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Abstract. This work studies a multi-echelon multi-item lot-sizing prob-
lem with remanufacturing and lost sales. The problem is formulated as a
mixed-integer linear program. A new family of valid inequalities taking
advantage of the problem structure is introduced and used in a cus-
tomized branch-and-cut algorithm. The provided numerical results show
that the proposed algorithm outperforms both the generic branch-and-
cut algorithm embedded in a standard-alone mathematical solver and a
previously published customized branch-and-cut algorithm.

Keywords: Production planning · Lot-sizing · Remanufacturing · Mixed-
integer linear programming · Valid inequalities.

1 Introduction

Industrial companies face an increasing pressure from customers and govern-
ments to become more environmentally responsible and mitigate the environ-
mental impact of their products. One way of achieving this objective is to reman-
ufacture the products once they have reached their end of life. Remanufacturing
is defined as a set of processes transforming used products into like-new prod-
ucts, mainly by rehabilitating damaged components. By reusing the materials
and components embedded in used products, remanufacturing both contributes
in reducing pollution emissions and natural resource consumption, making pro-
duction processes more environment-friendly.

The present work considers a remanufacturing system involving three pro-
duction echelons: disassembly of used products brought back by customers, refur-
bishing of the recovered parts and reassembly into like-new finished products. We
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aim at optimizing the production planning for the corresponding three-echelon
system over a multi-period horizon. Within a remanufacturing context, pro-
duction planning includes making decisions on the used products returned by
customers, such as how much and when used products should be disassembled,
refurbished or reassembled in order to build new or like-new products. The main
objective is to meet customers’ demand for the remanufactured products in the
most cost-effective way.

We consider the case where the production on a machine requires setup op-
erations such as machine calibration and incurs fixed setup costs. As a naive
perception, to reduce these setup costs, production should be run using large lot
sizes. However, this generates desynchronized patterns between the customers’
demand and the production plan leading to costly high levels of inventory. Lot-
sizing models thus aim at reaching the best possible trade-off between minimizing
the setup costs and minimizing the inventory holding costs, taking into account
both the customers’ demand satisfaction and the practical limitations of the
system. In the present work, we investigate the problem of reaching the best
possible trade-off between setup and inventory holding costs within a reman-
ufacturing environment and introduce an additional lost sales cost to be paid
when the customers’ demand is not satisfied on time. We thus study a 3-echelon
lot-sizing problem with returns and lost sales.

Only a few works have addressed such multi-echelon production systems
through exact solution approaches. A first attempt at tackling this difficulty can
be found in [12]. Quezada et al. [12] considered the problem in a stochastic set-
ting, taking into account uncertainties on the problem input parameters. They
proposed a multi-stage stochastic approach based on the use of scenario trees.
The problem was formulated as a MILP and solved through a new customized
branch-and-cut algorithm. This algorithm relied on valid inequalities focused
on strengthening the formulation of the single-echelon uncapacitated lot-sizing
sub-problems embedded in the main problem. Although this approach was suc-
cessful at providing near optimal solutions for small to medium size instances,
some numerical difficulties were encountered to solve the larger instances. Intu-
itively, this difficulty might be partly due to the fact that the valid inequalities
used to strengthen the formulation considered uncapacitated single-echelon sub-
problems. They did not take into account the fact that, even if the production
resources are assumed uncapacitated, the amount of products that can be pro-
cessed on a resource at a given time period is limited among others by the amount
of available used products returned up to this time period and by the yield of
the disassembly process, i.e. by the proportion of disassembled parts that are
in a sufficiently good state to be refurbished and reused in a remanufactured
product. Hence, using valid inequalities taking into account this aspect of the
problem might contribute in further strengthening its MILP formulation and
decrease the computational effort needed to solve large-size instances.

To the best of our knowledge, the formulation of valid inequalities that ex-
plicitly take into account the impact of a limited returns quantity on the produc-
tion plan has not yet been studied for a multi-echelon remanufacturing system.



The present work aims at partially closing this gap by proposing new valid
inequalities for this problem. However, in view of the theoretical and numeri-
cal difficulties encountered when developing new valid inequalities, we focus on
the deterministic variant of the problem. Our contributions are thus twofold.
First, we propose a new family of valid inequalities for the problem under study.
These valid inequalities can be seen as an extension of valid inequalities pre-
viously known for the uncapacitated single-echelon lot-sizing problem with lost
sales (the (k, U) inequalities first introduced in [8]) to take into account, at each
echelon of the studied multi-echelon production system, the constraints on the
production plan coming from the limited availability of the returns. We prove
that these new valid inequalities are at least as strong as the previously known
inequalities. Second, we develop a branch-and-cut algorithm based on the newly
proposed valid inequalities and seek to assess its computational performance by
comparing it with the one of a stand-alone mathematical programming solver
and the one of a branch-and-cut algorithm based on previously known valid in-
equalities. The numerical results show the usefulness of the proposed inequalities
at solving the problem under study.

