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Abstract. The traditional approach for the design of aeroelastically scaled models assumes that either there
exists flow similarity between the full-size aircraft and the model, or that flow non-similarities have a negligible
effect. However, when trying to reproduce the behavior of an airliner that flies at transonic conditions using
a scaled model that flies at nearly-incompressible flow conditions, this assumption is no longer valid and both
flutter speed and static aerodynamic loading are subject to large discrepancies. To address this issue, we
present an optimization-based approach for wing planform design that matches the scaled flutter speeds and
modes of the reference aircraft when the Mach number cannot be matched. This is achieved by minimizing
the squared error between the full-size and scaled aerodynamic models. This method is validated using the
Common Research Model wing at the reference aircraft Mach number. The error in flutter speed is computed
using the same wing at model conditions, which are in the nearly-incompressible regime. Starting from the
baseline wing, its planform is optimized to match the reference response despite different conditions, achieving
a reduction of the error in the predicted flutter speed from 7.79% to 2.13%.
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1 Introduction

The search for more efficient aircraft configurations leads
aircraft designers to explore new aircraft concepts such as
the blended wing body, the box wing, or the strut-braced
wing. While the classical wing-body configuration is well
known and understood, little is known about the in-flight
behavior of these new aircraft concepts. In that con-
text, the design, construction, and testing of unmanned,
aeroelastically scaled models presents itself as a means of
acquiring experimental knowledge on these new concepts.
This mitigates the risk of manufacturing and testing a
full scale aircraft both from the economical and oper-
ational point of view. Also, the use of aeroelastically
scaled models allows seeing the effect of design modifi-
cations of existing aircraft — such as a new engine —
on the flutter response. In this paper, we investigate the
introductions of slight variations on the wing planform
of flight demonstrators to minimize the discrepancies on
the dynamic aeroelastic behavior despite the differences
in compressibility conditions (i.e., Mach number).
Traditional aeroelastic scaling of flying demonstrators

assumes that there exists flow similarity between the two
scales, or that at least that the difference in the flow

* e-mail: joseph.morlier@isae-supaero.fr

conditions (especially the compressibility effects) is neg-
ligible. However, it is often not possible to achieve the
same Mach number (M) due to the operational limits of
the unmanned flight demonstrators.
The fundamentals of classical aeroelastic scaling meth-

ods were described by Bisplinghoff et al. [1] in 1955.
Scruton and Lambourne [2] extended the approach
to include compressibility and heat transfer effects.
French [3] proposed an optimization-based approach for
matching the static response of finite element models for
aeroelastic scaling purposes. To consider dynamic aeroe-
lastic scaling, French and Eastep [4] introduced a two-step
approach. First, the structure stiffness was matched
through the minimization of the squared differences in
static deflections. Then, the design of non-structural
masses was determined via an optimization problem where
the difference in mode shapes was minimized and the
reduced modal frequencies were set as constraints.
In the field of modal optimization and stiffness match-

ing, Pereira et al. [5] described a technique based on the
optimization of the natural frequencies applied to the
design of a joined-wing wind tunnel model. Bond et al. [6]
showed that matching mode shapes is also a require-
ment, apart from natural frequencies. Richards et al. [7]
compared a single-step direct modal matching to a decou-
pled approach. In the latter case, the stiffness is matched
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through static deflections and subsequently the modes and
frequencies are matched by optimizing the nonstructural
mass distribution.
Several researchers considered the nonlinearities in the

static scaling, such as Bond et al. [6], who expanded the
modern approach described by French and Eastep [4]
to include geometrical nonlinearities in the aeroelastic
scaling process. Ricciardi et al. [8] modified the two-
step approach proposed by Richards et al. [7] to include
the matching of nonlinear static deflections in the first
optimization loop. Both of these efforts apply the pro-
posed scaling methodology to the joined-wing SensorCraft
model. Subsequently, Ricciardi et al. [9] investigated the
use of a single-step method where linear and nonlinear
static responses were matched, while satisfying the natu-
ral frequency constraints. Wan and Cesnik [10] presented
a technique for the scaling of very flexible aircraft with
geometrical nonlinearities. They extended the linear scal-
ing factors and similarity rules to consider the case of
aeroelastic scaling with geometrical nonlinearities.
More recently, Ricciardi et al. [11] presented a sys-

