$\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) \mathrm{Au}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]+$ complexes as a new family of anticancer candidates: synthesis, characterization and exploration of the antiproliferative properties

Silva Khodjoyan, ${ }^{a}$ Edwyn Remadna, ${ }^{a}$ Héloïse Dossmann, ${ }^{a}$ Denis Lesage, ${ }^{a}$ Geoffrey Gontard, ${ }^{a}$ Jérémy Forté, ${ }^{a}$ Henrik Hoffmeister, ${ }^{\text {b }}$ Uttara Basu, ${ }^{\text {b }}$ Ingo Ott, ${ }^{\text {b }}$ Philip Spence, ${ }^{\text {c }}$ Zoë A. E. Waller, ${ }^{\text {c,d }}$ Michèle Salmain ${ }^{\text {a }}$ and Benoît Bertrand ${ }^{\text {a }}$
${ }^{\text {a }}$ Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
${ }^{\text {b }}$ Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, D-38106 Braunschweig, Germany
${ }^{\text {c }}$ School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
${ }^{\text {d }}$ UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
Corresponding author e-mail: benoit.bertrand@sorbonne-universite.fr

Abstract

A library of eleven cationic gold(III) complexes of the general formula $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) \mathrm{Au}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]^{+}$when $\mathrm{C}^{\wedge} \mathrm{C}$ is either biphenyl or $4,4^{\prime}$-ditertbutyldiphenyl and $N^{\wedge} N$ is a bipyridine, phenanthroline or dipyridylamine derivative have been synthesized and characterized. Contrasting effects on the viability of the triple negative breast cancer cells MDA-MB-231 was observed from a preliminary screening. The antiproliferative activity of the seven most active complexes were further assayed on a larger panel of human cancer cells as well as on non-cancerous cells for comparison. Two complexes stood out for being either highly active or highly selective. Eventually, reactivity studies with biologically meaningful amino acids, glutathione, higher order DNA structures and thioredoxin reductase (TrxR) revealed a markedly different behavior from that of the well-known coordinatively isomeric $\left[\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}\right) \mathrm{Au}(\mathrm{NHC})\right]^{+}$structure. This makes the $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) A u\left(\mathrm{~N}^{\wedge} \mathrm{N}\right)\right]^{+}$complexes a new class of organogold compounds with an original mode of action.

Introduction

In the last few decades, gold-based compounds have attracted particular attention as potential anticancer agents. ${ }^{[1,2]}$ Although the mechanism of action of gold-based compounds has not been yet fully determined, it is widely accepted that their cytotoxic effect comes from the interaction and inhibition of enzymes ${ }^{[3]}$ while the mechanism of action of platinum-based compounds mostly involves binding to DNA. ${ }^{[4]}$ Among all gold-based compounds tested, gold(III) complexes have attracted particular interest as $\mathrm{Au}(\mathrm{III})$ is isoelectronic to $\mathrm{Pt}(\mathrm{II}) .{ }^{[5]}$ However, while the +II oxidation state of platinum is very stable in biological environment, the +III oxidation state of gold is generally not. However, this lack of stability can be overcome by using appropriate ligands which can improve the overall stability of the complex. In this manner, a large panel of ligands have been investigated for this purpose, to stabilize Au (III), and their antiproliferative properties have been tested against various cancer cell lines. The main classes of ligands explored to date are chelating N -donor
ligands, ${ }^{[6,7]}$ porphyrins, ${ }^{[8]}$ dithiocarbamates ${ }^{[9,10]}$ as well as $\left(C^{\wedge} N\right),{ }^{[11,12]}\left(C^{\wedge} N^{\wedge} N\right),{ }^{[13]}\left(C^{\wedge} N^{\wedge} C\right)^{[14,15]}$ and very recently $\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}\right)^{[16]}$ cyclometalated ligands as depicted in figure 1.

Figure 1: Examples of Au (III) complex families investigated for their antiproliferative properties.
Still, the main challenge in $\mathrm{Au}(\mathrm{III})$ medicinal chemistry is arguably the stabilization of the + III oxidation state. To this respect, $\left[\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}\right) A u(\mathrm{NHC})\right]^{+}$complexes have appeared especially promising, being stable even in the presence of the biological reductant glutathione (GSH). ${ }^{[15]}$ In return, this high stability results in a lack of reactivity. Indeed, this class of compound is thought to trigger antiproliferative effects by interaction of the whole $\left[\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}\right) \mathrm{Au}(\mathrm{NHC})\right]^{+}$entity with biological targets through π-stacking or electrostatic interactions. ${ }^{[15,17]}$ This implies also a narrow spectrum of optimization possibly rendering the enhancement of the biological properties of this family of compounds quite difficult. ${ }^{[18,19]}$ Considering that the high redox stability of $\left[\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}\right) \mathrm{Au}(\mathrm{L})\right]^{+}$ complexes mostly arises from the two Au-Ch bonds, they should be retained when designing new scaffolds. However, having the pyridine ring in between the two Au- C_{ph} bonds prevents ligand decoordination and thus decreases potential interactions with biological targets. This feature is even more pronounced in the case of $\left[\left(C^{\wedge} N^{\wedge} N^{\wedge} C\right) A u\right]^{+}$scaffolds for which all the four coordination sites are blocked. ${ }^{[16]}$ Thus, based on these statements, one way to improve the biological properties of $\left[\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}\right) \mathrm{Au}(\mathrm{L})\right]^{+}$complexes would be to reorganize the coordination sphere around the $\mathrm{Au}(\mathrm{III})$ cation to preserve its redox stability while enhancing its reactivity.

With such an objective in mind, the use of biphenyl ligands $\left(C^{\wedge} C\right)$ seemed of great potential since it would preserve the two $A u-C_{p h}$ bonds ensuring the redox stability while the remaining two coordination sites are available for binding other ligands. [($\left.\left.C^{\wedge} C\right) A u\right]$ complexes have been known since the early 80 's ${ }^{[20]}$ but have not been studied until the last decade, mostly for their photophysical properties ${ }^{[21,22]}$ and as tools for reactivity investigations. ${ }^{[23,24]}$ We have accordingly synthesized and characterized a library of cationic organogold(III) complexes bearing a stable ($\mathrm{C}^{\wedge} \mathrm{C}$) biphenyl ligand and a more labile ($N^{\wedge} N$) ligand analogous to the $\left[\left(C^{\wedge} N^{\wedge} C\right) A u(L)\right]^{+}$and $\left[\left(C^{\wedge} N^{\wedge} N^{\wedge} C\right) A u\right]^{+}$families as presented in figure 2. These eleven new $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) \mathrm{Au}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]^{+}$organogold complexes were obtained by variating the substituents on the biphenyl chelate and by using various classes of ($\mathrm{N}^{\wedge} \mathrm{N}$) ligands including bipyridine-, phenanthroline- and dipyridylamine-type ligands. Their antiproliferative properties were carefully determined on a range of human cancer cells derived from different organs/tissues (MDA-MB-231, MCF-7 and A2780) and a healthy cell line (MCF-10A) for comparison. The reactivity of the most interesting complexes with selected amino acids and GSH (reduced glutathione) was investigated by mass spectrometry revealing a very different reactivity compared to a $\left[\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}\right) \mathrm{Au}(\mathrm{NHC})\right]^{+}$making $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) \mathrm{Au}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]^{+}$complexes a new class of gold-based anticancer candidates.

Previous works
$\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) \mathrm{Au}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]^{+}$ Current work

Figure 2: Comparison between the analogous $\left[\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}\right) A u(\mathrm{~L})\right]^{+},\left[\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}\right) A u\right]^{+}$and $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) A u\left(\mathrm{~N}^{\wedge} \mathrm{N}\right)\right]^{+}$ families.

Results and discussion

Synthesis

Eleven $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) \mathrm{Au}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]^{+}$complexes were synthesized by reaction of two different biphenyl $\mathrm{Au}(\mathrm{III})$ chloride dimer precursors carrying or not t-butyl groups with a range of N -donor ligands being either based on bipyridine, phenanthroline or $2,2^{\prime}$-dipyridylamine scaffolds followed by replacement of the chloride counterion by tetrafluoroborate using the corresponding silver salt according to a reported procedure (figure 3). ${ }^{[20]}$ T-butyl groups were chosen to limit the aggregation of the formed complexes and thus enhance their solubity.

Figure 3: Synthesis and structure of $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) \mathrm{Au}\left(\mathrm{N}^{\wedge} \mathrm{N}^{\wedge}\right)\right] \mathrm{BF}_{4}$ complexes 1-8 and (CNC)Au.
Synthetic yields were higher than 80%, regardless of the ($N^{\wedge} N$) ligand leading to complexes $1-8$. The longer reaction time required for the biphenyl compounds ($R=H$, compounds $\mathbf{2 b} \mathbf{5} \mathbf{5 b}$ and $\mathbf{6 b}$) is due to the lower solubility of the dimeric precursor slowing down the reaction. Moreover, the synthetic procedure also appeared very tolerant to the nature of the substituents on the ($\mathrm{N}^{\wedge} \mathrm{N}$) ligand as demonstrated in the bipyridine series (compounds 1-3). The structure of the $\left[\left(C^{\wedge} C\right) A u\left(N^{\wedge} N\right)\right]^{+}$ complexes was assessed by ${ }^{1} \mathrm{H}$ NMR spectroscopy, showing both the $\left(\mathrm{C}^{\wedge} \mathrm{C}\right)$ and $\left(\mathrm{N}^{\wedge} \mathrm{N}\right)$ chelates as symmetrical and in a $1 / 1$ ratio. Interestingly while compounds $\mathbf{2 a - b}, \mathbf{4}, \mathbf{5 a - b}, \mathbf{6 a}$ and $\mathbf{8}$ gave ${ }^{1} \mathrm{H}$ NMR spectra with thin well-defined peaks, compounds $\mathbf{1 , 3}, \mathbf{6 b}$ and 7 gave ${ }^{1} \mathrm{H}$ NMR spectra with very broad peaks. The structure of $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) \mathrm{Au}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]^{+}$complexes was confirmed by HR-MS and their purity assessed by elemental analysis.

Solid state structures

Single crystals suitable for X-Ray diffraction (XRD) analysis of complexes 1, 2a, 3, 5a and $\mathbf{7}$ were grown by slow evaporation of a saturated solution of the compounds in a dichloromethane/toluene mixture at $4{ }^{\circ} \mathrm{C}$. Crystal structures are depicted in figures 4 to 6 and S1-2. Main bond lengths are shown in table S1.

Note: Atoms numbering could be different between illustration of crystal structures and their CIF file available in CSD database.

Figure 4: Crystal structure of complex 3. Ellipsoids set at 50% probability. Hydrogen atoms and toluene have been omitted for clarity. Selected bond distances [$\AA \AA$] and angles [${ }^{\circ}$] measured at 140K: $A u_{1}-C_{1}$ 2.031(3), $A u_{1}-C_{2}$ 2.034(2), $A u_{1}-N_{1}$ 2.163(2), $A u_{1}-N_{2}$ 2.137(2), $N_{1}-A u_{1}-N_{2} 76.62(7), N_{2}-A u_{1}-$ C2 103.02(9), $\mathrm{C}_{2}-\mathrm{Au}_{1}-\mathrm{C}_{1}$ 80.0(1) $\mathrm{C}_{1}-\mathrm{Au}_{1}-\mathrm{N}_{1}$ 104.32(9).

Figure 5: Crystal structure of complex 5a. Ellipsoids set at 50\% probability. Hydrogen atoms and toluene have been omitted for clarity. Selected bond distances [$\AA \AA$] and angles [${ }^{\circ}$] measured at 140 K :

Figure 6: Crystal structure of complex 7. Ellipsoids set at 50% probability. Hydrogen atoms, toluene and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ have been omitted for clarity. Selected bond distances [$A ̊$] and angles [${ }^{\circ}$] measured at 140K: $\mathrm{Au}_{1}-\mathrm{C}_{1}$ 2.033(3), $\mathrm{Au}_{1}-\mathrm{C}_{2}$ 2.032(3), $A u_{1}-\mathrm{N}_{1}$ 2.133(2), $\mathrm{Au}_{1}-\mathrm{N}_{2} 2.124(3), \mathrm{N}_{1}-\mathrm{Au}_{1}-\mathrm{N}_{2} 82.25(9), \mathrm{N}_{2}-\mathrm{Au}_{1}-$ C2 97.7(1), $\mathrm{C}_{2}-\mathrm{Au}_{1}-\mathrm{C}_{1}$ 81.1(1) $\mathrm{C}_{1}-\mathrm{Au}_{1}-\mathrm{N}_{1}$ 98.9(1).