The remainder of this paper is organized as follows. We first provide a brief
overview of the related literature in Section 2. The problem description, together
with its MILP formulation, are provided in Section 3. We then present the pro-
posed new family of valid inequalities in Section 4. Computational results are
summarized in Section 5. Finally, Section 6 gives a conclusion and some research
perspectives.

2 Related works

Throughout the last decade, several works sought to strengthen the MILP for-
mulation of single-echelon lot-sizing problems involving remanufacturing, either
through extended reformulations or through valid inequalities.

Helmrich et al. [13] discussed several MILP formulations of the uncapac-
itated single-item single-echelon lot-sizing problem with remanufacturing and
introduced new valid inequalities by adapting the previously known (l, S,WW )
proposed by [10] to their problem. The inequalities developed in [13] are based on
the assumption that all returned products are either processed or kept in stock
and do not consider the possibility that some of the returns may be discarded in
case of an unbalance between returns quantity and demand. They can therefore
not be directly used for the problem under study here. Similarly, [5] proposed
a multi-commodity reformulation and a new set of valid inequalities for this
problem. In particular, they further strengthened the (l, S,WW ) inequalities
presented in [13] by considering that the amount of finished products remanu-
factured in a given period t is limited by the cumulative quantity of returned
products brought back up to t. Ali et al. [2] enriched the previous works by
highlighting a theoretical property with regards to the equivalence of the short-
est path and facility location reformulations. They also carried out a polyhedral
analysis of a related sub-problem based on the single node fixed-charge network



problem, proving the validity of several flow cover inequalities and their facet-
defining conditions as well. Akartunali and Arulselvan [1] studied both the un-
capacitated and capacitated variants of this single-item single-echelon lot-sizing
problem. They showed that the uncapacitated problem cannot have a fully poly-
nomial time approximation scheme (FPTAS) and provided a pseudo-polynomial
algorithm to solve the problem. They also provided valid inequalities based on
the flow-cover inequalities for the problem with a limited production capacity.
Finally, we refer the reader to [4] for a recent survey on single-item lot-sizing
problems with remanufacturing.

We note that all the above mentioned works focus on single-item single-
echelon problems and do not consider the fact that remanufacturing may involve
several processing steps, i.e. several production echelons, in order to transform
the returned used products into like-new products. Moreover, these works con-
sider hybrid manufacturing/remanufacturing systems and assume that, thanks
to the presence of an uncapacitated manufacturing system, it will always be
possible to satisfy the demand for finished products on time. In contrast, we
investigate a pure remanufacturing system and consider that the demand will
be lost in case the quantity and/or the quality of the returned products are
insufficient to meet it on time. This means among others that the inequalities
introduced in [13], [5] and [2] are not valid for our problem and that new valid
inequalities taking into account its specific features are needed.

3 Problem description and modeling

3.1 Production system

We consider a remanufacturing system comprising three main production eche-
lons: disassembly, refurbishing and reassembly. We seek to plan the production
activities in this system over a horizon comprising a discrete set T = {1, .., T}
of periods. The system involves a set I of items. Among these ones, item i = 0
represents the used products returned by customers in limited quantities at each
period. A used product is composed of I parts. Let αi be the number of parts
i embedded in a used product. The returned products are first disassembled to
obtain a set Ir = {1, ..., I} of recoverable parts. Due to the usage state of the
used products, some of the parts obtained during disassembly have to be dis-
carded. In order to reflect the variations in the quality of the used products, i.e.
the yield of the disassembly process, we let πti denote the proportion of parts
which will be recoverable at each time period t for each item i = {1, . . . , I}. The
recoverable parts are then refurbished on dedicated refurbishing processes. The
set of Is = {I + 1, ..., 2I} of serviceable parts obtained after refurbishing are
reassembled into remanufactured products which have the same bill-of-material
as the used products. These remanufactured products, indexed by i = 2I + 1,
are used to satisfy the dynamic demand of customers.