tematic approach for the design of aeroelastically scaled
models. They used an optimization-based method to
match vibration and buckling modes and eigenvalues, as
well as to match a linear static response. They pointed
out the problem of mode swapping and mixing during the
optimization. Mas Colomer et al. [12,13] described the
static aeroelastic scaling when flow similarity cannot be
achieved. In the context of the modern aeroelastic scal-
ing (i.e., with assumed flow similarity), they addressed
the problem of mode crossing by implementing a mode
tracking strategy [14]. Cavallaro and Demasi [15] pre-
sented a detailed literature survey on aeroelastic scaling
of the joined-wing SensorCraft models. Another review by
Afonso et al. [16] focused on the state-of-the-art on non-
linear aeroelasticity of high aspect ratio wings. On the
applications side, Spada et al. [17] applied the two-step
method to the high aspect ratio wing of the reference
aircraft [18] developed in the context of the NOVEMOR
project under European Union’s 7th framework program.
Pontillo et al. [19] presented a set of tools to design a can-
tilevered wing model that reproduces the aeroelastic static
and dynamic behavior of a conceptual full size aircraft.
All the efforts mentioned above assume that there exists

flow similarity between both scales, or that at least the
differences in flow conditions (compressibility and viscous
effects) are negligible. However, this may not be the case
for flying demonstrators that have a limited flight enve-
lope (both in altitude and speed). Therefore, a method
is needed for the cases where a flying demonstrator is
required to have the same flutter behavior (i.e., scaled flut-
ter speeds, frequencies and modes) despite the differences
in flow conditions,
In this paper, we first review the classical similarity

criteria used for flight demonstrator scaling. Then, we
present a new optimization-based approach that maxi-
mizes the similarity of the dynamic aeroelastic response
when flow similarity cannot be achieved, focusing on dif-
ferences in the Mach number. We focus in the Mach num-
ber only since the formulation of the aerodynamic model
used — the doublet lattice method (DLM), included in

Nastran — only considers corrections based on the Mach
number.
To evaluate the proposed method, we apply it to the

Common Research Model (CRM) wing [20], which is
a well-known reference wing — corresponding to the
in-flight shape — typically used to benchmark aerody-
namic analysis methods. The goal is to optimize the
wing planform to achieve the same flutter behavior in
the scaled flight demonstrator despite the different flight
Mach number.
With the application of the proposed method, we see

that the error in the flutter speed, due to the Mach num-
ber difference, is effectively reduced. We also observe a
significant improvement in the agreement in the evolution
of the damping of the first flutter mode with airspeed
through the V -g plot.

2 Methodology

The proposed method aims to match the aeroelastic
response of two wings with different geometries. The
method addresses both differences in external shape and
internal structure geometry. To illustrate this, in Figure 1a
we consider the geometry at rest of a reference wing (in
blue) and another wing with a different chord (in red).
Through the use of interpolation, we transfer the aeroe-
lastic response of the reference wing to the new wing, as
shown in Figure 1b. In this paper, we use optimization to
match the two aeroelastic responses even if the geometries
of the wing are not exactly coincident.
The aeroelastic equation of the reference aircraft (with

uniform dimensions) is

[Mr]{ẍr}+ [Kr]{xr} = [Ar]{xr}, (1)

where M is the mass matrix, K is the structural stiffness
matrix, A is the aerodynamic matrix, and x is the vector
of structural degrees of freedom (DOF). For simplicity,
we assume that all matrices and vectors have uniform
physical dimensions. The subscript r indicates the refer-
ence aircraft. We only use the aerodynamic matrix that
multiplies the structural displacements, but the procedure
would be equivalent if other aerodynamic matrices (i.e.,
multiplying velocity and acceleration vectors) were con-
sidered. Also, if a harmonic response is considered, A
represents a complex matrix that includes the effect of
positions, velocities, and accelerations.
We write the same equation for the model (subscript

m) whose aeroelastic response we want to match with the
reference aircraft

[Mm]{ẍm}+ [Km]{xm} = [Am]{xm}. (2)