All complexes show a slightly distorted square-planar geometry around the central Au(III) cation. The distortion appears to be less significant in the case of complex 7 due to the larger biting angle provided by the less constrained 6 -membered ring. In this particular case, the 6 -membered ring adopts a boat-like conformation similar to what was previously observed for ($\mathrm{C}^{\wedge} \mathrm{N}$) cyclometallated benzylpyridine $\mathrm{Au}(I I I)$ complexes. ${ }^{[12]}$ Moreover, while $\left[\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}\right) \mathrm{Au}(\mathrm{L})\right]^{n+}$ complexes are fully planar, ${ }^{[14,25,26]}$ all $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) A u\left(\mathrm{~N}^{\wedge} \mathrm{N}\right)\right]^{+}$complexes display a distortion to planarity either by bending of the $\left(C^{\wedge} C\right)$ ligand as in the case of complexes $\mathbf{2 a}$ and $\mathbf{5 a}$ or by a twisting of the plane of the ($\mathrm{N}^{\wedge} \mathrm{N}$) chelate with respect to the plane of the $\left(C^{\wedge} C\right)$ chelate as in the case of complexes $\mathbf{1}$ and $\mathbf{3}$. This latter twisting of the $\left(N^{\wedge} N\right)$ and $\left(C^{\wedge} C\right)$ chelates with respect to each other seems to induce a strong heterogeneity in the length of the $A u-N$ bonds ($A u_{1}-N_{1} 2.131$ (7), $A u_{1}-N_{2} 2.144(7)$ and $A u_{1}-N_{1} 2.163(2)$, $\mathrm{Au}_{1}-\mathrm{N}_{2} 2.137(2)$ for complexes 1 and 3 respectively). These differences in bond length may lead to a lack of symmetry of the compounds which may explain the broadening of the ${ }^{1} \mathrm{H}$ NMR signals for complexes 1 and 3 (see above). Interestingly, Au-N bonds appear longer in the case of the phenanthroline-based complex 5a than for the bipyridine-based complexes 1 and $\mathbf{2 a}$. Moreover, complex 3 bearing a 4,4'-($\left.\mathrm{CO}_{2} \mathrm{Me}\right)-2,2^{\prime}$-bipyridine ligand present a Au-N bond significantly longer (2.163(2) \AA) than all the other complexes.

Lipophilicity (or octanol / water partition coefficient, $\log P$) is one of the parameters included in the "Lipinski's rule of five" to evaluate the drug likeness of a molecule. ${ }^{[27]}$ It predicts a reduced absorption for compounds with a Log P value greater than 5 . We measured the Log P values of all $\left[\left(C^{\wedge} C\right) A u\left(N^{\wedge} N\right)\right]^{+}$complexes following a well-established HPLC-based protocol. ${ }^{[28]}$ Data are provided in table S2. Strong differences could be observed depending of the ($N^{\wedge} N$) chelate. Complexes with dipyridylamine ligands (complexes 7 and 8) appear to be the less lipophilic with Log P of 1.37 and 2.15, respectively. Complexes with bipyridine ligands (complexes 1-3) presented Log P values between 1.94 and 2.80, all compliant with Lipinski's rule. Variation of $\log P$ values is the largest for complexes with phenanthroline ligands ranging 1.64 for complex 4 to 9.83 for 5 a. Moreover, as one could have expected, the presence of t-butyl groups on the $\left(\mathrm{C}^{\wedge} \mathrm{C}\right)$ chelate also add to the lipophilicity of the complexes.

In vitro antiproliferative properties.
All complexes appeared to be soluble enough in aqueous media with 1% DMSO at the concentrations used for the antiproliferative assays. To begin with, complexes 1-8 were screened against the "triple negative" breast cancer cell line MDA-MB-231 as platinum-based complexes are currently the standard of care for this type of cancer. ${ }^{[29]}$ Evaluation of the mitochondrial activity (correlated to cell proliferation) of MDA-MB-231 cells after 72 h of incubation with complexes 1-8 and cisplatin at concentrations of 10 and $1 \mu \mathrm{M}$ was determined by using the established MTT assay (see the experimental section for details) (figure 7).

Figure 7: Inhibition of MDA-MB-231 cell growth by complexes 1-8 and cisplatin; the cell viability was measured for two concentrations; each data represents the average of three experiments \pm standard error.

One can observe the strong impact of the ($\mathrm{N}^{\wedge} \mathrm{N}$) ligand on cell viability. Complexes with phenanthroline-based ligands (4-6) appear all highly efficient in reducing cell viability (cell viability lower than 15% at a concentration of $1 \mu \mathrm{M}$ for $\mathbf{5 a - b}$ and $\mathbf{6 a - b}$ and cell viability of $5.8 \pm 2.4 \%$ at a concentration of $10 \mu \mathrm{M}$ for 4), while complexes with bipyridine-based ligands have a reduced impact on cell viability (cell viability of $46 \pm 18 \% ; 23 \pm 2 \%$ and $25 \pm 15 \%$ at a concentration of $10 \mu \mathrm{M}$ for $\mathbf{1}, \mathbf{2 a}$ and 3, respectively) with complex $\mathbf{2 b}$ being almost inefficient even at the concentration of $10 \mu \mathrm{M}$. In the same way, complexes 7 and 8 presenting 2,2'-dipyridylamine-based ligands appeared totally ineffective at both tested concentrations. Moreover, while no discrimination could be observed either between complexes $\mathbf{5 a}$ and $\mathbf{5 b}$ nor between $\mathbf{6 a}$ and $\mathbf{6 b}$, complex $\mathbf{2 a}$ appears more active than its analog $\mathbf{2 b}$ lacking the t-butyl groups on the $\left(C^{\wedge} C\right)$ chelate. This difference can be explained by the reduced solubility of complex $\mathbf{2 b}$ compared to $\mathbf{2 a}$.

We applied a selection threshold to select only the compounds reducing cell viability by more than 50% at a concentration of $10 \mu \mathrm{M}$. In this manner, we selected seven complexes out of the eleven, namely $\mathbf{2 a}, \mathbf{3}, \mathbf{4}, \mathbf{5 a} \mathbf{- b}$ and $\mathbf{6 a - b}$ for the following IC_{50} (inhibitory concentration at 50\%) measurement on a larger panel of human cancer cell lines. This panel included MDA-MB-231 cells (« triple negative» breast cancer), MCF-7 cells (breast adenocarcinoma) and A2780 cells (ovarian adenocarcinoma). These results were compared to a non-cancerous breast cell line (MCF-10A), the five corresponding ($\mathrm{N}^{\wedge} \mathrm{N}$) ligands, (CNC)Au and cisplatin. Results are summarized in table 1.

Table 1: Effect of compounds 1, 2a, 3, 4, 5a-b, 6a-b, cisplatin, (CNC)Au and the corresponding ($\mathrm{N}^{\wedge} \mathrm{N}$) ligands on cell viability of a panel of human cancerous and non-cancerous cell lines after 72 h of incubation at $37^{\circ} \mathrm{C}$; each data represents the average of three experiments \pm standard error.

Compounds	$\mathrm{IC}_{50} \pm \mathrm{sd}(\mu \mathrm{M})$			
	MDA-MB-231	MCF-7	A2780	MCF-10A
2a	1.6 ± 0.3	1.0 ± 0.2	4.8 ± 1.9	0.9 ± 0.1
3	2.0 ± 0.7	1.1 ± 0.9	7.0 ± 2.4	>50
4	1.0 ± 0.1	1.5 ± 0.2	1.12 ± 0.01	1.2 ± 0.2
5a	0.38 ± 0.03	0.5 ± 0.1	0.21 ± 0.01	0.57 ± 0.07
5b	0.24 ± 0.04	0.26 ± 0.04	0.19 ± 0.01	0.41 ± 0.08
6a	0.17 ± 0.03	0.15 ± 0.01	0.12 ± 0.01	0.54 ± 0.02
6b	0.3 ± 0.1	0.4 ± 0.1	0.17 ± 0.01	0.7 ± 0.2
CisPt ${ }^{\text {a }}$	20.4 ± 3.4	14 ± 3.5	1.0 ± 0.2	3.2 ± 0.8
(CNC)Au	0.42 ± 0.03	0.42 ± 0.02	0.03 ± 0.01	0.27 ± 0.03
Me ${ }_{2}$ Bipy	10.5 ± 0.2	10.6 ± 0.2	12.5 ± 2.3	1.04 ± 0.01
$\left(\mathrm{MeCO}_{2}\right)_{2} \mathrm{Bipy}$	>50	>50	>50	>50
Phen	3.2 ± 0.6	2.6 ± 0.6	2.2 ± 0.6	3.4 ± 0.3
Mes ${ }_{4}$ Phen	0.51 ± 0.01	0.7 ± 0.2	0.21 ± 0.07	1.2 ± 0.4

Ph_{2} Phen	0.8 ± 0.3	0.8 ± 0.3	0.28 ± 0.06	2.2 ± 0.3

${ }^{\text {a }}$ see reference for the IC_{50} values of cisplatin ${ }^{[30]}$

All the $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) \mathrm{Au}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]^{+}$complexes appear to be active in a low micromolar to sub-micromolar range on the three cancer cell lines. As already observed in the previous screening, phenanthroline-based complexes ($\mathbf{4}, \mathbf{5 b}, \mathbf{5 b}, \mathbf{6 a}$ and $\mathbf{6 b}$) are more efficient in reducing cell proliferation than the bipyridinebased complexes $(\mathbf{2 a}, \mathbf{3})$. All the $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) \mathrm{Au}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]^{+}$complexes are more potent than cisplatin toward the two breast cancer cell lines, whereas only $\mathbf{2 a}$ and $\mathbf{3}$ present less potency than cisplatin on A2780. Complex 6a demonstrated particularly strong antiproliferative effects with IC_{50} values of 0.17 ± 0.03 $\mu \mathrm{M}, 0.15 \pm 0.01 \mu \mathrm{M}$ and $0.12 \pm 0.01 \mu \mathrm{M}$ on MDA-MB-231, MCF-7 and A2780 cells, respectively. This makes 6 a between 8.3 and 120 times more efficient than cisplatin. Complex 6a also appears very active toward the non-cancerous cell line MCF-10A with an $I C_{50}$ value of $0.54 \pm 0.02 \mu \mathrm{M}$, resulting in a selectivity index of 3.6 with respect to MCF-7. Moreover, as noticed for complexes $\mathbf{2 a}$ and $\mathbf{2 b}, \mathbf{6 a}$ shows more activity than its analog $\mathbf{6 b}$ where the $\left(C^{\wedge} C\right)$ chelate lacks the ${ }^{t} B u$ substituents. Finally, $\mathbf{6 a}$ is more active than (CNC)Au on MDA-MB-231 and MCF-7 while it is 4 times less efficient than (CNC)Au on A2780 cells. Nearly all the newly formed complexes as well as (CNC)Au are equally toxic to the non-cancerous cell line MCF-10A except for complex 3. This complex shows a moderate cytotoxic activity to MDA-MB-231, MCF-7 and A2780 cells with $\mathrm{IC}_{50}=2.0 \pm 0.7,1.1 \pm 0.9$ and 7.0 ± 2.4 $\mu \mathrm{M}$, respectively while no effect on cell proliferation is noticed for MCF-10A up to a concentration of $50 \mu \mathrm{M}$. Collectively, these data point out to a probably different mechanism of action of the $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) \mathrm{Au}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]^{+}$complexes compared to cisplatin and (CNC)Au.

Altogether and regardless of the cell line, there appears to be a general correlation between the activity of the gold complexes and their corresponding ligands. In the Phen and $\mathrm{Ph}_{2} \mathrm{Phen}$ series, the complexes are 2 to 5 times more active than the composite ligands. In contrast, the $\mathrm{Me}_{4} \mathrm{Phe}$ complexes are as active as the corresponding ligand. For these three series, a relatively good homogeneity is noticed between the cell lines. In comparison, the Me M_{2} bpy complexes are 1.6 to 10.6 times more efficient than the corresponding ligand and a high heterogeneity is noticed between the tested cell lines.

These data suggest that, while the antiproliferative effects of complex $\mathbf{6 a}$ mainly come from the $\left(N^{\wedge} N\right)$ ligand Ph_{2} Phen with a small contribution of the gold atom, the activity of complex $\mathbf{3}$ is exclusively due to the presence of the gold center.

Reactivity toward biomolecules.

Prior to the experimental investigation of the reactivity of the $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) \mathrm{Au}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]^{+}$complexes with biomolecules, we calculated the energetic parameters for complexes 1-8 using DFT at the (BPW91/6$31 \mathrm{~g}(\mathrm{~d}, \mathrm{p})$ (others) $\mathrm{Au}(S D D+f)$ level of theory. In the case of $A u(I I I)$, ligand substitution can only occur via a dissociative mechanism, we calculated the bond dissociation energies (BDE, table S2) of the $\left(N^{\wedge} N\right)$ chelates for all $\left[\left(C^{\wedge} C\right) A u\left(N^{\wedge} N\right)\right]^{+}$complexes. Among complexes carrying ${ }^{t} \mathrm{Bu}$ substituents on the $\left(C^{\wedge} C\right.$) ligand (complexes 1-4, 5a, 6a and 7-8), no major differences could be observed in the BDEs except for complexes $\mathbf{3}$ and $\mathbf{8}$, which show a BDE $8 \mathrm{kcal} / \mathrm{mol}$ lower than all other complexes. This is in line with the data obtained in the solid state by X-Ray diffraction in which no major differences in AuN bond lengths have been observed except for $\mathbf{3}$ which showed a particularly longer Au-N bond. This
suggests that a similar reactivity toward biomolecules could be expected. Complexes without ${ }^{\mathrm{t}} \mathrm{Bu}$ groups on the $\left(\mathrm{C}^{\wedge} \mathrm{C}\right)$ chelate appear to have BDEs greater by $5.5 \mathrm{kcal} / \mathrm{mol}$ which may account in part for the slightly lower antiproliferative activity observed for $\mathbf{2 b}$ and $\mathbf{6 b}$ with respect to $\mathbf{2 a}$ and $\mathbf{6 a}$.