The system comprises a set P = {0, ..., I + 1} of production processes: p = 0
corresponds to the disassembly process, p ∈ {1, ..., I} corresponds to the process
refurbishing the recoverable part indexed by p into the serviceable part indexed



by p+I and p = I+1 corresponds to the reassembly process. All these processes
are assumed to be uncapacitated. However, the system might not be able to
satisfy the customer demand on time due to part shortages if there are not
enough used products returned by customers or if their quality is low. In this
situation, the corresponding demand is lost incurring a high penalty cost to
account for the loss of customer goodwill. Moreover, some used products and
recoverable parts are allowed to be discarded. This option might be useful in case
more used products are returned than what is needed to satisfy the demand for
remanufactured products and in case there is a strong unbalance between the
part-dependent disassembly yields leading to an unnecessary accumulation in
inventory of the easy-to-recover parts.

All input parameters of the problem are time-dependent: rt denotes the quan-
tity of collected used products, dt the customers’ demand and πti the proportion
of recoverable parts i ∈ Ir obtained by disassembling one unit of returned prod-
uct at period t. As for the costs, for each period t, we have the setup cost f tp
for process p ∈ P, the unit inventory cost hti for part i ∈ I, the unit lost-sales
penalty cost lt, the unit cost qti for discarding item i ∈ Ir ∪ {0} and the unit
cost gt for discarding the unrecoverable parts obtained while disassembling one
unit of returned product.
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Fig. 1: Studied remanufacturing system

3.2 Natural formulation

In order to build a mathematical model for the problem, we introduce the follow-
ing decision variables at time period t ∈ T : Xt

p the quantity of parts processed
on process p ∈ P, Y tp ∈ {0, 1} the setup variable for process p ∈ P, Sti the
inventory level of part i ∈ I, Qti the quantity of part i ∈ Ir ∪ {0} discarded and
Lt the lost sales of remanufactured products. This leads to the following MILP
model.

min
∑
t∈T

(∑
p∈J

f tpY
t
p +

∑
i∈I

htiS
t
i + ltLt +

∑
i∈Ir∪{0}

qtiQ
t
i + gtXt

0

)
(1)



Xt
p ≤M t

pY
t
p ∀p ∈ J ,∀t ∈ T (2)

St0 = St−10 + rt −Xt
0 −Qt0 ∀t ∈ T (3)

Sti = St−1i + πtiαiX
t
0 −Xt

i −Qti ∀i ∈ Ir,∀t ∈ T (4)

Sti = St−1i +Xt
i−I − αiXt

I+1 ∀i ∈ Is,∀t ∈ T (5)

St2I+1 = St−12I+1 +Xt
I+1 − dt + Lt ∀t ∈ T (6)

S0
i = 0 ∀i ∈ I (7)

Sti ≥ 0 ∀i ∈ I,∀t ∈ T (8)

Xt
p ≥ 0, Y tp ∈ {0, 1} ∀p ∈ J ,∀t ∈ T (9)

The objective function (1) aims at minimizing the total remanufacturing cost
over the whole planning horizon, i.e., the sum of the setup, inventory holding, lost
sales and disposal costs. Constraints (2) link the production quantity variables
to the setup variables. Constraints (3)-(6) are the inventory balance constraints.
More specifically, Constraints (3) ensure that any returned product is either
disassembled, discarded, or kept in stock. Constraints (4) guarantee that any
item obtained from the disassembly process is either refurbished, discarded, or
kept in stock. Constraints (5) ensure that any refurbished item is either used
in the reassembly process or kept in stock. Constraints (6) ensure that any
remanufactured/finished product is either used to satisfy the demand or kept in
stock and that, if there is not enough remanufactured products to satisfy the
demand, the unsatisfied demand is lost. Without loss of generality, we assume
that the initial inventory, S0

i , is set to 0 for each item i ∈ I ( see Constraints (7)).
Finally, Constraints (8)-(9) provide the domain of the decision variables.

Note that the value of each constant M t
p can be set by using an upper bound

on the quantity that can be processed on process p at each time period t. This
quantity is limited by two elements: the availability of the used products already
returned by customers and the future demand for remanufactured products. We
thus have, for each period t:

– M t
0 = min

{ ∑
1≤κ≤t

rκ,

∑
t≤κ≤T

dκ

min
i=1,...,I

πti

}
– M t

p = αp min

{ ∑
1≤κ≤t

rκπ̂κ,tp ,
∑

1≤κ≤T
dκ
}

, for p ∈ Ir.

– M t
I+1 = min

{
min
p∈Ir

{ ∑
1≤κ≤t

rκπ̂κ,tp

}
,
∑

t≤κ≤T
dκ

}
where π̂κ,tp = argmax{πθp, θ = κ, . . . , t} denotes the maximum disassembly

yield that can be obtained for recoverable item p over the time interval [κ, t].