From that point, we derive the equations in a generic form,
without distinguishing between the reference aircraft and
the scaled model, as the procedure is the same for both
cases. We consider that we can use the normal mode basis
to express the structural displacements

{xr} = [Φr]η, (3)
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Fig. 1. From the geometry at rest (a) of the reference wing (blue) and the wing under design (red) with a different geometry,
a given aeroelastic response can be interpolated from the reference wing to the new one (b).

where η are the modal coordinates. Substituting equa-
tion (3) into equation (1) and left-multiplying by [Φr]

T ,
yields the generalized aeroelastic equation

[Φ]T [M][Φ]{η̈}+ [Φ]T [K][Φ]{η} = [Φ]T [A][Φ]{η}. (4)

As described by Bisplinghoff [1] and further detailed
by Ricciardi et al. [9], the aeroelastic response of two
aircraft will be the same if their aeroelastic equations,
once nondimensionalized, are coincident. Therefore, we
nondimensionalize equation (4) and compare them to see
which quantities have to be preserved to ensure the scal-
ing of the aeroelastic response. We start by using the
bi-orthogonality property of the modal problem to rewrite
equation (4) as

〈m〉 {η̈}+
〈
mω2

〉
{η} = [Φ]T [A][Φ]{η}, (5)

where 〈m〉 represents the diagonal matrix of modal
masses, and 〈ω〉 is the diagonal matrix of natural fre-
quencies. By using the reference quantities for each scale
(listed in Tab. 1), we write equation (5) in terms of these
reference quantities and the nondimensional matrices as

〈m̄〉 {??η }+
〈
m̄ω̄2

〉
{η} =

1
2ρV

2b3

m1ω2
1

[Φ̄]T [Ā][Φ̄]{η}, (6)

where the barred matrices are nondimensional and ?

denotes the derivative with respect to nondimensional
time. By reordering the multiplying factors comprising
the reference quantities, we identify two nondimensional
groups. These are the reduced frequency κ and the iner-
tia ratio µ, which appear in the nondimensional equations,
now instantiated for the reference aircraft r and the scaled
model m,

〈m̄r〉 {
??
η }+

〈
m̄rω̄

2
r

〉
{η} = 1

2

V 2
r

b2rω
2
1r︸ ︷︷ ︸

1/κ2
1r

ρrb
5
r

m1r︸ ︷︷ ︸
µ1r

[Φ̄r]
T [Ār][Φ̄r]{η},

(7)
and

Table 1. Reference quantities used to nondimensionalize
the aeroelasticity equations.

Reference quantity Symbol
Wingspan b
Air density ρ
Airspeed V
Natural frequency of the first vibration mode ω1

Modal mass of the first vibration mode m1

〈m̄m〉 {
??
η }+

〈
m̄mω̄

2
m

〉
{η}

=
1

2

V 2
m

b2mω
2
1r︸ ︷︷ ︸

1/κ2
1m

ρmb
5
m

m1m︸ ︷︷ ︸
µ1m

[Φ̄m]T [Ām][Φ̄m]{η}. (8)

Now, let us assume that the nondimensional modes of
the model aircraft [Φ̄m] are such that they are equal to the
modes of the reference structure [Φ̄r] when interpolated
onto the model mesh, i.e.,

[Φ̄m] = [H][Φ̄r], (9)

where [H] is the matrix that interpolates the structural
displacements from the mesh of the reference aircraft to
the mesh of the model aircraft. Substituting equation (9)
into equation (8), yields

〈m̄m〉 {
??
η }+

〈
m̄mω̄

2
m

〉
{η}

=
1

2

V 2
m

b2mω
2
1r

ρmb
5
m

m1m
[Φ̄r]

T [H]T [Ām][H][Φ̄r]{η}. (10)

By comparing equation (10) to equation (7), we con-
clude that to achieve an equivalent response between the
reference aircraft and the model, we have to ensure that

