(y) defined almost everywhere in ω. Clearly, one such vector field η = (η i ) ∈ H 1 0 (ω) satisfies:

(θ(y) + η i (y)a i (y)) • q ≥ 0, for a.a. y ∈ ω, or, equivalently, η ∈ ŨM (ω). The latter remark, the arbitrariness of w, and the assumed "density property" allow us to conclude that u is the unique solution for Problem P M (ω), as it was to be proved.

(v) The weak convergences u α,κ (ε) u α in H 1 (Ω) and u 3,κ (ε)

u 3 in L 2 (Ω) established in part (i) is in fact strong, i.e., u α,κ (ε) → u α , in H 1 (Ω) as ε → 0, u 3,κ (ε) → u 3 , in L 2 (Ω) as ε → 0,
and holds for the whole sequence (u κ (ε)) ε>0 .

The proof is identical to that of part (vi)-(viii) in the proof of Theorem 4.4-1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF] and for this reason is omitted.

(vi) The weak convergences e i j (ε) e i j in L 2 (Ω) established in part (i) are in fact strong, i.e., e i j (ε) → e i j in L 2 (Ω).

Besides, the limits e i j are unique; hence these convergences hold for the whole family e i j (ε) ε>0 .

Let Λ(ε) be as in part (iv) and repeat the same computations as part (iv) for w = u. We obtain:

lim ε→0 Λ(ε) = 0.
These relations in turn imply that the strong convergences

e i j (ε) → e i j in L 2 (Ω)
hold. The functions e α β are uniquely determined, since they are given by e α β = γ αβ (u) and the vector field u is uniquely determined as the unique solution of Problem P M (ω). That the functions e i 3 are uniquely determined then follows from the relations established in part (iii). Therefore, the whole sequence (e i j (ε)) ε>0 strongly converges to the functions e i j in L 2 (Ω) and the theorem is thus completely proven.

The convergence as ε → 0 of the solutions u(ε) of Problem P(ε; Ω) to the solution ζ of Problem P M (ω) can thus be established as a direct corollary of Theorem 5.1.

Corollary 5.2. Let ω be a domain in R 2 , let θ ∈ C 3 (ω; E 3 ) be the middle surface of a linearly elastic elliptic membrane shell (cf. section 4) and let q ∈ E 3 be a nonzero vector given once and for all. Let us consider the space (cf. Theorem 2.1)

V M (ω) := H 1 0 (ω) × H 1 0 (ω) × L 2 (ω),
and let us define the set U M (ω) := {η = (η i ) ∈ V M (ω); θ(y) + η i (y)a i (y) • q ≥ 0 for a.a. y ∈ ω}.

Let there be given a family of linearly elastic elliptic membrane shells with the same middle surface θ(ω) and thickness 2ε > 0, and let u(ε) ∈ U (ε; Ω) denote, for each ε > 0, the unique solution of Problem P(ε; Ω). Assume that the applied body force densities f i,ε are of the form [START_REF] Caillerie | Elastic thin shells: asymptotic theory in the anisotropic and heterogeneous cases[END_REF].

Then, we have that

1 2 1 -1 u α (ε) dx 3 → ζ α , in H 1 (ω) as ε → 0, 1 2 1 -1 u 3 (ε) dx 3 → ζ 3 , in L 2 (ω) as ε → 0,
where ζ is the unique solution to the two-dimensional variational Problem P M (ω).

Proof. The conclusion of Theorem 5.1 reads as follows: For each δ > 0 there exists a number ε 2 = ε 2 (δ, L) > 0 such that for all 0 < ε < ε 2 it results

-1 u α,κ (ε)(•, x 3 ) dx 3 -ζ α H 1 (ω) < δ 6 , 1 2 1 -1 u 3,κ (ε)(•, x 3 ) dx 3 -ζ 3 L 2 (ω) < δ 6 , (12) 1 2 1 
where u κ (ε) = (u i,κ (ε)) is the unique solution of Problem P κ (ε; Ω), and ζ = (ζ i ) is the unique solution of Problem P M (ω), and κ is as in [START_REF] Ciarlet | Introduction to Numerical Linear Algebra and Optimisation[END_REF]. We now show that for each δ > 0 there exists a number ε > 0 such that for all 0 < ε < ε it results

(13) 1 2 1 -1 u α (ε)(•, x 3 ) dx 3 -ζ α H 1 (ω) + 1 2 1 -1 u 3 (ε)(•, x 3 ) dx 3 -ζ 3 L 2 (ω) < δ,
where u(ε) = (u i (ε)) is the unique solution of Problem P(ε; Ω) and ζ = (ζ i ) is the unique solution of Problem P M (ω).