Complexes 3 and 6a were further selected for the reactivity studies as the two most interesting candidates identified from the antiproliferative assay. Both complexes were incubated for 24 h at 37 ${ }^{\circ} \mathrm{C}$ alone in DMSO. No de-coordination of the ($\mathrm{N}^{\wedge} N$) ligands took place, indicating that both complexes were stable in these conditions (figure S3 and S4). Further, complexes $\mathbf{3}$ and $\mathbf{6 a}$ were treated with one equivalent of several amino acids presenting different coordinative functions including cysteine (thiol), methionine (thioether), histidine (imidazole) and serine (alcohol) as well as guanine, either one by one or in mixture to establish a selectivity between the reagents.

Reaction mixtures were analyzed by low resolution mass spectrometry to establish whether or not the complexes reacted with the biomolecules and the adducts were then identified by high resolution mass spectrometry (see experimental part for details). Results are depicted in figures S1 and S2. Both complexes appear to display a rather similar reactivity pattern since no reaction occurs with methionine and serine. In contrast, adducts are formed upon reaction of cysteine and histidine, both in the single component experiments and in the mixture experiments, leading in each case to the replacement of the $\left(N^{\wedge} N\right)$ ligand by the amino acid with maintenance of the $\left[\left(C^{\wedge} C\right) A u\right]$ moiety and the +III oxidation state as could be concluded by the isotopic pattern and the monocationic charge of the resulting adducts. This suggests that cysteine and histidine residues of proteins may be the main interaction points of this class of compounds and rule out direct coordination to DNA as previously reported for other $\mathrm{Au}(\mathrm{III})$ complexes. ${ }^{[31]}$ This result is consistent with the $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) A u\left(\mathrm{~N}^{\wedge} \mathrm{N}\right)\right]^{+}$ complexes having a mode of action distinct from cisplatin.

Based on these results, complexes 3, 6a and (CNC)Au were incubated with glutathione (GSH), a tripeptide present at a millimolar level in cells and responsible for redox balance maintenance and xenobiotic detoxification. ${ }^{[32]}$ Furthermore, GSH is involved in resistance to platinum drugs ${ }^{[33]}$ and is known to reduce $\mathrm{Au}(\mathrm{III})$ complexes to $\mathrm{Au}(\mathrm{I})$ or $\mathrm{Au}(0)$ leading to their deactivation. ${ }^{[34,35]}$ After reaction of complexes 3, 6a and (CNC)Au with 0, 1, 2 and 5 equivalents of GSH in a $1 / 1$ DMSO/PBS mixture for 24 h at $37^{\circ} \mathrm{C}$, the reaction mixtures were analyzed by low resolution mass spectrometry (figures $8, \mathrm{~S} 5$ and S6). The presence of PBS in the reaction medium did not lead to decomposition of complexes 3, 6a and (CNC)Au suggesting their stability in aqueous environment. For both $\left[\left(C^{\wedge} C\right) A u\left(N^{\wedge} N\right)\right]^{+}$ complexes $\mathbf{3}$ and $\mathbf{6 a}$, reaction with increasing amount of GSH leads to the progressive disappearance of the molecular peak and the appearance of a peak corresponding to adducts having a $1 / 1$ stoichiometry between GSH and the $\left[\left(C^{\wedge} \mathrm{C}\right) A u\right]^{+}$moiety. High resolution mass spectrometry revealed that these adducts were doubly charged species, whose structure was attributed to a S-bridged dimer or a monomeric structure with a chelating GS^{2-} depending of the protonation state of the side chains of GSH as depicted in figures 10 and S3. Substitution of the ($N^{\wedge} N$) ligand by one GSH molecule is consistent with previous observations for ($C^{\wedge} N$) cyclometallated $\mathrm{Au}(I I I)$ complexes ${ }^{[36]}$ leading in both cases to neutral $\mathrm{Au}(\mathrm{III})$ entities. Furthermore, as previously shown for a similar compound, ${ }^{\text {[15] }}$ no reaction between complex (CNC)Au and GSH was observed (figure S4) highlighting the tremendous increase of reactivity toward biomolecules due to the reorganization of the coordination sphere moving from the $\left[\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}\right) \mathrm{Au}(\mathrm{NHC})\right]^{+}$scaffold to the $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) \mathrm{Au}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]^{+}$one.

Figure 8: A) Low resolution mass spectra of mixtures of complex $\mathbf{6 a}$ and $0,1,2$ or 5 equivalents of GSH after 24 h at $37{ }^{\circ} \mathrm{C}$ in DMSO/PBS 1:1 and B) identification of the formed adduct by high resolution mass spectrometry.

Upon reaction of cysteine, histidine or GSH with the complexes, one equivalent of ligand is released. Since the phenanthroline ligands have a marked effect on cell proliferation on their own, part of the cytotoxicity reported above is likely due to the ligands themselves.

Uptake studies.
Metal uptake is recognized as an important parameter in the antiproliferative activity of metal-based drug candidates. Indeed, a lower platinum uptake has been observed in cisplatin-resistant tumors. ${ }^{[37]}$ In the same way, higher accumulation of gold complexes has sometimes been correlated with higher cytotoxicity. ${ }^{[15,35]}$ Uptake measurements were performed by treating A2780 cells with $5 \mu \mathrm{M}$ complexes $\mathbf{3 , 4}, \mathbf{6 a}$ and $\mathbf{6 b}$ at $37^{\circ} \mathrm{C}$ for 2 h , as the largest differences in $I \mathrm{C}_{50}$ have been determined between these complexes on this cell line. Incubation was carried out in the presence and in the absence of fetal bovine serum (FBS) in the culture medium in order to assess the impact of serum proteins, such as albumin, on the uptake of the complexes (see experimental part for details). The intracellular gold concentration was quantified by high-resolution continuum source atomic absorption spectroscopy (HRCS-AAS). Results are presented in figure 9. For all tested complexes, the uptake appears to be strongly reduced when the compounds were incubated in the presence of FBS. This feature is especially pronounced for the three complexes carrying the diterbutylphenyl ligand
(complexes 3, 4 and 6a). This suggests that serum proteins may act as sequestrators for these $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) \mathrm{Au}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]^{+}$complexes leading to a reduced accumulation with the cancer cells. Such a behavior has already been reported for other organogold complexes. ${ }^{[38]}$ Moreover, the intracellular concentration of gold in cells under FBS-containing conditions is mostly independent on the complex structure although the IC_{50} spanned from 0.12 to $7 \mu \mathrm{M}$ and $\log \mathrm{P}$ ranged from 1.64 to 5.54 . Thus the difference of antiproliferative activity between the complexes may at least partly result from the intrinsic toxicity of the $\left(N^{\wedge} N\right)$ ligands released from the $\left[\left(C^{\wedge} C\right) A u\left(N^{\wedge} N\right)\right]^{+}$complexes upon their interaction with biomolecules in the extracellular or the intracellular medium.

Figure 9: Gold uptake (in $\mathrm{ng} / \mathrm{mg}$ of proteins) in A2780 cells treated with $5 \mu \mathrm{M}$ complexes $\mathbf{3}, \mathbf{4}, \mathbf{6 a}$ and 6b for 2 h at $37^{\circ} \mathrm{C}$ in culture medium with or without 10% FBS (v/v).

Interactions with higher order DNA structures and thioredoxin reductase inhibition study.
Although Au complexes are known not to target DNA, ${ }^{[3],[5]}$ cyclometalated $\mathrm{Au}(\mathrm{III})$ complexes have been reported to efficiently stabilize higher order DNA structures such as G-quadruplexes and i-motif structures. ${ }^{[15,39,40]}$ The $\left[\left(C^{\wedge} \mathrm{C}\right) A u\left(N^{\wedge} N\right)\right]^{+}$complexes were screened as potential stabilizers of a panel of G-quadruplex structures (NasT, hTeloG and NRF2), an i-motif structure (DAP) and classical doublestranded DNA (DS) using a FRET-melting protocol (see experimental part for details). Contrarily to what has been observed for $\left[\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}\right) A u L\right]^{+}$complexes, none of the $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) \mathrm{Au}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]^{+}$complexes stabilize any of the tested DNA structures (Figure S8). Such a different behavior may be explained by the lack of planarity of the $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) A u\left(\mathrm{~N}^{\wedge} \mathrm{N}\right)\right]^{+}$structures as observed previously in the solid state structures, preventing π-stacking interactions with the accessible tetrads of the G-quadruplexes or intercalation.

The intracellular role of thioredoxin reductase (TrxR) consists in reducing thioredoxin (Trx) in an NADPH-dependent manner. Thioredoxin in turn reduces different proteins including peroxiredoxin (involved in the regulation of cellular level of hydrogen peroxide). It's active site is composed of a cysteine and a selenocysteine residues. TrxR has been reported as a potential intracellular target of gold complexes ${ }^{[41]}$ and in particular several cyclometalated gold(III) complexes. ${ }^{[14,35]}$ Based on these data and the strong reactivity of our $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) \mathrm{Au}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]^{+}$complexes with GSH , our two most promising complexes 3 and $\mathbf{6 a}$ as well as the cyclometallated complex (CNC)Au were tested as inhibitors of mammalian TrxR in vitro (table 2).

Table 2: Effect of complexes 3, 6a and (CNC)Au on mammalian TrxR activity in vitro.

Complexes	$\mathrm{IC}_{50}(\mu \mathrm{M})$
$\mathbf{3}$	9.5 ± 0.1
$\mathbf{6 a}$	1.2 ± 0.1
(CNC)Au	8.8 ± 1.1

Interestingly, all three complexes present IC_{50} values in the micromolar range, higher than their respective IC_{50} values against cancer cells. This finding markedly contrasts with the previously reported nanomolar inhibition activity of $\left[\left(C^{\wedge} N^{\wedge} C\right) A u X\right]$ and $\left[\left(C^{\wedge} N^{\wedge} C\right) A u L\right]+$ complexes. ${ }^{[14,18]}$ This suggests than TrxR may not be the main target of this class of organogold complexes.

Conclusions

We have synthesized a series of eleven new organometallic gold(III) complexes bearing a ($\mathrm{C}^{\wedge} \mathrm{C}$) biphenyl-based ligand and a bipyridine-, phenanthroline- or dipyridylamine-based ($\mathrm{N}^{\wedge} \mathrm{N}$) ligand with yields higher than 80%. The complexes were fully characterized and the molecular structure of complexes $\mathbf{1 , 2 a} \mathbf{2 a} \mathbf{3}, \mathbf{5 a}$ and $\mathbf{7}$ was confirmed by X-Ray diffraction. The analysis of the crystallographic structures revealed the non-planarity of the complexes either by bending of the $\left(C^{\wedge} C\right)$ ligand or by twisting of the $\left(N^{\wedge} N\right)$ ligand with respect to the $\left[\left(C^{\wedge} C\right) A u\right]$ plane. The antiproliferative studies highlighted complexes $\mathbf{3}$ and $\mathbf{6 a}$ as particularly promising as they appeared more selective and more active than the reference compounds (CNC)Au and cisplatin. Complexes $\mathbf{3}$ and $\mathbf{6 a}$ remained stable upon incubation for 24 h at $37{ }^{\circ} \mathrm{C}$ in DMSO and PBS while substitution of the ($\mathrm{N}^{\wedge} \mathrm{N}$) ligands by histidine and cysteine to form $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) A u^{\prime \prime \prime}(\mathrm{Hist} / \mathrm{Cys})\right]$ complexes was observed. Incubation of the complexes in the presence of GSH also resulted in the substitution of the ($\mathrm{N}^{\wedge} \mathrm{N}$) ligands to form $1 / 1$ adducts between the $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) \mathrm{Au}\right]^{+}$fragment and GSH either as a monomer with a chelating GSH or as a GSH-bridged dimer depending on the protonation state of GSH. Again the +III oxidation state of the gold center was retained. Formation of these adducts was concomitant with the release of the ($N^{\wedge} N$) ligand. In the same conditions and as previously observed by ${ }^{1} \mathrm{H} N \mathrm{NR},(\mathrm{CNC}) \mathrm{Au}$ was fully inert in the presence of GSH.

Uptake studies of complexes $\mathbf{3 , 4 , 6 a}$ and $\mathbf{6 b}$ in A2780 cells revealed a low uptake of the complexes due to sequestration of the complexes by serum proteins. In addition, intracellular gold concentration was independent of complex structure and partition coefficient. Taken together, the antiproliferative properties of $\mathbf{3}$ are only due to the gold center as the corresponding ($\mathrm{N}^{\wedge} \mathrm{N}$) ligand is
not toxic. Conversely, the antiproliferative properties of 6 a seem to partly originate from the release of the highly toxic bathophenanthroline ligand.