3.3 Echelon stock reformulation

We now provide a reformulation of the problem using the echelon stock concept
[11]. The echelon stock of a product in a multi-echelon production system cor-
responds to the total quantity of the product held in inventory, either as such



or as a component within its successors in the bill-of-material. We thus denote
by Eti the echelon stock level of item i ∈ I \ {0} at the end of period t. Replac-
ing variables Sti by variables Eti in Problem (1)-(9) leads to the following MILP
formulation:

min
∑
t∈T

(∑
p∈J

f tpY
t
p + htiS

t
0 +

∑
i∈I\{0}

ehtiE
t
i +

∑
i∈Ir∪{0}

qtiQ
t
i + gt0X

t
0

)
(10)

Xt
p ≤M t

pY
t
p ∀p ∈ J ,∀t ∈ T (11)

St0 = St−10 + rt −Xt
0 −Qt0 ∀t ∈ T (12)

Eti = Et−1i + πtiαiX
t
0 − αi(dt − Lt)−Qti ∀i ∈ Ir,∀t ∈ T (13)

Eti = Et−1i +Xt
i−I − αi(dt − Lt) ∀i ∈ Is,∀t ∈ T (14)

Et2I+1 = Et−12I+1 +Xt
I+1 − dt + Lt ∀t ∈ T (15)

S0
0 = 0 (16)

E0
i = 0 ∀i ∈ I \ {0} (17)

Eti − EtI+i ≥ 0 ∀i ∈ Ir,∀n ∈ T (18)

Eti − αiEt2I+1 ≥ 0 ∀i ∈ Is,∀n ∈ T (19)

Eti ≥ 0 ∀i ∈ I,∀t ∈ T (20)

St0, L
t ≥ 0 ∀t ∈ T (21)

Xt
p ≥ 0, Y tp ∈ {0, 1} ∀p ∈ J ,∀t ∈ T (22)

The objective function (10) aims at minimizing the total cost over the whole
planning horizon. Constraints (11) link the production quantity variables to the
setup variables. Constraints (12)-(15) are the inventory balance constraints. Con-
straints (12) use the classical inventory variables, whereas Constraints (13)-(15)
make use of the echelon inventory variables. Constraints (16)-(17) translate the
fact that the initial inventory of each item is assumed to be equal to 0. Con-
straints (18)-(19) ensure consistency between the echelon inventory at the differ-
ent echelons of the bill-of-material and guarantee that the physical inventory of
each product, Sti , remains non-negative for all i ∈ I . Finally, Constraints (20)-
(22) define the domain of the decision variables.

The use of the echelon stock reformulation (11)-(22) enables us to decompose
the initial problem into a series of single-echelon sub-problems by relaxing the
linking constraints (18)-(19). Each of these sub-problems is an uncapacitated
single-echelon single-item lot-sizing problem with lost sales, whose formulation
can be strengthened by the (k, U) valid inequalities proposed in [8]. We refer the
reader to [12] for a detailed description of each subproblem and the single-echelon
(k, U) inequalities applied to each subproblem. Nonetheless, this decomposition
into single-echelon uncapacitated sub-problems overlooks the fact that the pro-
duction on each process at a given period is limited by the amount of used



products returned up to this period. Therefore, in what follows, we investigate
a class of valid inequalities in which these aspects of the problem are explicitly
considered.

4 Single-echelon (`, k, U) inequalities

We now seek to strengthen the single-echelon (k, U) inequalities investigated in
[8] and [12] by considering the limited quantity of returned products available at
each time period in the system. The (`, k, U) inequalities are defined as follows:

Proposition 1. Let 0 ≤ ` ≤ k ≤ T be two periods of the planning horizon.
Let U ⊆ {k+ 1, ..., T} be a subset of periods and t∗ = max{τ : τ ∈ U} be the last
time period belonging to U .
The following inequalities are valid for Problem (11)-(22):

S`0π̂
`,t∗

i + α−1
i Eki +

∑
k<t≤t∗

φtiY
t
0 ≥

∑
t∈U

(dt − Lt) ∀i ∈ Ir (23)

S`0π̂
`,t∗

i + α−1
i (E`i − E`i+I) + α−1

i Eki+I +
∑

k<t≤t∗
φtiY

t
i ≥

∑
t∈U

(dt − Lt) ∀i ∈ Ir (24)

S`0π̂
`,t∗

i + (α−1
i E`i − E`2I+I) + Ek2I+1 +

∑
k<t≤t∗

φtiY
t
I+1 ≥

∑
t∈U

(dt − Lt) ∀i ∈ Ir (25)

with φti = min
{ ∑
`<ν≤t

rν π̂ν,ti ,
∑

ν∈U :t≤ν
dν

}
Proof. Let (X,Y, S,E, L,Q) be a feasible solution of Problem (10)-(22). We show
that this solution complies with inequalities (23) for any pair of periods (`, k),
any subset U ⊂ {k + 1, ..., T} and any recoverable item i ∈ Ir.
Let τ ∈ [k + 1, t∗] be the first production period in which φτi =

∑
ν∈U :τ≤ν

dν . By

convention, τ = t∗ + 1 if there is no such period.
We have φτi Y

τ
0 =

∑
t∈U :τ≤t

dt ≥
∑

t∈U :τ≤t
(dt − Lt).