[Φm] = [H][Φr], (11)

〈ωr〉 = 〈ωm〉 , (12)

〈mr〉 = 〈mm〉 , (13)
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V 2
r

b2rω
2
1r

=
V 2
m

b2mω
2
1m

, (14)

ρrb
5
r

m1r
=
ρmb

5
m

m1m
, (15)

and

[Φ̄r]
T [Ār][Φ̄r] = [Φ̄r]

T [H]T [Ām][H][Φ̄r]. (16)

The information for the first three conditions can be
obtained through a simple normal mode analysis, while
the information necessary to evaluate the last condition
can be obtained from an aeroelastic analysis module such
as Nastran’s solver option SOL 145.
The aerodynamic shape and the flow similarity (Mach

and Reynolds numbers) are required to guarantee the
equality of the nondimensional aerodynamic matrices.
Traditionally, as explained by Ricciardi et al. [9] and
Pires [21], compressibility and viscous effects are neglected
in the design of scaled flight demonstrators. For the cases
where the internal structure architecture of the scaled
demonstrator is different from that of the reference air-
craft, the nondimensional modal masses, frequencies, and
shapes are usually obtained by optimizing the scaled
model parameters, namely structural thicknesses and
nonstructural masses [9].
As previously mentioned, the nondimensional aerody-

namic matrices depend on the aerodynamic shape and
the flow conditions. In the case of airliners, the ref-
erence aircraft flies at high transonic Mach numbers
(M ≈ 0.8), whereas the flight demonstrator flies at
near-incompressible conditions (M ≈ 0.3).

2.1 Wing planform optimization

We formulate an optimization problem that matches
the dynamic aeroelastic response as closely as possible
through the minimization of the squared error between
the aerodynamic matrices of both models. The aeroelastic
equations of motion are typically used to find the air-
craft flutter modes, speeds, and frequencies. The flutter
points correspond to the airspeed values for which the
aeroelastic oscillations are undamped. Below the flutter
airspeed, these oscillations are damped, whereas they are
divergent above the flutter airspeed. In those cases, the
equation of linear aeroelasticity is solved for harmonic
oscillatory solutions. Speeds are expressed as {ẋ} = iω{x}
and accelerations as {ẍ} = −ω2{x}. This allows writing
the harmonic solution as a complex matrix that when mul-
tiplied by the displacements gives the aerodynamic forces
due to displacements, speeds, and accelerations. This com-
plex aerodynamic matrix is computed for each frequency
ω, and depends on the Mach number,M . Taking this into
consideration, and considering that we have a reference
aircraft (subscript r) and the model we want to optimize
to have the same aeroelastic behavior (subscript m), we

write the equation of aeroelasticity for each aircraft as

〈m̄r〉 {
??
η }+

〈
m̄rω̄

2
r

〉
{η} = 1

2

µ1r

κ21r
[Āhr](Xar, κ,Mr){η},

(17)
and

〈m̄m〉 {
??
η }+

〈
m̄mω̄

2
m

〉
{η}= 1

2

µ1m

κ21m
[Āhm](Xam, κ,Mm){η},

(18)
where [Āh](Xa, κ,M) is the generalized aerodynamic
matrix. This is a complex matrix that yields the aero-
dynamic forces due to displacements, speeds, and accel-
erations for the harmonic solution case when multiplied
by the displacements. This complex matrix depends on
the aerodynamic surface geometry (Xa), the reduced
frequency (κ), and the Mach number (M).
As seen on the previous section, aeroelastic similarity

between two aircraft requires each term in equation (18) to
be equal to its counterpart in equation (17). The left-hand
side is matched through modal optimization [14]. The
right-hand side would be equal if flow similarity existed
and the aerodynamic shape were preserved. If flow sim-
ilarity cannot be achieved, then we attempt to find the
model design parameters affecting the right-hand side of
equation (18) that maximize the similitude with the cor-
responding term in equation (17). Throughout the rest of
this paper, the term “flow similarity” applies to equality in
Mach number only, since the aerodynamic model we use
(DLM, included in Nastran) considers corrections based
on the Mach number uniquely.
To maximize the flow similarity, we solve an optimiza-

tion problem that determines the design variables for
the model wing planform that minimize the difference
between the two terms mentioned above. The objective
function for this problem is

f =

N∑
i=1

(
‖[Āhr](Xar, κi,Mr)− [Āhm](Xam, κi,Mm)‖22

)
.