Activity of the $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) \mathrm{Au}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]^{+}$complexes was tested against higher order DNA structures such as Gquadruplexes and i-motif as $\left[\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}\right) \mathrm{Au}(\mathrm{NHC})\right]^{+}$complexes are known to stabilize these structures and inhibit TrxR. Interestingly, in both cases, our $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) \mathrm{Au}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]^{+}$complexes appeared to only poorly interact with these potential biological targets, which suggests that the involvement of these targets in the mechanism of action of the $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) \mathrm{Au}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]^{+}$complexes could be ruled out.

To conclude, these data highlight the potential of reorganizing the coordination sphere of the wellknown $\left[\left(C^{\wedge} N^{\wedge} C\right) A u L\right]^{+}$scaffold using biphenyl-based $\left(C^{\wedge} C\right)$ ligands. We demonstrated that $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) A u\left(\mathrm{~N}^{\wedge} \mathrm{N}\right)\right]^{+}$complexes have a very different reactivity with respect to $\left[\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}\right) \mathrm{Au}(\mathrm{NHC})\right]^{+}$ complexes, making them a new class of organometallic Au (III) anticancer drug candidates whose mechanism of action will have to be studied more thoroughly. These investigations are ongoing in the lab.

Experimental part

General remarks.
All reactions and manipulations were carried out under an argon atmosphere using standard Schlenk techniques. Anhydrous solvents were obtained by standard procedures. Chemicals were purchased from various manufacturers and used as received. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were acquired on a Bruker 400 MHz spectrometer. Chemical shifts (δ) are expressed as ppm referenced to the solvent residual signal. Splitting patterns are expressed as follows: s, singlet; d, doublet; t, triplet; m, multiplet. Mass spectrometry was carried out at the HRMS facility of Sorbonne Université (Paris). High resolution mass spectra (HR-MS) were recorded on a LTQ-Orbitrap XL mass spectrometer (Thermo Scientific, San Jose, CA, USA). IR spectra were recorded on a Tensor 27 FT-IR spectrometer (Bruker). Elemental analysis was performed at the elemental analysis service of ICSN (Gif-sur-Yvette, France). Dimeric gold precursors as well as ligands N -ethyl-2,2'-dipyridylamine have been synthesized according to reported procedures. ${ }^{[21,42]}$ Ligands have been purchased at Sigma-Aldrich or Fluorochem and used as received.

Synthesis of 1, 2a, 3, 4, 5a, 6a, 7, 8

To a suspension of dimer \mathbf{A} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added 2 equivalents of the appropriate ligand. Once the solubility reached (after 20 min), a solution of AgBF_{4} (2 equivalents) in $\mathrm{MeCN}(1 \mathrm{~mL}$) was added. Precipitation occurs immediately. The mixture was left to stir at room temperature for ca. 2 h and subsequently passed through a pad of celite. The filtrate was taken to dryness, then crystallized in

DCM/Pentane and dried.

1: A ($40.0 \mathrm{mg}, 0.04 \mathrm{mmol}$) and 2,2'-Bipyridine ($12 \mathrm{mg}, 0.08 \mathrm{mmol}$) afford a white powder (54 mg , $0.08 \mathrm{mmol}, 97 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeCN}^{2} \mathrm{~d}_{3}, 298 \mathrm{~K}$): $\delta 1.38(\mathrm{~s}, 18 \mathrm{H}, \mathrm{tBu}), 7.41\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{4 / 5}\right)$, $7.51\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{2}\right), 8.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{8}\right), 8.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{9}\right), 8.63\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{10}\right), 9.17\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{7}\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{Jmod}\left(\mathrm{MeCN}-\mathrm{d}_{3}, 100 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 31.5\left(\mathrm{~s}, \mathrm{CH}_{3} t \mathrm{tBu}\right), 36.0\left(\mathrm{~s}, \mathrm{C}^{t B u}\right), 123.1\left(\mathrm{~s}, \mathrm{C}^{4 / 5}\right), 126.1\left(\mathrm{~s}, \mathrm{C}^{10}\right)$, $127.2\left(\mathrm{~s}, \mathrm{C}^{4 / 5}\right), 128.1\left(\mathrm{~s}, \mathrm{C}^{2}\right), 129.3\left(\mathrm{~s}, \mathrm{C}^{8}\right), 143.6\left(\mathrm{~s}, \mathrm{C}^{9}\right), 150.6\left(\mathrm{~s}, \mathrm{C}^{1}\right), 150.9\left(\mathrm{~s}, \mathrm{C}^{7}\right), 151.7\left(\mathrm{~s}, \mathrm{C}^{3}\right), 154.8(\mathrm{~s}$, C^{6}), 156.0(s, C^{11}). ESI-MS (MeCN) positive mode exact mass for $\left[\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{AuN}_{2}\right]^{+}$(617.2231): measured $\mathrm{m} / \mathrm{z} 617.2226\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$. Calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{AuBF}_{4} \mathrm{~N}_{2} .0 .5 \mathrm{H}_{2} \mathrm{O}$ (704.3702): C, 50.51; H, 4.66; N, 3.93. Found: C, 50.36; H, 4.43; N, 3.77.

2a: A ($40.0 \mathrm{mg}, 0.04 \mathrm{mmol}$) and 4,4-Dimethyl-2,2-bipyridine ($15 \mathrm{mg}, 0.08 \mathrm{mmol}$) afford a white powder ($48 \mathrm{mg}, 0.07 \mathrm{mmol}, 84 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{MeCN}-\mathrm{d}_{3}, 298 \mathrm{~K}\right): \delta 1.37(\mathrm{~s}, 18 \mathrm{H}, \mathrm{tBu}), 2.66$ $\left(\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 7.40\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{4 / 5}\right), 7.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{2}\right), 7.87\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{8}\right), 8.49\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{10}\right), 9.02$ $\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{7}\right) .{ }^{13} \mathrm{C}\left\{^{1} \mathrm{H}\right\} \mathrm{Jmod}\left(\mathrm{MeCN}-\mathrm{d}_{3}, 100 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 21.9\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 31.5\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{tBu}\right)$, $35.9\left(\mathrm{~s}, \mathrm{C}^{t B u}\right), 123.1\left(\mathrm{~s}, \mathrm{C}^{4 / 5}\right), 126.8\left(\mathrm{~s}, \mathrm{C}^{10}\right), 127.0\left(\mathrm{~s}, \mathrm{C}^{4 / 5}\right), 128.0\left(\mathrm{~s}, \mathrm{C}^{2}\right), 130.0\left(\mathrm{~s}, \mathrm{C}^{8}\right), 149.8\left(\mathrm{~s}, \mathrm{C}^{7}\right), 150.6$ $\left(\mathrm{s}, \mathrm{C}^{1}\right), 151.6\left(\mathrm{~s}, \mathrm{C}^{3}\right), 154.5\left(\mathrm{~s}, \mathrm{C}^{6}\right), 155.7\left(\mathrm{~s}, \mathrm{C}^{11}\right), 157.0\left(\mathrm{~s}, \mathrm{C}^{9}\right)$. ESI-MS (MeCN) positive mode exact mass for $\left[\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{AuN}_{2}\right]^{+}$(645.2544): measured $\mathrm{m} / \mathrm{z} 645.2536\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$. Calcd. for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{AuBF}_{4} \mathrm{~N}_{2}$ (732.2573): C, 52.48; H, 4.95; N, 3.82. Found: C, $52.40 ; H, 4.90 ; N, 3.64$.

3: A ($40.0 \mathrm{mg}, 0.04 \mathrm{mmol}$) and Dimethyl 2,2-bipyridine-4,4-dicarboxylate ($22 \mathrm{mg}, 0.08 \mathrm{mmol}$) afford a yellow powder ($53 \mathrm{mg}, 0.06 \mathrm{mmol}, 83 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{MeCN}-\mathrm{d}_{3}, 298 \mathrm{~K}\right.$): $\delta 1.38$ (s, 18 H , $\mathrm{tBu}), 4.06\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 7.43\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{4 / 5}\right), 7.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{2}\right), 8.42\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{8}\right), 9.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{10}\right), 9.26(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{H}^{7}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{Jmod}\left(\mathrm{MeCN}-\mathrm{d}_{3}, 100 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 31.5\left(\mathrm{~s}, \mathrm{CH}_{3} t \mathrm{Bu}\right), 36.0\left(\mathrm{~s}, \mathrm{C}^{t B u}\right), 54.3\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 123.3$ $\left(\mathrm{s}, \mathrm{C}^{4 / 5}\right), 125.6\left(\mathrm{~s}, \mathrm{C}^{10}\right), 127.4\left(\mathrm{~s}, \mathrm{C}^{4 / 5}\right), 127.9\left(\mathrm{~s}, \mathrm{C}^{2}\right), 128.6\left(\mathrm{~s}, \mathrm{C}^{8}\right), 143.7\left(\mathrm{~s}, \mathrm{C}^{9}\right), 150.4\left(\mathrm{~s}, \mathrm{C}^{1}\right), 152.0\left(\mathrm{~s}, \mathrm{C}^{3}\right)$, $155.1\left(\mathrm{~s}, \mathrm{C}^{6}\right), 156.3\left(\mathrm{~s}, \mathrm{C}^{11}\right)$, $164.4\left(\mathrm{~s}, \mathrm{C}^{12}\right)$. ESI-MS (MeCN) positive mode exact mass for $\left[\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{AuN}_{2} \mathrm{O}_{4}\right]^{+}$(733.2341): measured $\mathrm{m} / \mathrm{z} 733.2334\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$. Calcd for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{AuBF}_{4} \mathrm{~N}_{2} \mathrm{O}_{4} . \mathrm{H}_{2} \mathrm{O}$ (820.4422): C, 48.71; H, 4.57; N, 3.34. Found: C, 48.98; H, 4.52; N, 3.07.

4: A ($40.0 \mathrm{mg}, 0.04 \mathrm{mmol}$) and 1,10-phenanthroline ($14 \mathrm{mg}, 0.08 \mathrm{mmol}$) afford a yellow powder (49.8 $\mathrm{mg}, 0.07 \mathrm{mmol}, 86 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeCN}^{2}, 298 \mathrm{~K}$): $\delta 1.35$ ($\mathrm{s}, 18 \mathrm{H}, \mathrm{tBu}$), 7.34 (s, 4 H , $\left.\mathrm{H}^{4,5}\right), 7.52\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{2}\right), 8.31\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{8,12}\right), 8.98\left(\mathrm{~d}^{3}{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{9}\right), 9.46\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{7}\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{Jmod}\left(\mathrm{MeCN}-\mathrm{d}_{3}, 100 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 31.6$ ($\mathrm{s}, \mathrm{CH}_{3} t B u$), 36.1 ($\mathrm{s}, \mathrm{C}^{t B u}$), 123.2 ($\mathrm{s}, \mathrm{C}^{4 / 5}$), 127.1 (s , $\left.\mathrm{C}^{4 / 5}\right), 127.7\left(\mathrm{~s}, \mathrm{C}^{12}\right), 128.3\left(\mathrm{~s}, \mathrm{C}^{2}\right), 129.5\left(\mathrm{~s}, \mathrm{C}^{8}\right), 132.4\left(\mathrm{~s}, \mathrm{C}^{10}\right), 142.8\left(\mathrm{~s}, \mathrm{C}^{9}\right), 145.9\left(\mathrm{~s}, \mathrm{C}^{11}\right), 150.7\left(\mathrm{~s}, \mathrm{C}^{1}\right)$, $151.5\left(\mathrm{~s}, \mathrm{C}^{7}\right), 151.7\left(\mathrm{~s}, \mathrm{C}^{3}\right), 154.4\left(\mathrm{~s}, \mathrm{C}^{6}\right)$. ESI-MS (MeCN) positive mode exact mass for $\left[\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{AuN} \mathrm{N}_{2}\right]^{+}$ (641.2231): measured $m / z 641.2225\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$. Calcd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{AuBF}_{4} \mathrm{~N}_{2}$ (728.395): C, 52.77; H, 4.43; N, 3.85. Found: C, 52.62; H, 4.36; N, 3.86.

5a: A ($40.0 \mathrm{mg}, 0.04 \mathrm{mmol}$) and 3,4,7,8-Tetramethyl-1,10-phenanthroline ($19 \mathrm{mg}, 0.08 \mathrm{mmol}$) afford grey powder ($46.1 \mathrm{mg}, 0.06 \mathrm{mmol}, 83 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{MeCN}-\mathrm{d}_{3}, 298 \mathrm{~K}\right): \delta 1.41(\mathrm{~s}, 18 \mathrm{H}$, $\mathrm{tBu}), 2.72\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.92\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 7.41\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{4,5}\right), 7.64\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{2}\right), 8.47\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{12}\right), 9.33(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{H}^{7}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{Jmod}\left(\mathrm{MeCN}-\mathrm{d}_{3}, 100 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 16.1\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 18.7\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 31.6\left(\mathrm{~s}, \mathrm{CH}_{3} t \mathrm{Bu}\right), 36.0$ $\left(\mathrm{s}, \mathrm{C}^{t B u}\right), 123.0\left(\mathrm{~s}, \mathrm{C}^{4 / 5}\right), 125.7\left(\mathrm{~s}, \mathrm{C}^{4 / 5}\right), 126.8\left(\mathrm{~s}, \mathrm{C}^{12}\right), 128.31\left(\mathrm{~s}, \mathrm{C}^{2}\right), 131.0\left(\mathrm{~s}, \mathrm{C}^{8}\right), 136.7\left(\mathrm{~s}, \mathrm{C}^{10}\right), 144.6(\mathrm{~s}$, C^{11}), $150.6\left(\mathrm{~s}, \mathrm{C}^{1}\right), 151.1\left(\mathrm{~s}, \mathrm{C}^{7}\right), 151.4\left(\mathrm{~s}, \mathrm{C}^{3}\right), 152.1\left(\mathrm{~s}, \mathrm{C}^{9}\right), 154.0\left(\mathrm{~s}, \mathrm{C}^{6}\right)$. ESI-MS (MeCN) positive mode exact mass for $\left[\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{AuN}_{2}\right]^{+}$(697.2857): measured $\mathrm{m} / \mathrm{z} 697.2850$ [$\left.\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$. Calcd for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{AuBF}_{4} \mathrm{~N}_{2} .0 .5 \mathrm{H}_{2} \mathrm{O}$ (784.5002): C, 54.49; H, 5 .21; N, 3.53. Found: C, 54.44; H, 5.11; N, 3.16.