We consider two cases.

- Case 1: there is no production on p = 0 over the interval [k + 1; τ − 1]

In this case, Y t0 = 0 and Xt
0 = 0 for all periods t in [k+1, τ−1]. As no disassembly

occurs over [k+ 1, τ − 1], all the recoverable items needed to satisfy the demand
over this time interval, and in particular needed to satisfy

∑
t∈U ;t≤τ−1

(dt − Lt),

should already have been disassembled previously and be in stock at the end of
period k. This gives α−1i Eki ≥

∑
t∈U :t≤τ−1

(dt − Lt). We thus have:

S`0π̂
`,t∗

i + α−1i Eki +
∑

k<t≤t∗
φtiY

t
0 ≥ α−1i Eki + φτi Y

τ
0 ≥

∑
t∈U

(dt − Lt)



Inequality (23) is thus valid in this case.

- Case 2: there is at least one production period on p = 0 over interval [k+1; τ−1]

Let θ be the last period of production on p = 0 over the interval [k + 1; τ − 1].

By definition of θ, we have: φθi =
∑

`<ν≤θ
(rν π̂ν,θi ).

By summing up the inventory balance constraints (13) over periods k +
1,. . . ,τ − 1 and using the fact that variables Eki and Qti,∀t = k + 1, . . . , τ − 1,
are non-negative, we have:

α−1i Eki +

τ−1∑
t=k+1

πtiX
t
0 ≥

τ−1∑
t=k+1

(dt − Lt) (26)

By definition of τ , θ and `, we have:

τ−1∑
t=k+1

πtiX
t
0 =

θ∑
t=k+1

πtiX
t
0 ≤

θ∑
t=`+1

πtiX
t
0 (27)

This gives:

α−1i Eki +

θ∑
t=`+1

πtiX
t
0α
−1
i ≥ E

k
i +

τ−1∑
t=k+1

πtiX
t
0 (28)

≥
τ−1∑
t=k+1

(dt − Lt) (29)

≥
∑

t∈U :t≤τ−1

(dt − Lt) (30)

We now compute an upper bound of
∑θ
t=`+1 π

t
iX

t
0. This one is obtained by first

computing the linear combination
∑θ
t=`+1

(
π̂t,θi

)
× (12)t. This gives:

θ∑
t=`+1

(
π̂t,θi

)
St0 =

θ∑
t=`+1

(
π̂t,θi

)[
St−10 + rt −Xt

0 −Qt0
]

(31)

By the non-negativity of variables Qt0 and St0 and the fact that π̂t,θi ≥ π̂
t+1,θ
i , we

have:

θ∑
t=`+1

πtiX
t
0 ≤

θ∑
t=`

π̂t,θi Xt
0 (32)

≤
θ∑

t=`+1

(
π̂t,θi

)
St−10 −

θ∑
t=`+1

(
π̂t,θi

)
St0 +

θ∑
t=`+1

(
π̂t,θi

)
rt (33)



≤
(
π̂`,θi

)
S`0 +

θ∑
t=`+1

(
π̂t,θi

)
rt (34)

≤
(
π̂`,t

∗

i

)
S`0 + φθiY

θ
0 (35)

Replacing
∑θ
t=` π

t
iX

t
0 in Inequalities (30) by its upper bound provided by

(35), we have:

α−1i Eki +
(
π̂`,t

∗

i

)
S`0 + φθiY

θ
0 ≥

∑
t∈U :t≤τ−1

(dt − Lt) (36)

Finally, we have:

S`0π̂
`,t∗

i + α−1i Eki +
∑

k<t≤t∗
φtiY

t
0 ≥ S`0π̂

`,t∗

i + α−1i Eki + φθiY
θ
0 + φτi Y

τ
0

≥
∑

t∈U :t≤τ−1

(dt − Lt) +
∑

t∈U :t≥τ

(dt − Lt)

≥
∑
t∈U

(dt − Lt)

This concludes the proof of validity for Inequality (23). The same arguments can
be used to prove the validity of Inequalities (24) and (25).