(19)
This function quantifies the error between the two aero-
dynamic models through the sum of the squared L2 norms
of the difference between the aerodynamic matrices for a
set of reduced frequencies (κi,∀i ∈ 1, . . . , N).

2.2 Equivalent optimization problem formulation

Typically, the nondimensional generalized matrices [Āhr]
and [Āhm] would be used to evaluate the objective func-
tion in equation (19). However, it may be difficult and
error-prone from the user point of view to establish the
dimensional transformation matrices for large Nastran
models. Therefore, we use the generalized matrices, [Ăh],
which are direct outputs from MSC Nastran (in the Nas-
tran documentation these are denoted as [Qhh]; see the
Appendix for more details on how these matrices are com-
puted.) Using these matrices, we define an optimization
problem that is equivalent to the one expressed by the
minimization of the objective function in equation (19).
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If we were to compute [Āh], then [Ăh] would be nondi-
mensionalized using a factor K that is a function of the
physical reference quantities of each aircraft (r orm). This
process is the same for both the reference aircraft and
the flight demonstrator, and therefore it is only described
once for a generic matrix [Ăh]. Then, matrix [Ăh] is
nondimensionalized as

[Āh] =
1

K
[Ăh]. (20)

Instead of computing [Āhr] and [Āhm], we use

[Ăhr] = [Φr]
T [Ar][Φr], (21)

and

[Ăhm] = [Φr]
T [H]T [Am][H][Φr], (22)

both computed at the same physical scale — thus the
same K — to define a new optimization problem. Subse-
quently, we prove that the solution of this newly defined
problem is the same as the solution of the problem defined
at the end of Section 2.1. The advantage of this approach
is that we use matrices that are a direct Nastran output,
without having to uniformize (i.e., make them indepen-
dent of the translation and rotation DOFs units, through
the use of a reference length) and nondimensionalize them.
For the purpose of solving a different optimization

problem that does not require direct computation of uni-
form and nondimensional matrices, and whose solution is
the same as the minimum of the objective function on
equation (19), we start by using the property that

argmin(cf) = argmin(f) if c > 0. (23)

We start by writing a new objective function feq as

feq =
∑
i

(
‖[Ăhr]− [Ăhm]‖22

)
. (24)

Now, by substituting equation (20) into equation (24), we
write feq as a function of the generalized matrices and K,

feq =
∑
i

(
‖K[Āhr]−K[Āhm]‖22

)
= |K|2

∑
i

(
‖[Āhr]− [Āhm]‖22

)
. (25)

Substituting equation (19) into equation (25) yields

feq = |K|2f, (26)

Then, from equations (23) and (26), we get

min(feq) = min(|K|2f), (27)

and therefore

argmin(feq) = argmin(f). (28)

Now we can solve the same optimization problem by
using the generalized matrices [Ăhr] and [Ăhm] built at
the same scale and using the same normal modes [Φ]. The
only difference between the two models is the planform
shape and the Mach number.

2.3 Numerical tools

Now we describe the tools used to implement the strat-
egy introduced above. For the aeroelastic analysis, we
use MSC Nastran [22]. By using the SOL 145 solution
sequence, we compute the flutter response of a wing given
its structural finite element model, the definition of the
aerodynamic surface planform, and a subset of the finite
element model nodes to interpolate the displacements
from the structural model to the aerodynamic model grid.
To generate the outer mold line (OML) wing geometry

according to the design variables we use the GMSH [23]
tool. Once the OML is generated for a particular design,
the structural mesh is adapted accordingly using the mesh
interpolation method proposed by Rendall and Allen [24].
The optimizer we use to solve this problem is

COBYLA [25], which is a gradient-free, trust-region
optimization method.