In order to prove (13), fix δ > 0 and take ε := ε 2 . For each 0 < ε < ε 2 , we have that an application of (3), the triangle inequality, Theorem 4.2-1 (b) of [START_REF] Ciarlet | Mathematical Elasticity[END_REF], and ( 12) gives ( 14)

1 2 1 -1 u α (ε) dx 3 -ζ α H 1 (ω) + 1 2 1 -1 u 3 (ε) dx 3 -ζ 3 L 2 (ω) ≤ 1 2 1 -1 u α,κ (ε)(•, x 3 ) dx 3 -ζ α H 1 (ω) + u i (ε) -u i,κ (ε) H 1 (Ω) + 1 2 1 -1 u 3,κ (ε)(•, x 3 ) dx 3 -ζ 3 L 2 (ω) < δ 2 + δ 2 = δ,
for all 0 < κ < min{κ 0 (δ, ε), ε}. The estimate [START_REF] Ciarlet | A confinement problem for a linearly elastic Koiter's shell[END_REF] means that the solutions u(ε) of Problem P(ε; Ω) converge to the solution of Problem P M (ω) as ε → 0, as it had to be proved. [START_REF] Ciarlet | Introduction to Numerical Linear Algebra and Optimisation[END_REF]. Let δ > 0 be fixed and let 0 < ε < ε 2 , where ε 2 is the parameter found in Corollary 5.2. Let ζ denote the solution to Problem P M (ω). Let κ be a "penalty" parameter associated with ε and satisfying [START_REF] Ciarlet | Introduction to Numerical Linear Algebra and Optimisation[END_REF] for which the distance between the averaged solution of Problem P κ(ε; Ω) (i.e., the vector field ζ κ(ε)) and the solution ζ of Problem P M (ω) with respect to the V M (ω) norm is less than δ/2. If κ > κ 0 (δ, ε), it might happen, as a consequence of (3), that the distance between the averaged solution of Problem P κ(ε; Ω) (i.e., the vector field ζ κ(ε)) and the averaged solution of Problem P(ε; Ω) (i.e., the vector field ζ(ε)) is, with respect to the V M (ω) norm, strictly greater than the fixed number δ. If, however, in correspondence of ε, we replace the penalty parameter κ by an even smaller "penalty" parameter 0 < κ < min{ε, κ 0 (δ, ε)} (this can be done, for instance, by diminishing the constant L in (4)), then we can find an element ζ κ (ε), solution of Problem P κ (ε; Ω), whose distance (once again with respect to the V M (ω) norm) from both ζ κ(ε) and ζ(ε) is strictly less than δ/2. An application of the triangle inequality in V M (ω) gives that the distance between ζ κ(ε) and ζ(ε) is strictly less than δ.

It remains to "de-scale" the results of Theorem 5.1 and Corollary 5.2, which apply to the solutions u(ε) of the scaled problem P(ε; Ω). This means that we need to convert these results into ones about the unknown u ε i g i,ε : Ω ε → E 3 , which represents the physical three-dimensional vector field of the actual reference configuration of the shell. As shown in the next theorem, this conversion is most conveniently achieved through the introduction of the averages 1 2ε ε -ε u ε i g i,ε dx ε 3 across the thickness of the shell, a procedure which also clearly highlights the striking difference (in terms of function spaces) between the asymptotic behaviors of the tangential and normal components of the displacement field of the middle surface of the shell.

Theorem 5.3. Let the assumptions on the data be as in section 4 and let the assumptions on the immersion θ ∈ C 3 (ω; E 3 ) be as in Theorem 4.3. Let u ε = (u ε i ) ∈ U (Ω ε ) denote for each ε > 0 the unique solution of the variational Problem P(Ω ε ) and let ζ ∈ U M (ω) denote the unique solution to the variational inequalities in Problem P M (ω). Then

1 2ε ε -ε u ε α g α,ε dx ε 3 → ζ α a α , in H 1 (ω) as ε → 0, 1 2ε ε -ε u ε 3 g 3,ε dx ε 3 → ζ 3 a 3 , in L 2 (ω) as ε → 0.
Proof. The proof is analogous to that of Theorem 4.6-1 in [START_REF] Ciarlet | Mathematical Elasticity[END_REF] and for this reason is omitted.

In view of the scalings, viz., u ε i (x ε ) = u i (ε)(x) at each x ε ∈ Ω ε , and of the assumption on the data, viz., f i,ε (x ε ) = f i (x) at each x ε ∈ Ω ε , made in section 4, it is natural to also "de-scale" the unknown appearing in the limit two-dimensional problem found in Theorem for all η = (η i ) ∈ U M (ω). These inequalities now display the factor ε, which always appears in the left-hand sides of equations modelling linearly elastic elliptic membrane shells.