6a: A ($40.0 \mathrm{mg}, 0.04 \mathrm{mmol}$) and 4,7-Diphenyl-1,10-phenanthroline ($26 \mathrm{mg}, 0.08 \mathrm{mmol}$) afford a
yellow/orange powder ($60.3 \mathrm{mg}, 0.07 \mathrm{mmol}, 87 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{MeCN}-\mathrm{d}_{3}, 298 \mathrm{~K}$): $\delta 1.39$ $(\mathrm{s}, 18 \mathrm{H}, \mathrm{tBu}), 7.40\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{4 / 5}\right), 7.61\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{2}\right), 7.70\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}^{14,15,16}\right), 8.28\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{8,12}\right), 9.54(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=5.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{7}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{Jmod}\left(\mathrm{MeCN}-\mathrm{d}_{3}, 100 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 31.5\left(\mathrm{~s}, \mathrm{CH}_{3} t \mathrm{tBu}\right), 36.0\left(\mathrm{~s}, \mathrm{C}^{\text {tBu }}\right), 122.8$ $\left(\mathrm{s}, \mathrm{C}^{4 / 5}\right), 126.9\left(\mathrm{~s}, \mathrm{C}^{4 / 5}\right), 127.2\left(\mathrm{~s}, \mathrm{C}^{12}\right), 127.9\left(\mathrm{~s}, \mathrm{C}^{2}\right), 128.1\left(\mathrm{~s}, \mathrm{C}^{8}\right), 130.0\left(\mathrm{~s}, \mathrm{C}^{13}\right), 130.1\left(\mathrm{~s}, \mathrm{C}^{14 / 15}\right), 130.9(\mathrm{~s}$, $\left.\mathrm{C}^{14 / 15}\right), 131.3\left(\mathrm{~s}, \mathrm{C}^{16}\right), 135.9\left(\mathrm{~s}, \mathrm{C}^{10}\right), 146.0\left(\mathrm{~s}, \mathrm{C}^{11}\right), 150.2\left(\mathrm{~s}, \mathrm{C}^{1}\right), 151.4\left(\mathrm{~s}, \mathrm{C}^{7}\right), 151.6\left(\mathrm{~s}, \mathrm{C}^{3}\right), 154.3\left(\mathrm{~s}, \mathrm{C}^{9}\right)$, 154.5 (s, C ${ }^{6}$). ESI-MS (MeCN) positive mode exact mass for $\left[\mathrm{C}_{44} \mathrm{H}_{40} \mathrm{AuN}_{2}\right]^{+}$(793.2857): measured m / z $793.2856\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$. Calcd for $\mathrm{C}_{44} \mathrm{H}_{40} \mathrm{AuBF}_{4} \mathrm{~N}_{2}$ (880.5882): C, 60.01; H, 4.58; N, 3.18. Found: C, 59.99; H 4.81; N 4.06 .

7: A ($30.0 \mathrm{mg}, 0.03 \mathrm{mmol}$) and 2,2'-Dipyridylamine ($10 \mathrm{mg}, 0.06 \mathrm{mmol}$) afford a white powder (40.0 $\mathrm{mg}, 0.06 \mathrm{mmol}, 93 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeCN}^{2} \mathrm{~d}_{3}, 323 \mathrm{~K}$): $\delta 1.29(\mathrm{~s}, 18 \mathrm{H}, \mathrm{tBu}), 6.93\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{2}\right)$, $7.36\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{4 / 5}\right), 7.64\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{8 / 10}\right), 8.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{9}\right), 8.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{7}\right), 9.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. ESI-MS (MeCN) positive mode exact mass for $\left[\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{AuN}_{3}\right]^{+}$(632.2340): measured $\mathrm{m} / \mathrm{z} 632.2333\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$. Due to solubility limitations, no ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum could be recorded. Calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{AuBF}_{4} \mathrm{~N}_{3} .1 .5 \mathrm{H}_{2} \mathrm{O}$ (719.3852): C, 48.86; H, 4.78; $\mathrm{N}, 5.70$. Found: C, $48.82 ; \mathrm{H}, 4.40 ; \mathrm{N}, 6.65$.

8: A ($40.0 \mathrm{mg}, 0.04 \mathrm{mmol}$) and \mathbf{N}-Ethyl-2,2'-Dipyridylamine ($16 \mathrm{mg}, 0.08 \mathrm{mmol}$) afford white powder ($50 \mathrm{mg}, 0.07 \mathrm{mmol}, 85 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeCN}^{2} \mathrm{~d}_{3}, 298 \mathrm{~K}$): $\delta 1.25$ (s, $18 \mathrm{H}, \mathrm{tBu}$), $1.32\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}\right.$ $\left.=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.13\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.97\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{2}\right), 7.33\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{4 / 5}\right), 7.67\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=6.4\right.$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}^{8}\right), 7.76\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{10}\right), 8.26\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{9}\right), 8.63\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=5.48 \mathrm{~Hz}, 2 \mathrm{H}\right.$, H^{7}). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{Jmod}\left(\mathrm{MeCN}-\mathrm{d}_{3}, 100 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 13.4\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 31.4\left(\mathrm{~s}, \mathrm{CH}_{3} t \mathrm{Bu}\right), 35.9\left(\mathrm{~s}, \mathrm{C}^{t B u}\right), 45.31(\mathrm{~s}$, $\left.\mathrm{CH}_{2}\right), 119.2\left(\mathrm{~s}, \mathrm{C}^{10}\right), 122.6\left(\mathrm{~s}, \mathrm{C}^{4 / 5}\right), 124.2\left(\mathrm{~s}, \mathrm{C}^{8}\right), 126.8\left(\mathrm{~s}, \mathrm{C}^{4 / 5}\right), 129.6\left(\mathrm{~s}, \mathrm{C}^{2}\right), 144.7\left(\mathrm{~s}, \mathrm{C}^{9}\right), 149.8\left(\mathrm{~s}, \mathrm{C}^{7}\right)$, $150.5\left(\mathrm{~s}, \mathrm{C}^{1}\right), 150.7\left(\mathrm{~s}, \mathrm{C}^{3}\right), 151.0\left(\mathrm{~s}, \mathrm{C}^{6}\right), 155.9\left(\mathrm{~s}, \mathrm{C}^{11}\right)$. ESI-MS (MeCN) positive mode exact mass for $\left[\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{AuN}_{3}\right]^{+}$(660.2653): measured $m / z 660.2647\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$. Calcd for $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{AuBF}_{4} \mathrm{~N}_{3}$ (747.4392): C , 51.42; H, 4.99; N, 5.62. Found: C, 51.79; H, 5.08; N, 5.56.

Synthesis of 2b, 5b, 6b

To a suspension of \mathbf{B} in $\mathrm{MeCN}(3 \mathrm{~mL})$ was added 2 equivalents of the appropriate ligand. Thereafter, a solution of AgBF_{4} in $\mathrm{MeCN}(10 \mathrm{ml})$ was added. The mixture was left to stir at room temperature overnight and after addition of $\mathrm{MeCN}(40 \mathrm{~mL})$, the suspension was passed through a pad of celite. The filtrate was taken to dryness.

2b: B ($12.0 \mathrm{mg}, 0.014 \mathrm{mmol}$) and 4,4-Dimethyl-2,2-bipyridine ($5 \mathrm{mg}, 0.028 \mathrm{mmol}$) afford white a powder ($16 \mathrm{mg}, 0.026 \mathrm{mmol}, 92 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{MeCN}-\mathrm{d}_{3}, 298 \mathrm{~K}\right): \delta 2.60\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 7.02$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}^{3}\right), 7.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{2}\right), 7.40\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{4 / 5}\right), 7.65\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.72 \mathrm{~Hz}, \mathrm{H}^{8}\right), 8.30\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{10}\right), 8.84(\mathrm{~d}$, ${ }^{3} J_{\mathrm{H}-\mathrm{H}}=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{7}$). Due to solubility limitations, no ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum could be recorded. ESIMS (MeCN) positive mode exact mass for $\left[\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{AuN}_{2}\right]^{+}$(533.1292): measured $\mathrm{m} / \mathrm{z} 533.1292$ [M$\left.\mathrm{BF}_{4}\right]^{+}$. Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{AuBF}_{4} \mathrm{~N}_{2}$ (620.2082): C, 46.48; H, 3.25; N, 4.52. Found: C, 46.20; H, 3.46; N, 4.25.

5b: B ($40.0 \mathrm{mg}, 0.05 \mathrm{mmol}$) and 3,4,7,8-Tetramethyl-1,10-phenanthroline ($22 \mathrm{mg}, 0.09 \mathrm{mmol}$) afford off-white powder ($59 \mathrm{mg}, 0.09 \mathrm{mmol}, 94 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{MeCN}-\mathrm{d}_{3}, 298 \mathrm{~K}\right.$): $\delta 2.60(\mathrm{~s}, 6 \mathrm{H}$,
$\left.\mathrm{CH}_{3}\right), 2.82\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 6.98\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{3 / 4 / 5}\right), 7.36\left(\mathrm{~m} 2 \mathrm{H}, \mathrm{H}^{2}\right), 8.33\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{12}\right), 8.93\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{7}\right)$. Due to solubility limitations, no ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum could be recorded. ESI-MS (MeCN) positive mode exact mass for $\left[\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{AuN}_{2}\right]^{+}$(585.1600): measured $\mathrm{m} / \mathrm{z} 585.1598[\mathrm{M}+\mathrm{H}]^{+}$. Calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{AuBF}_{4} \mathrm{~N}_{2} .6 \mathrm{H}_{2} \mathrm{O}$ (672.2842): C, 43.10; H, 4.65; N, 3.59. Found: C, 43.00; H, 3.22; N, 3.81.

6b: B ($40.0 \mathrm{mg}, 0.05 \mathrm{mmol}$) and 4,7-Diphenyl-1,10-phenanthroline ($31 \mathrm{mg}, 0.09 \mathrm{mmol}$) afford yellow powder ($67 \mathrm{mg}, 0.09 \mathrm{mmol}, 93 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeCN}-\mathrm{d}_{3}, 298 \mathrm{~K}$): $\delta 7.01\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{4 / 5}\right.$), 7.52 $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}^{2}\right), 7.68\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{H}^{3 / 14 / 15 / 16}\right), 8.09\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{8 / 12}\right), 9.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{7}\right)$. ESI-MS (MeCN) positive mode exact mass for $\left[\mathrm{C}_{36} \mathrm{H}_{24} \mathrm{AuN}_{2}\right]^{+}$(681.1600): measured $\mathrm{m} / \mathrm{z} 681.1599\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$. Calcd for $\mathrm{C}_{36} \mathrm{H}_{24} \mathrm{AuBF}_{4} \mathrm{~N}_{2} .3 \mathrm{H}_{2} \mathrm{O}$ (768.3722): C, 52.58; H, 3.68; N, 3.41. Found: C, $52.57 ; \mathrm{H}, 3.32 ; \mathrm{N}, 3.62$.

X-Ray crystal structure determination for 1, 2a, 3, 5a and 7. Single crystals were selected, mounted and transferred into a cold nitrogen gas stream. Intensity data was collected with Bruker KappaAPEX2 systems using fine-focus sealed tube Mo-K α radiation (1, 2a, 5a) or micro-source Cu-K radiation (7, 3). Unit-cell parameters determination, data collection strategy, integration and absorption correction were carried out with the Bruker APEX2 suite of programs. The structures were solved with SHELXT and refined anisotropically by full-matrix least-squares methods with SHELXL using $\operatorname{WinGX}(\mathbf{1}, \mathbf{7}, \mathbf{3})$ or Olex2 (2a, 5a). 1 was refined as a 2-component perfect inversion twin. PLATON SQUEEZE was used for the final refinement cycles of $\mathbf{2 a}$ to account for undetermined disordered solvent. 5a was integrated and refined as a 2-component twin. The structures were deposited at the Cambridge Crystallographic Data Centre with numbers CCDC 2057826-2057830 and can be obtained free of charge via www.ccdc.cam.ac.uk.