3 Example problem

In this section, we apply the wing planform optimiza-
tion strategy we developed to an existing flutter model
of the CRM wing [20]. In this application, we find the
wing planform design that minimizes the error between
the aerodynamic model of that wing at a given Mach
number and the baseline CRM wing model at a different
Mach number.

3.1 Description of the model

The model that we use as an example is based on a MSC
Nastran model of the CRM wing1. This model represents
the wing of an airliner similar in dimensions and prop-
erties to the one of a Boeing 777 [26]. The wingbox is
composed of an upper and lower skin panels, leading and
trailing edge spars, and ribs. Spar and rib caps are also
included in the model. The masses of the wing parts on
the leading and trailing edges that are not explicitly rep-
resented in the finite element model are represented by
lumped masses attached to the spars using multipoint
constraints (MPCs). Since the fuel mass in the wing con-
tributes significantly to the flutter behavior, the density of
the structural material is artificially increased to account
for the maximum fuel weight of a Boeing 777 — similar
in dimensions to the CRM wing.
The wing aerodynamic model consists of MSC Nastran

CAERO1 panels. This model computes the aerodynamic
forces using the doublet-lattice method (DLM). Both
structural and aerodynamic models are coupled within
Nastran through surface splines that interpolate the forces
and displacements [22] .

1 https://commonresearchmodel.larc.nasa.gov/fem-file/
wingbox-fem-files/

https://commonresearchmodel.larc.nasa.gov/fem-file/wingbox-fem-files/
https://commonresearchmodel.larc.nasa.gov/fem-file/wingbox-fem-files/
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Fig. 2. The finite element model of the CRM wingbox consists of 12475 shell elements, 14134 bar elements, and 10804 nodes.

Figure 2 depicts the wingbox structural model, which
extends only from the leading edge spar to the trailing
edge spar.
Figure 3 shows the dimensions of the baseline CRM

wing. We use this baseline design as the reference wing
flying at the reference Mach number for the optimization
problem in the next section.

3.2 Optimization problem

In this section, we apply the optimization strategy
described in Sections 2.1 and 2.2 to the model presented in
Section 3.1. In this case, the baseline CRM wing configura-
tion, shown in Figure 3, is taken as the reference aircraft,
and its generalized aerodynamic matrix is computed at
M = 0.8. The design variables in the optimization are the
chord length and the leading edge position of both the
root section and the wing tip, for a total of four design
variables, as shown in Figure 3. The Mach number for this
wing is M = 0.3. Thus, the wing OML changes between
the two aircraft but the internal structure remains the
same.
The optimization problem consists in minimizing the

objective function defined by equation (24) without
constraints. In that case, we consider the objective func-
tion for one reduced frequency only, κ1 = 0.183, which
is the one corresponding to the first flutter mode of the
baseline CRM wing at the reference conditions. Table 2
summarizes the objective function, design variables, and
the problem parameters.

4 Results

In this section, we first present and discuss the optimiza-
tion results. Then, we analyze the effects of the change in
the Mach number on the baseline wing flutter behavior
and analyze how the optimized wing for the new Mach
number reduces the error in flutter behavior.

Fig. 3. Wing planform design variables: wing root, break, and
tip chords (cr, cb, and ct respectively) and sweep angle Λ.

The objective function history is plotted against the
number of iterations in Figure 4a for the solution of the
problem detailed in Section 3.2. The objective function
value of the baseline wing is 2.7 × 10−5 m6, and the
optimal value after COBYLA performs 50 iterations is
1.1× 10−5 m6, which represents a substantial reduction.
The optimal wing shows an increase in both the root

and tip chords, but the increment is larger at the root, as
shown in Figure 4b. The leading edge of both sections
moves forward. The increase of both chords results in
a wing area increment, which is consistent with the
fact that the flight demonstrator Mach number Mm is
lower, since a decrease in Mach number (in the subsonic
regime) decreases the aerodynamic forces. Therefore, the
optimizer increases the area to produce equivalent aero-
dynamic forces at a lower Mach number. In Figure 5a we
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Table 2. Objective function, design variables, and parameters of the flutter optimization problem.