It is worth mentioning that the (k, U) inequalities used in [12] to strengthen
the formulation (10)-(22) can be seen as a particular case of the more general
family of (`, k, U) inequalities (23)-(25) proposed in this work. Namely, by setting
` to 0 and by computing the value of φt without taking the returns into account
(i.e. by setting φt to

∑
ν∈U :t≤ν

dν), each (`, k, U) inequality (23)-(25) becomes a

(k, U) inequality.

Proposition 2. The linear relaxation of formulation (10)-(22) strengthened by
valid inequalities (23)-(25) is at least as tight as the linear relaxation strengthened
by the (k, U) valid inequalities used in [12].

Proof. Let PLR be the linear relaxation of polyhedron given by inequalities (11)-
(22), (23)-(25) and P̃LR be the linear relaxation of polyhedron given by inequal-
ities (11)-(22) and the (k, U) inequalities. As any (k, U) inequality is a valid
inequality (23)-(25) with φt =

∑
ν∈U :t≤ν

dν and ` = 0, we have PLR ⊆ P̃LR.

The main implication of Proposition 2 is that the lower bound obtained
by strengthening the formulation (10)-(22) with the (`, k, U) inequalities is at
least as tight as the lower bound obtained while using the single-echelon (k, U)
inequalities.

We now briefly discuss the resolution of the separation problem for the
(`, k, U) valid inequalities. Recall that this problem consists in finding an in-
equality (23)-(25) violated by a given solution (X̃, Ỹ , S̃, Ẽ, L̃, Q̃) of the linear



relaxation of Problem (11)-(22) or prove that no such inequality exists. In the
present case, in order to find the most violated inequality among e.g. inequali-
ties (23), we should find, for each period k = 1, ..., T , the set U of time periods
and the period ` that maximize the difference between the right-hand and the
left-hand side of the inequality. This is not trivial, in particular because the value
of each coefficient φti simultaneously depends on U and `. We thus consider a
heuristic separation algorithm in our computational experiments. This one can
be summarized as follows. For a given process p and time period k:

1. For each period t = k + 1, ..., T , add t to U if dt(1−
∑t
τ=k+1 Ỹ

τ
p )− L̃t > 0.

2. For each period ` = 0, ..., k,

- compute the value of each coefficient φti = min
{∑

`<ν≤t r
ν π̂ν,ti ,

∑
ν∈U :t≤ν d

ν
}

- compute the left-hand side of the inequality (23) (resp. (24) and (25)).
3. Set ` to the period index which minimizes this left-hand side value.

This algorithm has a time complexity of O(T 2) as the computation of set U in
step 1 and of coefficients φi in step 2 both require O(T 2) operations.

5 Computational Experiments

In this section, we focus on assessing the performance of the proposed valid in-
equalities when used within a customized branch-and-cut algorithm. We compare
the performance of this algorithm with the one of the generic branch-and-cut
algorithm embedded in a mathematical programming solver and the one of a
branch-and-cut algorithm using single-echelon (k, U) inequalities.

5.1 Instance Generation

We considered two sets of instances: Set 1 instances involve T = 25 periods
and I = 10 parts whereas Set 2 instances involve T = 35 periods and I = 10
parts. Within each set, the instances were randomly generated by adapting the
procedure presented in [6]. More precisely, we considered four values of the setup-
holding cost ratio f/h ∈ {600, 1200, 1800, 2400}, two values for the production-
holding cost ratio g/h ∈ {2, 4} and three values of the returns-demand quantity
ratio r/d ∈ {1, 2, 3}. For each set and each possible combination of f/h, g/h,
r/d, ten random instances were generated, resulting in a total of 480 instances.

For each instance, the value of each problem parameter was set as follows.
- Demand dt was uniformly distributed in the interval [0, 100] and the returns
quantity rt was uniformly distributed in the interval [0.8(r/d)d̄, 1.2(r/d)d̄], where

d̄ =
∑
dt

T is the average demand per period.
- The proportion of recoverable parts πti was uniformly distributed in the interval
[0.4, 0.6].
- The bill-of-materials coefficients αi = αi+I , i ∈ Ir, were randomly generated
following a discrete uniform distribution over [1; 6] and we set α0 = α2I+1 = 1.
- The holding cost ht0 for the returned product i = 0 was fixed to 1. The holding



cost hti for each recoverable item i ∈ Ir was randomly generated following a
discrete uniform distribution over interval [2, 7]. Similarly, the holding cost hti
for each serviceable item i ∈ Is was randomly generated following a discrete uni-
form distribution over interval [7, 12]. Finally, in order to ensure non negative
echelon costs, we set the value of the inventory holding cost for the remanufac-
tured product, ht2I+1, to

∑I
i=1 αih

t
I+i + ε, where ε follows a discrete uniform

distribution over interval [80, 100].
- The production cost gt was uniformly distributed in the interval [0.8(g/h)h̄,

1.2(g/h)h̄], where h̄ =
∑
ht2I+1

T is the average holding cost.
- The setup cost f t was uniformly distributed in the interval [0.8(f/h)h̄, 1.2(f/h)h̄].