Crystal data for 1. $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{AuBF}_{4} \mathrm{~N}_{2}$, orthorhombic Pca2 ${ }_{1}$, $a=14.2695(3) \mathrm{A}, b=22.7874(4) \AA, c=34.4332(6) \AA$, $\alpha=\beta=\gamma=90^{\circ}, V=11196.5(4) \AA^{3}, z=16$, yellow needle $0.45 \times 0.15 \times 0.1 \mathrm{~mm}^{3}, \mu=5.304 \mathrm{~mm}^{-1}, \min /$ max transmission $=0.19 / 1.00, \mathrm{~T}=$ 200(1) $K, \lambda=0.71073 \AA$, θ range $=0.90^{\circ}$ to $28.70^{\circ}, 56210$ reflections measured, 25373 independent, $R_{\text {int }}=0.0271$, completeness $=0.999,1369$ parameters, 61 restraints, Flack $x=0.5$, final R indices $R 1[I>2 \sigma(I)]=0.0345$ and $w R 2$ (all data) $=0.0786, G O F$ on $F^{2}=1.028$, largest difference peak $/$ hole $=1.10 /-0.99 \mathrm{e} \cdot \AA^{-3}$.

Crystal data for 2a. $\mathrm{C}_{35.5} \mathrm{H}_{40} \mathrm{AuBF}_{4} \mathrm{~N}_{2}$, monoclinic $\mathrm{C} 2 / \mathrm{m}$, $\mathrm{a}=21.7197$ (10) \AA A, $\mathrm{b}=30.3228$ (14) $\mathrm{A}, \mathrm{c}=12.6944(6) \mathrm{A}$, $\alpha=\gamma=90^{\circ}, \beta=114.022(2)^{\circ}, V=7636.4(6) \AA^{3}, Z=8$, yellow prism $0.37 \times 0.15 \times 0.07 \mathrm{~mm}^{3}, \mu=3.896 \mathrm{~mm}^{-1}, \mathrm{~min} /$ max transmission $=0.36 / 0.72, \mathrm{~T}=200(1) \mathrm{K}, \lambda=0.71073 \AA, \theta$ range $=1.23^{\circ}$ to $3.58^{\circ}, 84273$ reflections measured, 11924 independent, $\mathrm{R}_{\text {int }}=0.0514$, completeness $=0.999,460$ parameters, 100 restraints, final R indices R1 $[1>2 \sigma(\mathrm{I})]=0.0276$ and $\mathrm{wR2}$ (all data) $=0.0737$, GOF on $\mathrm{F}^{2}=1.040$, largest difference peak $/$ hole $=$ $1.26 /-0.83 \mathrm{e} \cdot \AA^{-3}$.

Crystal data for 3. $\mathrm{C}_{41} \mathrm{H}_{44} \mathrm{AuBF}_{4} \mathrm{~N}_{2} \mathrm{O}_{4}$, triclinic $\mathrm{P}-1$, $\mathrm{a}=8.2182(3) \AA$, $\mathrm{b}=11.6914(4) \AA$, $\mathrm{c}=21.1592(7) \AA$, $\alpha=$ $77.366(2)^{\circ}, \beta=79.609(2)^{\circ}, \gamma=87.410(2)^{\circ}, V=1951.23(12) \AA^{3}, Z=2$, yellow prism $0.20 \times 0.09 \times 0.02 \mathrm{~mm}^{3}, \mu=$ $7.607 \mathrm{~mm}^{-1}, \mathrm{~min} /$ max transmission $=0.27 / 0.93, \mathrm{~T}=200(1) \mathrm{K}, \lambda=1.54178 \AA, \theta$ range $=3.88^{\circ}$ to $66.67^{\circ}, 28955$ reflections measured, 6886 independent, $R_{\text {int }}=0.0298$, completeness $=0.999$, 588 parameters, 175 restraints, final R indices $R 1[I>2 \sigma(I)]=0.0192$ and $w R 2$ (all data) $=0.0478$, GOF on $F^{2}=1.034$, largest difference peak / hole $=0.53 /-0.55 \mathrm{e} \cdot \mathrm{A}^{-3}$.

Crystal data for 5a. $\mathrm{C}_{39.5} \mathrm{H}_{44} \mathrm{AuBF}_{4} \mathrm{~N}_{2}$, triclinic $\mathrm{P}-1$, $a=6.8117(17) \AA$, $b=14.404(4) \AA$, $c=18.247(5) \AA$, $\alpha=$ $81.031(5)^{\circ}, \beta=86.785(4)^{\circ}, \gamma=87.919(5)^{\circ}, V=1764.9(8) \AA^{3}, Z=2$, colorless block $0.12 \times 0.21 \times 0.26 \mathrm{~mm}^{3}, \mu=$ $4.219 \mathrm{~mm}^{-1}, \mathrm{~min} /$ max transmission $=0.43 / 0.35, \mathrm{~T}=200(1) \mathrm{K}, \lambda=0.71073 \AA, \theta$ range $=1.44^{\circ}$ to $30.54^{\circ}, 94607$ reflections measured, 17922 independent, $\mathrm{R}_{\text {int }}=0.0328$, completeness $=0.995,462$ parameters, 50 restraints, final R indices $R 1[I>2 \sigma(I)]=0.0380$ and $w R 2$ (all data) $=0.0815$, GOF on $F^{2}=1.074$, largest difference peak / hole $=2.43 /-1.66 \mathrm{e} \cdot \AA^{-3}$.

Crystal data for 7. $\mathrm{C}_{37.5} \mathrm{H}_{33} \mathrm{AuBCIF}_{4} \mathrm{~N}_{3}$, monoclinic $\mathrm{P} 2{ }_{1} / \mathrm{c}, \mathrm{a}=19.9010(5) \mathrm{A}, \mathrm{b}=10.4904(3) \mathrm{A}, \mathrm{c}=18.3807(5) \mathrm{A}, \alpha$ $=\gamma=90^{\circ}, \beta=94.107(2)^{\circ}, V=3827.47(18) \AA^{3}, Z=4$, colorless plate $0.38 \times 0.19 \times 0.02 \mathrm{~mm}^{3}, \mu=8.266 \mathrm{~mm}^{-1}, \mathrm{~min} /$
max transmission $=0.20 / 0.81, \mathrm{~T}=200(1) \mathrm{K}, \lambda=1.54178 \AA, \theta$ range $=4.46^{\circ}$ to $66.64^{\circ}, 37141$ reflections measured, 6769 independent, $R_{\text {int }}=0.0267$, completeness $=0.999,473$ parameters, 63 restraints, final R indices $R 1[1>2 \sigma(I)]=0.0235$ and $w R 2$ (all data) $=0.0633$, GOF on $F^{2}=1.020$, largest difference peak $/$ hole $=$ $0.61 /-0.61 \mathrm{e} \cdot \AA^{-3}$.

Log $\mathrm{P}_{\mathrm{o} / \mathrm{w}}$ determination by HPLC

Partition coefficients log P were determined by a reverse-phase HPLC polycratic method introduced by Minick et al. ${ }^{[28]}$ The stationary phase was a Nucleosil C18 Htec $5 \mu \mathrm{~m}, 4.6 \times 150 \mathrm{~mm}$ column (Macherey-Nagel). Mobile phase A was 20 mM MOPS, 0.15% decylamine (v / v) pH 7.4 in water saturated with 1-octanol and mobile phase B was $0.25 \% 1$-octanol (v / v) in MeOH . In brief, solutions of compounds were prepared at 1 mM in MeOH . To $200 \mu \mathrm{~L}$ of those solutions, $10 \mu \mathrm{~L}$ of uracil solution (5 mM in MeOH) were added in order to obtain a final concentration of $250 \mu \mathrm{M}$ as unretained internal reference were repetitively injected in the column equilibrated with mobile phase B between 55 and 97% at $1 \mathrm{ml} / \mathrm{min}$. Retention times were measured on ChromNAV control center and the $\log k^{\prime} w$ was determined by linear extrapolation of $\log k^{\prime}$ at $\% B=0$. Log Po/w were calculated by using the following equation: $\log P_{o / w}=0,31418+0,98452 \log k^{\prime} w$.

Cell culture and cell growth inhibition

Human breast cancer cell lines MCF7 and MDA-MB-231 were cultivated in DMEM (Dulbecco's Modified Eagle Medium) containing GlutaMax I supplemented with 10% FBS and 1% kanamycin at 37 ${ }^{\circ} \mathrm{C}$ in a humidified atmosphere and $5 \% \mathrm{CO}_{2}$. Human ovarian cancer cells A2780 were cultured in RPMI1640 containing GlutaMax I supplemented with 10% FBS and 1% kanamycin at $37{ }^{\circ} \mathrm{C}$ in a humidified atmosphere and $5 \% \mathrm{CO}_{2}$. Non-cancerous cell line MCF10A was maintained in DMEM:F12 (1:1) cell culture media, 5% heat inactivated horse serum, supplemented with HEPES (20 mM), Lglutamine (2 mM), epidermal growth factor ($20 \mathrm{ng} / \mathrm{mL}$), hydrocortisone ($500 \mathrm{ng} / \mathrm{mL}$), cholera toxin ($100 \mathrm{ng} / \mathrm{mL}$), and insulin ($10 \mu \mathrm{~g} / \mathrm{mL}$). Cell viability was evaluated by using a colorimetric method based on the tetrazolium salt MTT [3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide], which is reduced by viable cells to yield purple formazan crystals. Cells were seeded in 96-well plates at a density of 40000 cells $/ \mathrm{mL}$ ($100 \mu \mathrm{~L}$ per well). After overnight attachment, a dilution series of the compounds were added in the medium, and cells were incubated for a further 72 h . Stock solutions of the complexes were prepared in water for cisplatin and the platinum and bimetallic compounds in DMSO. The percentage of DMSO in the culture medium did not exceed 1%. After 72 h , the medium was removed and the cells were incubated with MTT solution in PBS ($10 \mu \mathrm{~L}$ of a $5 \mathrm{mg} / \mathrm{mL}$) for 2-3 h of incubation. The formed purple formazan crystals were dissolved in $100 \mu \mathrm{~L}$ DMSO by thorough shaking, and the absorbance at 560 nm was read using a microplate reader (FLUOstar OPTIMA, BMG Labtech). Each test was performed with at least 3 replicates and repeated at least 3 times. The IC_{50} value is determined using GraphPad Prism 8.0 software.

BDE calculations

Calculations were performed using the Gaussian 09 software package. ${ }^{[43]}$ Optimization of geometries, frequency and single point energy calculations were done using the PBW91 functional ${ }^{[44]}$ with the following basis set: SDD ${ }^{[45-47]}$ augmented with a set of f -orbital polarization functions ${ }^{[48]}$ for Au and $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ for others atoms. ${ }^{[49-51]}$ The choice of the method was made following previous works reported on $\mathrm{Au}(\mathrm{III}) .{ }^{[52]}$ Definitions of the basis sets were obtained from the Basis Set Exchange library. ${ }^{[53-55]}$ Bond dissociation energies were calculated from the electronic energy difference
between the $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) \mathrm{Au}\right]^{+}$ion + the $\left(\mathrm{N}^{\wedge} \mathrm{N}\right)$ chelate and the $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) \mathrm{Au}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]^{+}$complex.

Low resolution mass spectrometry

Reaction with amino acids and guanine: Stock solutions of compounds $\mathbf{3}$ or $\mathbf{6 a}$ (20 mM in DMSO) and each amino acid (100 mM in DMSO) were prepared separately. For the reactions with one amino acid or guanine, a mixture of the solution of compounds $\mathbf{3}$ or $\mathbf{6 a}$ with each amino acid or guanine was made: $250 \mu \mathrm{~L}$ of solution of $\mathbf{3}$ or $\mathbf{6 a}, 50 \mu \mathrm{~L}$ of solution of amino acid or guanine and $200 \mu \mathrm{~L}$ of DMSO. For the reaction of $\mathbf{3}$ or $\mathbf{6 a}$ with the mixture of all amino acids and guanine, the following mixture was made: $250 \mu \mathrm{~L}$ of solution of $\mathbf{3}$ or $\mathbf{6 a}$ and $50 \mu \mathrm{~L}$ of solution of each amino acid and guanine. This leads to solution of 10 mM of $\mathbf{3}$ or $\mathbf{6 a}$ with one equivalent of amino acid and guanine. Solutions were incubated at $37^{\circ} \mathrm{C}$ for 24 h and were diluted to $100 \mu \mathrm{M}$ with MeOH .

Reaction with glutathione: Two stock solutions were prepared. One of glutathione (GSH) at 200 mM in PBS (30.7 mg of GSH dissolved in $500 \mu \mathrm{LPBS}$) and one of the complex $\mathbf{3}$ or $\mathbf{6 a}$ at 20 mM in DMSO (8.8 mg dissolved in $500 \mu \mathrm{~L}$ DMSO). Following this, five solutions, with respectively $0,1,2$ and 5 equivalents of glutathione and a constant concentration of $\mathbf{3}$ or $\mathbf{6 a}(10 \mathrm{mM})$ in a total volume of solution of $200 \mu \mathrm{~L}$ were prepared. After a 24 -hour incubation at $37^{\circ} \mathrm{C}$, the solutions were diluted 100 times in methanol for analysis by low resolution mass spectrometry.