Objective function Type

Square of error between
aerodynamic matrices

‖[Ăhr](Xar, κ1f ,Mr)

−[Ăhm](Xam, κ1f ,Mm)‖22
Minimization

Design Variables Baseline Value
Chord at root section cr 12.10 m
Chord at break section cb 7.26 m
Chord at tip section ct 2.73 m
Wing sweep Λ 37.16 ◦

Parameters Value
Mach number of the
reference geometry

Mr 0.8

Mach number of the
scaled model wing

Mm 0.3

Reduced frequency of
the first flutter mode

κ1 0.183

Fig. 4. Evolution of the objective function (24) with the number of optimization iterations (a). Optimized planform (red) and
baseline (blue) (b.

see how the geometry of the wingbox is updated according
to the optimized planform, while keeping the same layout
as the reference wingbox in Figure 5b.
Since our goal is to reduce the error in the flutter

response of a wing when the Mach number changes, we
first compare the baseline wing aeroelastic response at
the reference conditions (Mr) to the baseline wing at the
model Mach number (Mm). Then, we do the same com-
parison between the reference case and the optimized wing
at Mm by computing the V -g plot for each case (Fig. 6),
which allows us to determine the flutter speed for each
case.
From the flutter responses shown in Figure 6, we see

an improvement with the optimized wing with respect to
the baseline wing on the flutter speed. From the flutter
response, we quantify the error in flutter speed both in
absolute and relative terms for the baseline and optimized
wing with respect to the same reference case (Tab. 3).
In Table 3, we see that the error in the flutter speed

when using the baseline wing is 7.79%, while it decreases

to 2.13% when using the optimized wing for the model
Mach number. Thus, we see a significant improvement
on the error in the flutter speed when considering the
optimized design with the compressibility conditions of
the scaled model.

5 Validation of the interpolated modes

Since the interpolation matrix H for the transfer of modal
shapes depends on the coordinates of both the structural
mesh of the reference configuration and the ones of the
structural mesh of the optimized model, we perform a
qualitative validation of the interpolated shapes on the
final design. We do this by representing both the refer-
ence modes on the baseline mesh and their interpolated
counterparts at once for each modal shape to verify quali-
tatively that the nature of each mode is well preserved on
the optimized design. In Figure 7 we see that the bending
and torsion displacements of the first five reference modes
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Fig. 5. The geometry of the optimized wingbox is updated according to the wing planform (a) while keeping the same layout as
the reference wing (b).

Table 3. Flutter speed error of the baseline and optimized configurations.

Flutter speed error
Flutter (w.r.t. baseline at Mr) Reduction in the

Geometry Mach Speed (m/s) Absolute (m/s) Relative (%) Flutter Speed Error (%)
Baseline Mr = 0.8 276.47 – – –
Baseline Mm = 0.3 298.5 22.03 7.79 –
Optimized Mm = 0.3 282.36 5.89 2.13 73.26

Fig. 6. Baseline CRM wing V -g plots at M = 0.8 and for
the optimized planform at M = 0.3; the optimized planform
at model conditions brings the flutter speed closer to the one of
the reference wing at reference conditions.

considered (in blue) are well reproduced on the mesh of
the optimized planform once interpolated (in red).

6 Conclusions

Flight testing aeroelastically scaled models is a way of
obtaining experimental knowledge on the in-flight behav-
ior of innovative aircraft concepts. Traditional aeroelastic
scaling of flying models considers that flow similarity
exists or, at least, that the flow differences are negligible.