Conclusion and final remarks

In this paper we identified a set of two-dimensional variational inequalities that model the displacement of a linearly elastic elliptic membrane shell subjected to a confinement condition, expressing that all the points of the admissible deformed configurations remain in a given half-space.

The starting point of the rigorous asymptotic analysis we carried out is a set of variational inequalities based on the classical three-dimensional equations of linearized elasticity, and posed over a nonempty, closed and convex subset of a suitable Sobolev space. These variational inequalities govern the displacement of a three-dimensional linearly elastic elliptic membrane shell subjected to a confinement condition like the one recalled beforehand.

An application of the penalty method to the aforementioned problem (i.e., the set of variational inequalities based on the classical three-dimensional equations of linearized elasticity), allowed us to show that, as the thickness parameter approaches zero, the average across the thickness of the solution of the original threedimensional model converges to the solution of the two-dimensional model recovered via a direct analysis in [START_REF] Ciarlet | An obstacle problem for elliptic membrane shells[END_REF].

It is worth mentioning that the two-dimensional model we recovered in this paper coincides with the twodimensional model recovered as a result of a rigorous asymptotic analysis carried out on Koiter's model in the case where the linearly elastic shell under consideration is subjected to an obstacle (viz. [START_REF] Ciarlet | Obstacle problems for Koiter's shells[END_REF] and [START_REF] Ciarlet | A confinement problem for a linearly elastic Koiter's shell[END_REF]).

The first, and main, improvement to the analysis carried out in [START_REF] Ciarlet | An obstacle problem for elliptic membrane shells[END_REF] is that the geometrical assumption d := inf y∈ω (θ(y) • q) > 0 independently of ε, that was exploited in Theorem 4.1 of [START_REF] Ciarlet | An obstacle problem for elliptic membrane shells[END_REF] (and that was separately exploited to establish the validity of the assumed "density property" under special geometrical conditions; see Theorem 5.1 of [START_REF] Ciarlet | An obstacle problem for elliptic membrane shells[END_REF]), was not resorted to in the proof of the main result of this paper, namely, Theorem 5.1.

The second improvement to [START_REF] Ciarlet | An obstacle problem for elliptic membrane shells[END_REF] consists in the recovery of the aforementioned two-dimensional limit model by means of less involving computations.
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 1 Figure 1. Geometrical interpretation of Corollary 5.2 and criticality fo[START_REF] Ciarlet | Introduction to Numerical Linear Algebra and Optimisation[END_REF]. Let δ > 0 be fixed and let 0 < ε < ε 2 , where ε 2 is the parameter found in Corollary 5.2. Let ζ denote the solution to Problem P M (ω). Let κ be a "penalty" parameter associated with ε and satisfying[START_REF] Ciarlet | Introduction to Numerical Linear Algebra and Optimisation[END_REF] for which the distance between the averaged solution of Problem P κ(ε; Ω) (i.e., the vector field ζ κ(ε)) and the solution ζ of Problem P M (ω) with respect to the V M (ω) norm is less than δ/2. If κ > κ 0 (δ, ε), it might happen, as a consequence of[START_REF] Ciarlet | Mathematical Elasticity. Vol. I: Three-Dimensional Elasticity[END_REF], that the distance between the averaged solution of Problem P κ(ε; Ω) (i.e., the vector field ζ κ(ε)) and the averaged solution of Problem P(ε; Ω) (i.e., the vector field ζ(ε)) is, with respect to the V M (ω) norm, strictly greater than the fixed number δ. If, however, in correspondence of ε, we replace the penalty parameter κ by an even smaller "penalty" parameter 0 < κ < min{ε, κ 0 (δ, ε)} (this can be done, for instance, by diminishing the constant L in (4)), then we can find an element ζ κ (ε), solution of Problem P κ (ε; Ω), whose distance (once again with respect to the V M (ω) norm) from both ζ κ(ε) and ζ(ε) is strictly less than δ/2. An application of the triangle inequality in V M (ω) gives that the distance between ζ κ(ε) and ζ(ε) is strictly less than δ.
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 1111 4.3, by lettingζ ε i (y) := ζ i (y) at each y ∈ ω, and by using in its formulation the contravariant componentsp i,ε := ε i dx 3 = ε -ε f i,ε dx ε 3 instead of their scaled counterparts p i = f i dx 3 . In this fashion, it is immediately found that ζ ε = (ζ ε i ) ∈ U M (ω) is the unique solution to the variational inequalities ε ω a αβστ γ στ (ζ ε )γ αβ (η -ζ ε ) √ a dy ≥ ω p i,ε (η i -ζ ε i ) √ a dy,

Acknowledgements

The author is greatly indebted to Professor Philippe G. Ciarlet for his encouragement and guidance.