- Discarding costs were set to qti = 0.8h̄ti, where h̄ti = 1
T

∑T
κ=t h

κ
i The unit penalty

cost for lost sales, ln, was fixed to 10000 per

5.2 Results

We carried out extensive numerical experiments in order to assess the compu-
tational performance of the proposed valid inequalities. This was achieved by
solving each considered instance using three alternatives branch-and-cut algo-
rithms:
- CPX: the generic branch-and-cut algorithm embedded in CPLEX 12.8 using
the echelon-stock formulation (11)-(22).
-(k, U): a customized branch-and-cut algorithm using the (k, U) inequalities to
strengthen the echelon-stock formulation (11)-(22) similarly to what was done
in [12].
- (`, k, U): a customized branch-and-cut algorithm using the newly introduced
(`, k, U) inequalities to strengthen the echelon-stock formulation (11)-(22). This
algorithm is based on the solver CPLEX 12.8. It generates inequalities of type
(23)-(25) through a cutting-plane generation algorithm at the root node and
at intermediate nodes of the branch-and-bound search tree using the UserCon-
straints callbacks provided by the solver.

All related linear programs and mixed-integer linear programs were solved
using CPLEX 12.8 with the solver default settings. The algorithms were imple-
mented in C++ using the Concert Technology environment. All tests were run
on the computing infrastructure of the Laboratoire d’Informatique de Paris VI
(LIP6), which consists of a cluster of Intel Xeon Processors X5690. We set the
cluster to use two 3.46GHz cores and 12GB RAM to solve each instance. We
imposed a time limit of 3600 seconds.

The corresponding results are displayed in Tables 1 for Set 1 instances and 2
for Set 2 instances. Column Method indicates the branch-and-cut algorithm used
to solve the instances. Column R.LPgap reports the gap between the value of the
linear relaxation strengthened by the corresponding valid inequalities and the
best feasible solution found through the branch-and-bound search. For the CPX
method, it reports the gap between the value of the initial linear relaxation and
the best feasible solution found through the branch-and-bound search. Column
R.MIPgap reports the gap between the lower bound at the root node (after the



Table 1: Performance of CPLEX and branch-and-cut methods over instance in
Set 1.

r/d g/h Method R.LPgap R.MIPgap MIPgap C.Time R.Time T.Time

1 2 CPX 8.26 4.10 0.06 0.04 1.16 898.00
(k, U) 6.08 3.66 0.05 0.92 2.93 1,011.79
(`, k, U) 4.17 3.55 0.03 0.97 2.35 792.64

4 CPX 5.38 2.49 0.06 0.03 0.97 1,360.48
(k, U) 3.95 2.33 0.05 0.50 1.47 1,088.78
(`, k, U) 2.84 2.22 0.04 0.85 1.98 1,056.29

2 2 CPX 40.86 11.28 0.97 0.03 1.81 2,570.62
(k, U) 19.36 9.17 0.46 0.35 2.74 1,883.71
(`, k, U) 11.88 8.68 0.22 0.74 2.67 1,558.09

4 CPX 37.79 10.71 2.29 0.03 1.59 3,280.23
(k, U) 18.39 9.25 1.06 0.19 1.47 2,856.09
(`, k, U) 11.89 8.48 0.94 0.62 2.27 2,883.50

3 2 CPX 41.86 13.47 0.04 0.03 1.38 545.15
(k, U) 20.60 9.68 0.02 0.29 1.96 296.65
(`, k, U) 14.16 9.11 0.02 0.48 1.91 250.52

4 CPX 38.29 12.44 0.09 0.02 0.98 817.93
(k, U) 20.81 9.71 0.02 0.15 1.00 458.41
(`, k, U) 15.36 8.99 0.06 0.41 1.57 522.70

generation of CPLEX generic cutting planes) and the best feasible solution found
through the branch-and-bound search. Column MIPgap reports the gap between
the best lower and the best feasible solution found through the branch-and-
bound search. The average CPU time for the cutting-plane generation of each
method is reported in column C.Time, the CPU time spent at the root node in
Column R.Time and the average total CPU time in Column T.Time. Note that
each line corresponds to the average value of the corresponding 40 instances.