However, that is not the case of airliners that fly in the
transonic regime.
In this paper, we presented a method that maximizes

the similarity in the dynamic aeroelastic response between
two wings — despite different Mach numbers — by
optimizing the planform of one of them.
Using the CRM wing as a test case, we first evaluated

the error when the same wing is used at the flight demon-
strator conditions (Mm = 0.3) to reproduce the reference
wing aeroelastic behavior at the reference aircraft Mach
number (Mr = 0.8). Then, we applied the proposed opti-
mization method to that case, with the baseline design
as a starting point. The proposed approach reduced the
error in flutter speed from 7.79% to 2.13%.
This method allows the design of aeroelastically scaled

models when the differences in the compressibility con-
ditions cannot be neglected. The greater the change in
these conditions, the greater the changes in the plan-
form, so this method should only be considered when the
resultant planform is still representative of the reference
aircraft concept. Given the formulation of the DLM used
here, this method only holds for the dynamic aeroelastic
response expressed by the flutter model.
The approach proposed in this paper focuses on the

similarity of the aerodynamic matrices used for flutter
analyses only. It assumes that similarity of the normal
modes and scaled natural frequencies is achieved by a
separated optimization of the structural and mass proper-
ties to try to satisfy equations (11)–(13). This structural
optimization should be performed after the optimal plan-
form is determined by the method proposed in the current
approach.
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Fig. 7. First five natural vibration modes of the structure of the reference structure (blue) and their interpolation onto the structure
mesh of the optimized planform (red).

Appendix

A.1 Aerodynamic matrices in Nastran

In this section, we describe how the aerodynamic matri-
ces [ăh], required to evaluate the objective function in
equation (24), are computed by Nastran using the SOL
145 solution sequence. We first describe all the necessary
elements to its construction and then we assemble them
to build [ăh].
According to the Nastran Aeroelastic Analysis User’s

Guide [22], the dimensionless vertical (i.e., normal to the
panel) velocity is

{wj} = [Ajj]{pj/q}, (A.1)

where [Ajj] is the aerodynamic influence coefficient
matrix, pj is the lifting pressure on element j, and q is the
flight dynamic pressure. In this section, subindices j and
k refer to the aerodynamic panels and grid points respec-
tively. For the dynamic case, we write the dimensionless

normal velocity (or downwash) as

{wj} = [D1
jk + iκD2

jk]{uk}, (A.2)

where D1
jk and D

2
jk are the downwash matrices, κ is the

reduced frequency, and {uk} is the vector of displacements
at aerodynamic grid points. By integrating the pressure
at the panels, {pj}, we get the forces on the aerodynamic
grid points,

{Fk} = [Skj]{pj}, (A.3)

where [Skj] is the integration matrix, which depends on
the surface of the panels.
By combining equations (A.1)–(A.3), we write the

forces on the aerodynamic grid points as a function of
the aerodynamic grid deflection as

{Fk} = q[Skj][Ajj]
−1[D1

jk + iκD2
jk]{uk}. (A.4)
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Now we express the displacements of the aerodynamic
grid points as a function of the structural displacements
{xa} as

{uk} = [Gka]{xa}, (A.5)

where [Gka] is the displacement interpolation matrix. By
using the same interpolation matrix we get the forces on
the structure points as

{Fa} = [Gka]
T {Fk}. (A.6)

By using equations (A.4)–(A.6), we write the aerody-
namic forces on the structure points as a function of the
displacements on the structure points as

{Fa} = q[Gka]
T [Skj][Ajj]

−1[D1
jk + iκD2

jk][Gka]{xa}
= q[Qaa]{xa}. (A.7)

Nastran then computes the generalized aerodynamic
matrix,

[Qhh] = [Φ]T [Qaa][Φ]. (A.8)

If we were to compute [ăh], we would uniformize
and generalize (in the sense of the normal modes) the
aerodynamic matrix [Qaa] as

[ăh] = [Φ]T ([T]T )−1︸ ︷︷ ︸
[Φ̄]T

[T]T [Qaa][T]︸ ︷︷ ︸
[Q̆aa]

[T]−1[Φ]︸ ︷︷ ︸
[Φ̄]

. (A.9)

From equations (A.8) and (A.9), knowing that
([T]T )−1[T]T = [I] and [T][T]−1 = [I], where [I] is the
identity matrix, we conclude that

[ăh] = [Φ]T [Qaa][Φ] = [Qhh]. (A.10)

Indeed, [ăh] can be obtained as the matrix [Qhh] com-
puted by Nastran, using the SOL 145 solution sequence
along with the CAERO1 cards for the definition of the
aerodynamic panels.
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