In general, we observe that the customized branch-and-cut algorithms based
either on the (k, U) or on the (`, k, U) inequalities outperform method CPX,
providing solutions of better quality within shorter computation times. Specif-
ically, the total computation time is reduced on average by 20% when using
the branch-and-cut algorithm based on the (k, U) and by 26% when using the
branch-and-cut algorithm based on the (`, k, U) inequalities.

Regarding the relative performance of the (k, U) and (`, k, U) inequalities, we
note that the branch-and-cut algorithm based on the (`, k, U) outperforms the
algorithm based on (k, U) when the value of the demand-returns ratio is small, ie.
when r/d ∈ {1, 2}. Thus, over the 160 instances corresponding to a value of r/d
equal to 1, the total average computation time is reduced from 1732s when using
(k, U) inequalities to 1482s when using (`, k, U) inequalities. Similarly, over the
160 instances corresponding to a value of r/d equal to 2, the average MIP gap is
reduced from 2.72% when using (k, U) inequalities to 2.38% when using (`, k, U)
inequalities. We note however that the relative performance of the proposed
(`, k, U) inequalities deteriorates for the instances corresponding to the largest
considered value of the demand-returns ratio. Namely, when r/d is set to 3,



Table 2: Performance of CPLEX and branch-and-cut methods over instance in
Set 2.

r/d g/h Method R.LPgap R.MIPgap MIPgap C.Time R.Time T.Time

1 2 CPX 7.48 3.65 0.25 0.06 2.26 2,544.42
(k, U) 5.09 3.08 0.25 8.08 13.32 2,300.22
(`, k, U) 3.49 2.95 0.11 7.59 11.07 1,764.24

4 CPX 4.96 2.33 0.19 0.06 1.91 2,930.72
(k, U) 3.31 2.00 0.11 3.66 6.58 2,529.28
(`, k, U) 2.40 1.91 0.10 5.09 7.95 2,319.77

2 2 CPX 44.73 12.89 6.76 0.06 4.43 3,599.07
(k, U) 20.10 10.00 4.34 0.94 5.71 3,508.81
(`, k, U) 12.85 9.54 3.77 2.09 6.08 3,362.24

4 CPX 43.15 12.54 7.29 0.06 3.57 3,599.07
(k, U) 20.02 10.40 5.03 0.53 3.08 3,599.54
(`, k, U) 13.14 9.49 4.61 2.42 6.01 3,599.44

3 2 CPX 43.25 14.11 2.67 0.04 2.93 3,044.18
(k, U) 18.97 9.48 0.55 0.87 4.26 1,855.28
(`, k, U) 13.38 9.11 0.64 1.40 4.30 1,614.35

4 CPX 37.56 11.83 1.60 0.04 2.55 2,802.69
(k, U) 16.82 8.30 0.19 0.49 2.30 1,035.84
(`, k, U) 12.67 7.86 0.20 1.21 3.67 1,029.84

the branch-and-cut algorithm based on the (k, U) inequalities provides a smaller
MIP gap and/or smaller computation times. This might be explained by the fact
that the corresponding instances involve a large amount of returned products so
that the quantity processed on a resource at a given period is not (or at least to
a lesser extent) limited by the availability of the returned products. This means
that the proposed refinements in the expression of the valid inequalities are less
relevant in this case.

6 Conclusion and perspectives

We considered a lot-sizing problem aiming at planning production for a multi-
echelon remanufacturing system. This problem can be formulated as a mixed-
integer linear program. We focused on strengthening this formulation in order to
be able to provide optimal or near-optimal solutions of this problem. Our main
contribution is the development of a new set of valid inequalities which take into
account, at each production echelon, the limitations on the produced quantities
coming from the limited availability of the returned products. The results of
our computational experiments show that a branch-and-cut algorithm based on
these new valid inequalities performs well as compared to the generic branch-and-
cut algorithm of CPLEX solver and to a previously published branch-and-cut
algorithm based on less general valid inequalities.

A first possible research direction could be to develop an exact separation
algorithm for the (`, k, U) inequalities in the presented branch-and-cut algorithm



as this may further improve their performance when used in a branch-and-cut
algorithm. Moreover, it would also be worth studying whether valid inequali-
ties previously proposed for capacitated lot-sizing problems (see e.g. [3], [7], [9])
might be useful to help solving our problem. Additional computational exper-
iments are also needed to assess the size of the largest instances that may be
solved with the proposed exact solution approach.

On a longer perspective, we could seek to extend the proposed valid inequal-
ities to lot-sizing problems with returns involving complicating features such
as a limited capacity, backlogging, safety stocks or minimum production levels.
Finally, extending the proposed valid inequalities and the cutting-plane genera-
tion to solve the stochastic version of the problem studied in [12] is also worth
investigating.
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