Low resolution mass spectrometry experiments were performed using a modified Quattro II mass spectrometer (Micromass, Manchester, U.K.) equipped with an electrospray (ESI) source. The sample solutions were infused into the ESI source at a flow rate of ca. $400 \mu \mathrm{~L} . \mathrm{h}^{-1}$. The following source parameters were applied: in the positive ion mode: ESI capillary voltage 3.50 kV , cone voltage 30 V and in the negative ion mode: ESI capillary voltage -2.80 kV , cone voltage 30 V . Nitrogen was used as the desolvatation and nebulizing gas. The source and desolvatation temperatures were kept at 100 ${ }^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$. The data were acquired and analyzed using Masslynx software (version 4.2).

High resolution mass spectrometry

HRMS spectra of $\left[\left(C^{\wedge} \mathrm{C}\right) A u\left(\mathrm{~N}^{\wedge} \mathrm{N}\right)\right]^{+}$complexes were recorded on an Orbitrap mass spectrometer (see above). The HRMS experiments on association complexes of $\mathbf{3}$ or $\mathbf{6 a}$ complexes with amino acids, guanine or glutathione were recorded on a Solarix XR FT-ICR mass spectrometer (Bruker Daltonics, Bremen, Germany) equipped with a 7T superconducting magnet and a dynamically harmonized ICR cell. Solutions of $\mathbf{3}$ or $\mathbf{6 a}$ with cysteine, histidine and GSH were prepared at a $10 \mu \mathrm{M}$ concentration in methanol by dilution of the corresponding mixture used in the low resolution mass spectrometry experiments (MeOH) and were infused into the electrospray ionization (ESI) source with a $180 \mu \mathrm{~L} / \mathrm{h}$ flow rate. The following parameters were used for the ionization in the positive or in the negative mode: capillary voltage: 4.5 kV (positive mode), -3.5 kV (negative mode); drying gas flow rate: $3 \mathrm{~L} /$ min ; drying gas temperature: $200^{\circ} \mathrm{C}$; nebulizer gas pressure: 1.8 bar . All analyses were recorded in 12 scans with a quadrupole accumulation time of 0.5 s and a transient length of 1.5 s . Identification of the adducts was achieved by comparison with theoretical masses of the adducts using the Bruker Compass Data Analysis software (5.0 SR1).

Uptake measurements

Cell samples preparation: Human ovarian adenocarcinoma cells (A2780) were grown in $25 \mathrm{~cm}^{3}$ flasks in RPMI medium containing 10% FBS for 24 h until confluence. Medium was discarded, the cells were rinsed with PBS and 5 mL of fresh medium containing or not 10% FBS was added in each flask. Solutions of complexes 3, 4, 6a and $\mathbf{6 b}$ at $500 \mu \mathrm{M}$ in DMSO were prepared and $50 \mu \mathrm{~L}$ of these solutions were added to the flasks to give a final concentration of $5 \mu \mathrm{M}$ with 1% DMSO. Cells were incubated with the compounds for 2 h at $37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$. Medium was then discarded, the cells
washed with PBS and detached using a 0.05 \% trypsin solution. Following quenching of trypsin with RPMI medium, the cells were isolated by centrifugation and the supernatant was discarded. The pellet was resuspended into 1 mL of PBS for AAS measurement and protein quantification.
Metal and protein quantification: For metal and protein quantification, the pellets were resuspended in demineralized water (1.0 mL) and lysed for 30 min by ultrasonication. The protein contents of lysates were determined by the Bradford method, and the gold content was determined by a HRCSAAS method described in a previous report. ${ }^{[38]}$ The final result of the gold concentration was calculated from data obtained in two independent experiments and are expressed as nmol of gold per mg of cellular protein.

FRET assay

All work was performed on a QIAgen Rotor-Gene Q-Series PCR using the labelled oligonucleotides NRF2 ($5^{\prime}-\mathrm{FAM}-\mathrm{d}[\mathrm{GGG}-\mathrm{AGC-GGG}-A C G-G G G-G C C-G G G]-T A M R A-3^{\prime}$), NAST (5^{\prime}-FAM-d[CCC-TCC-CGC-CCT-TGC-TCC-CTT-CCC]-TAMRA-3'), hTeloG (5'-FAM-d[(GGG-TAA) 4]-TAMRA-3'), DAP (5'-FAM-d[(CCCCCG) ${ }_{4}$-CCC-CC]-TAMRA-3'), and DS (5'-FAM-[TAT-AGC-TAT-A-HEG(18)-TAT-AGC-TAT-A]-TAMRA$\left.3^{\prime}\right)$ (FAM $=6$-carboxyfluorescein, TAMRA $=6$-carboxytetramethyl-rhodamine). Strip-tubes were prepared containing a buffered solution (100 mM potassium chloride and 10 mM sodium cacodylate, pH 7.0) of $18 \mu \mathrm{~L}$ DNA and $2 \mu \mathrm{~L}$ ligand in DMSO with final concentrations of $0.2 \mu \mathrm{M}$ and $1 \mu \mathrm{M}$ for the DNA and ligand, respectively. Controls were performed using DMSO in place of the ligand solution. Samples were heated from $25^{\circ} \mathrm{C}$ to $95^{\circ} \mathrm{C}$ at increments of $1^{\circ} \mathrm{C}$, holding each temperature for 1 min . The fluorescence of each sample was measured using an excitation of 470 nm and the emission was detected at 510 nm . The melting temperatures $\left(\mathrm{T}_{m}\right)$ were calculated by taking the minima of the first derivative of each melting curve and reported as the average of three repeats with the associated errors as the standard deviations of the repeats.

TrxR inhibition assay

To determine the inhibition of mammalian thioredoxin reductase, a spectrophotometric assay was performed using commercially available rat liver TrxR (Sigma-Aldrich). The enzyme was diluted with distilled water to achieve a concentration of $2.5 \mathrm{U} / \mathrm{mL}$. The gold complexes were freshly dissolved DMSO to get a stock solution of 10 mM . To a $25 \mu \mathrm{~L}$ aliquot of the enzyme solution, $25 \mu \mathrm{~L}$ of potassium phosphate buffer, pH 7.0 , containing the complexes at different concentrations or solvent without compounds (control probe) was added, and the resulting solutions were incubated with moderate shaking for 75 min at $37{ }^{\circ} \mathrm{C}$ in a 96 -well plate. Subsequently, to each well, $225 \mu \mathrm{~L}$ of reaction mixture (1 mL of reaction mixture consisted of $500 \mu \mathrm{~L}$ of potassium phosphate buffer, pH $7.0,80 \mu \mathrm{~L}$ of EDTA solution ($100 \mathrm{mM}, \mathrm{pH} 7.5$), $20 \mu \mathrm{~L}$ of BSA solution (0.2%), $100 \mu \mathrm{~L}$ of NADPH solution (20 mM), and $300 \mu \mathrm{~L}$ of distilled water) was added. The reaction was started by the addition of $25 \mu \mathrm{~L}$ of an ethanolic solution of 5,5'-Dithiobis 2-nitrobenzoic acid (DTNB, 20 mM). After proper mixing, the formation of 5-TNB was monitored with a microplate reader (Perkin-Elmer Victor X4) at 405 nm in 10 s intervals for 10 min . The increase in 5-TNB concentration over time followed a linear trend ($\mathrm{R}^{2} \geq$ 0.99), and the enzymatic activities were calculated as the slopes (increase in absorbance per second) thereof. For each tested compound, the noninterference with the assay components was confirmed by a negative control experiment using an enzyme free solution. The IC_{50} values were calculated as the concentration of complexes decreasing the enzymatic activity of the untreated control by 50% and are given as the means and standard deviations of 2 independent experiments.

Acknowledgments

The work was financially supported by Sorbonne Université and CNRS and was granted access to the HPC resources of the HPCaVe Centre at UPMC-Sorbonne Université. B.B. thanks Dr. Cédric Przybylski for HR-MS analyses. B.B. thanks Dr. Patricia Forgez for providing A2780 and MCF-10A cells. Financial support from the National FT-ICR network (FR 3624 CNRS) for conducting the research is gratefully acknowledged. P.S. was supported by the BBSRC Norwich Research Park Biosciences Doctoral Training Partnership (grant number BB/M011216/1).

Abbreviations used

NHC, nucleophic heterocyclic carbene; DMSO, dimethylsulfoxide; PBS, phosphate buffer saline; GSH, glutathione; TrxR, thioredoxin reductase

References

[1] I. Ott, Coord. Chem. Rev. 2009, 253, 1670-1681.
[2] B. Bertrand, A. Casini, Dalton Trans 2014, 43, 4209-4219.
[3] T. Zou, C. T. Lum, C.-N. Lok, J.-J. Zhang, C.-M. Che, Chem. Soc. Rev. 2015, 44, 87868801.
[4] D. Wang, S. J. Lippard, Nat. Rev. Drug Discov. 2005, 4, 307-320.
[5] B. Bertrand, M. R. M. Williams, M. Bochmann, Chem. - Eur. J. 2018, 24, 1184011851.
[6] L. Messori, F. Abbate, G. Marcon, P. Orioli, M. Fontani, E. Mini, T. Mazzei, S. Carotti, T. O'Connell, P. Zanello, J. Med. Chem. 2000, 43, 3541-3548.
[7] S. Gukathasan, S. Parkin, S. G. Awuah, Inorg. Chem. 2019, 58, 9326-9340.
[8] C. Y.-S. Chung, S.-K. Fung, K.-C. Tong, P.-K. Wan, C.-N. Lok, Y. Huang, T. Chen, C.M. Che, Chem. Sci. 2017, 8, 1942-1953.
[9] M. Negom Kouodom, L. Ronconi, M. Celegato, C. Nardon, L. Marchiò, Q. P. Dou, D. Aldinucci, F. Formaggio, D. Fregona, J. Med. Chem. 2012, 55, 2212-2226.
[10] R. T. Mertens, S. Parkin, S. G. Awuah, Chem. Sci. 2020, 11, 10465-10482.
[11] J.-J. Zhang, R. W.-Y. Sun, C.-M. Che, Chem. Commun. 2012, 48, 3388.
[12] B. Bertrand, S. Spreckelmeyer, E. Bodio, F. Cocco, M. Picquet, P. Richard, P. Le Gendre, C. Orvig, M. A. Cinellu, A. Casini, Dalton Trans. 2015, 44, 11911-11918.
[13] S. Carboni, A. Zucca, S. Stoccoro, L. Maiore, M. Arca, F. Ortu, C. Artner, B. K. Keppler, S. M. Meier-Menches, A. Casini, M. A. Cinellu, Inorg. Chem. 2018, 57, 14852-14865.
[14] R. W.-Y. Sun, C.-N. Lok, T. T.-H. Fong, C. K.-L. Li, Z. F. Yang, T. Zou, A. F.-M. Siu, C.-M. Che, Chem. Sci. 2013, 4, 1979.
[15] B. Bertrand, J. Fernandez-Cestau, J. Angulo, M. M. D. Cominetti, Z. A. E. Waller, M. Searcey, M. A. O'Connell, M. Bochmann, Inorg. Chem. 2017, 56, 5728-5740.
[16] X.-Q. Zhou, I. Carbo-Bague, M. A. Siegler, J. Hilgendorf, U. Basu, I. Ott, R. Liu, L. Zhang, V. Ramu, A. P. IJzerman, S. Bonnet, JACS Au 2021, 1, 380-395.
[17] J. J. Yan, A. L.-F. Chow, C.-H. Leung, R. W.-Y. Sun, D.-L. Ma, C.-M. Che, Chem. Comтии. 2010, 46, 3893.
[18] S. Jürgens, V. Scalcon, N. Estrada-Ortiz, A. Folda, F. Tonolo, C. Jandl, D. L. Browne, M. P. Rigobello, F. E. Kühn, A. Casini, Bioorg. Med. Chem. 2017, 25, 5452-5460.
[19] M. Williams, A. I. Green, J. Fernandez-Cestau, D. L. Hughes, M. A. O’Connell, M. Searcey, B. Bertrand, M. Bochmann, Dalton Trans 2017, 46, 13397-13408.
[20] R. Usón, J. Vincente, J. A. Cirac, M.-T. Chicote, 1980, 198, 105-112.
[21] B. David, U. Monkowius, J. Rust, C. W. Lehmann, L. Hyzak, F. Mohr, Dalton Trans 2014, 43, 11059-11066.
[22] K. T. Chan, G. S. M. Tong, Q. Wan, G. Cheng, C. Yang, C.-M. Che, Chem. - Asian J. 2017, 12, 2104-2120.
[23] L. Rocchigiani, J. Fernandez-Cestau, G. Agonigi, I. Chambrier, P. H. M. Budzelaar, M. Bochmann, Angew. Chem. Int. Ed. 2017, 56, 13861-13865.
[24] I. Chambrier, L. Rocchigiani, D. L. Hughes, P. M. H. Budzelaar, M. Bochmann, Chem. Eur. J. 2018, 24, 11467-11474.
[25] V. K.-M. Au, K. M.-C. Wong, N. Zhu, V. W.-W. Yam, J. Am. Chem. Soc. 2009, 131, 9076-9085.
[26] J. Fernandez-Cestau, B. Bertrand, M. Blaya, G. A. Jones, T. J. Penfold, M. Bochmann, Chem. Commun. 2015, 51, 16629-16632.
[27] C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, Adv. Drug Deliv. Rev. 2001, 46, 3-26.
[28] D. J. Minick, J. H. Frenz, M. A. Patrick, D. A. Brent, J. Med. Chem. 1988, 31, 19231933.
[29] H. Yao, G. He, S. Yan, C. Chen, L. Song, T. J. Rosol, X. Deng, Oncotarget 2017, 8, 1913-1924.
[30] B. Bertrand, C. Botuha, J. Forté, H. Dossmann, M. Salmain, Chem. - Eur. J. 2020, 26, 12846-12861.
[31] M. Coronnello, E. Mini, B. Caciagli, M. A. Cinellu, A. Bindoli, C. Gabbiani, L. Messori, J. Med. Chem. 2005, 48, 6761-6765.
[32] N. Traverso, R. Ricciarelli, M. Nitti, B. Marengo, A. L. Furfaro, M. A. Pronzato, U. M. Marinari, C. Domenicotti, Oxid. Med. Cell. Longev. 2013, 2013, 972913.
[33] H. H. W. Chen, M. T. Kuo, Met.-Based Drugs 2010, 2010, 1-7.
[34] A. Casini, M. A. Cinellu, G. Minghetti, C. Gabbiani, M. Coronnello, E. Mini, L. Messori, J. Med. Chem. 2006, 49, 5524-5531.
[35] M. R. M. Williams, B. Bertrand, D. L. Hughes, Z. A. E. Waller, C. Schmidt, I. Ott, M. O'Connell, M. Searcey, M. Bochmann, Metallomics 2018, 10, 1655-1666.
[36] J.-J. Zhang, R. W.-Y. Sun, C.-M. Che, Chem. Commun. 2012, 48, 3388.
[37] S. Spreckelmeyer, C. Orvig, A. Casini, Molecules 2014, 19, 15584-15610.
[38] C. Schmidt, B. Karge, R. Misgeld, A. Prokop, R. Franke, M. Brönstrup, I. Ott, Chem. Eur. J. 2017, 23, 1869-1880.
[39] C. K.-L. Li, R. W.-Y. Sun, S. C.-F. Kui, N. Zhu, C.-M. Che, Chem. - Eur. J. 2006, 12, 5253-5266.
[40] P. Gratteri, L. Massai, E. Michelucci, R. Rigo, L. Messori, M. A. Cinellu, C. Musetti, C. Sissi, C. Bazzicalupi, Dalton Trans. 2015, 44, 3633-3639.
[41] A. Bindoli, M. P. Rigobello, G. Scutari, C. Gabbiani, A. Casini, L. Messori, Coord. Chem. Rev. 2009, 253, 1692-1707.
[42] M. Elie, F. Sguerra, F. Di Meo, M. D. Weber, R. Marion, A. Grimault, J.-F. Lohier, A. Stallivieri, A. Brosseau, R. B. Pansu, J.-L. Renaud, M. Linares, M. Hamel, R. D. Costa, S. Gaillard, ACS Appl. Mater. Interfaces 2016, 8, 14678-14691.
[43] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Baronne, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. H. Voth, P.

Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2009.
[44] J. P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 1996, 54, 16533-16539.
[45] D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, Theor. Chim. Acta 1990, 77, 123-141.
[46] T. H. Dunning Jr., P. J. Hay, in Methods Electron. Struct. Theory, Plenum, New York, 1977, pp. 1-28.
[47] U. Wedig, M. Dolg, H. Stoll, H. Preuß, in Quantum Chem. Chall. Transit. Met. Coord. Chem., 1986, p. 79.
[48] A. W. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp, G. Frenking, Chem. Phys. Lett. 1993, 208, 111-114.
[49] W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, $2257-2261$.
[50] P. C. Hariharan, J. A. Pople, Theor. Chim. Acta 1973, 28, 213-222.
[51] T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. V. R. Schleyer, J. Comput. Chem. 1983, 4, 294-301.
[52] J. Rodriguez, G. Szalóki, E. D. S. Carrizo, N. Saffon-Merceron, K. Miqueu, D. Bourissou, Angew. Chem. Int. Ed. 2020, 59, 1511-1515.
[53] D. Feller, J. Comput. Chem. 1996, 17, 1571-1586.
[54] K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, T. L. Windus, J. Chem. Inf. Model. 2007, 47, 1045-1052.
[55] B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson, T. L. Windus, J. Chem. Inf. Model. 2019, 59, 4814-4820.

Table of content

The reorganisation of the coordination sphere of the $\left[\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}\right) \mathrm{AuL}\right]^{+}$scaffold led to the establishment of $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) A u\left(\mathrm{~N}^{\wedge} \mathrm{N}\right)\right]^{+}$family with a preserved redox stability but an enhanced reactivity toward biomolecules making it a new class of organogold anticancer agent.

$\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) \mathrm{Au}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]+$ complexes as a new family of anticancer candidates: synthesis, characterization and exploration of the antiproliferative properties

Silva Khodjoyan, ${ }^{a}$ Edwyn Remadna, ${ }^{\text {a }}$ Héloïse Dossmann, ${ }^{a}$ Denis Lesage, ${ }^{a}$ Geoffrey Gontard, ${ }^{a}$ Jérémy Forté, ${ }^{a}$ Henrik Hoffmeister, ${ }^{\text {b }}$ Ingo Ott, ${ }^{\text {b }}$ Philip Spence, ${ }^{c}$ Zoë A. E. Waller, ${ }^{c, d}$ Michèle Salmain, ${ }^{\text {a }}$ and Benoît Bertrand ${ }^{\text {a* }}$
${ }^{\text {a }}$ Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
${ }^{\text {b }}$ Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, D-38106 Braunschweig, Germany
${ }^{\text {c }}$ School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
${ }^{\text {d }}$ UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
Corresponding author e-mail: benoit.bertrand@sorbonne-universite.fr

Supporting information

Contents	Page
Figure S1: Crystal structure of complex 1.	S2
Figure S2: Crystal structure of complex 2a.	S3
Table S1: Main bond lengths measured by X-Ray diffraction for complexes 1, 2a, 3, 5a and 7.	S3
Table S2: Bond dissociation energies of the ($\mathrm{N}^{\wedge} \mathrm{N}$) ligands for $\mathrm{Au}(\mathrm{III})$ complexes 1-8 (calculated at the BPW91/Au(SDD+f)6-31g(d,p) (other atoms) level of theory) and partition coefficients of complexes 1-8.	S3
Figure S3: ESI-MS in negative or positive modes of complex $\mathbf{3}$ alone or in solution with 1 eq. amino acids and/or guanine recorded after 24 h of incubation at $37^{\circ} \mathrm{C}$ in DMSO.	S4
Figure S4: ESI-MS in negative or positive modes of complex 6a alone or in solution with 1 eq. amino acids and/or guanine recorded after 24 h of incubation at $37^{\circ} \mathrm{C}$ in DMSO.	S5
Figure S5: ESI(-)-MS of complex 3 alone or in solution with 1, 2 or 5 equivalents of GSH recorded after 24 h of incubation at $37^{\circ} \mathrm{C}$ in DMSO/PBS 1:1.	S5
Figure S6: HRMS and corresponding isotopic patterns of the association complexes of 3 and 6a with histidine, cysteine and GSH (in positive or negative mode) observed after 24 h of incubation at $37^{\circ} \mathrm{C}$ in DMSO/PBS 1:1.	S6-7
Table S3. HRMS identification of the association complexes of $\mathbf{3}$ and $\mathbf{6 a}$ with histidine, cysteine and GSH.	S7
Figure S7: ESI(+)-MS of complex (CNC)Au alone or in solution with 1, 2 or 5 equivalents of GSH recorded after 24 h of incubation at $37^{\circ} \mathrm{C}$ in DMSO/PBS 1:1.	S8

Figure S8: Stabilization of different DNA structures $(0.2 \mu \mathrm{M})$ by $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) \mathrm{Au}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\right]^{+}$ complexes $1-\mathbf{8}$ at $10 \mu \mathrm{M}$ measured by FRET-melting assay; data represent the average and standard deviations of three experiments.	$\mathbf{S 8}$
Figures S9-26: NMR spectra of complexes 1-8	$\mathbf{S 9 - 2 1}$
Table S4: Calculated electronic and zero-point energies (in hartrees, H) of all compounds studied in this work obtained at the BPW91/Au(SDD+f)6-31g(d,p) (other atoms) level of theory.	$\mathbf{S 2 2}$
Table S5: Cartesian coordinates of optimized of all compounds studied in this work and corresponding fragments	$\mathbf{S 2 3}$

Figure S1: Crystal structure of complex 1. Ellipsoids set at 50% probability. Hydrogen atoms have been omitted for clarity. Selected bond distances [$A ̊$] and angles [${ }^{\circ}$] measured at $140 \mathrm{~K}: \mathrm{Au}_{1}-\mathrm{C}_{1} 2.03(1)$, $\mathrm{Au}_{1}-\mathrm{C}_{2}$ 2.028(9), $\mathrm{Au}_{1}-\mathrm{N}_{1} 2.131$ (7), $\mathrm{Au}_{1}-\mathrm{N}_{2} 2.144(7), \mathrm{N}_{1}-\mathrm{Au}_{1}-\mathrm{N}_{2} 76.9(3), \mathrm{N}_{2}-\mathrm{Au}_{1}-\mathrm{C} 2103.5(3), \mathrm{C}_{2}-\mathrm{Au}_{1}-\mathrm{C}_{1}$ 80.3(3) $\mathrm{C}_{1}-\mathrm{Au}_{1}-\mathrm{N}_{1} 103.5(3)$.

Figure S2: Crystal structure of complex 2a. Ellipsoids set at 50\% probability. Hydrogen atoms and toluene have been omitted for clarity. Selected bond distances [$\AA \AA$] and angles [${ }^{\circ}$] measured at 140K: $\mathrm{Au}_{1}-\mathrm{C}_{1}$ 2.021(3), $\mathrm{Au}_{1}-\mathrm{C}_{2}$ 2.029(3), $\mathrm{Au}_{1}-\mathrm{N}_{1}$ 2.130(2), $\mathrm{Au}_{1}-\mathrm{N}_{2}$ 2.132(2), $\mathrm{N}_{1}-\mathrm{Au}_{1}-\mathrm{N}_{2}$ 76.83(9), $\mathrm{N}_{2}-\mathrm{Au}_{1}-$ C2 102.1(1), $\mathrm{C}_{2}-\mathrm{Au}_{1}-\mathrm{C}_{1}$ 79.2(1) $\mathrm{C}_{1}-\mathrm{Au}_{1}-\mathrm{N}_{1}$ 101.7(1).

Complex	Bond length (Å)			
	${\mathrm{Au}-\mathrm{C}_{1}}^{4}$	$\mathrm{Au}-\mathrm{C} 2$	$\mathrm{Au}-\mathrm{N}_{1}$	$\mathrm{Au}-\mathrm{N} 2$
$\mathbf{1}$	$2.03(1)$	$2.028(9)$	$2.131(7)$	$2.144(7)$
$\mathbf{2 a}$	$2.021(3)$	$2.029(3)$	$2.130(2)$	$2.132(2)$
$\mathbf{3}$	$2.031(3)$	$2.034(2)$	$2.163(2)$	$2.137(2)$
5 a	$2.035(4)$	$2.042(4)$	$2.141(3)$	$2.150(4)$
$\mathbf{7}$	$2.033(3)$	$2.032(3)$	$2.133(2)$	$2.124(3)$

Table S1: Main bond lengths measured by X-Ray diffraction for complexes 1, 2a, 3, 5a and 7.

Table S2: Bond dissociation energies of the ($\mathrm{N}^{\wedge} \mathrm{N}$) ligands for complexes 1-8 (calculated at the BPW91/Au(SDD+f)6-31g(d,p) (other atoms) level of theory) and partition coefficients of complexes 18.

Complexes	BDE $(\mathrm{kcal} / \mathrm{mol})$	$\log \mathrm{P}_{\mathrm{o} / \mathrm{w}}$
$\mathbf{1}$	66.2	1.94
$\mathbf{2 a}$	67.2	2.44
$\mathbf{2 b}$	72.8	2.55
$\mathbf{3}$	59.2	2.80
$\mathbf{4}$	66.0	1.64

$\mathbf{5 a}$	71.5	9.83
$\mathbf{5 b}$	76.9	4.19
$\mathbf{6 a}$	66.7	5.54
$\mathbf{6 b}$	72.3	3.02
$\mathbf{7}$	65.7	1.37
$\mathbf{8}$	58.1	2.15

Figure S3: ESI-MS in negative or positive modes of complex 3 alone or in solution with 1 eq. amino acids and/or guanine recorded after 24 h of incubation at $37^{\circ} \mathrm{C}$ in DMSO.

Figure S4: ESI-MS in negative or positive modes of complex 6 a alone or in solution with 1 eq. amino acids and/or guanine recorded after 24 h of incubation at $37^{\circ} \mathrm{C}$ in DMSO.

Figure S5: ESI(-)-MS of complex 3 alone or in solution with 1, 2 or 5 equivalents of GSH recorded after 24 h of incubation at $37^{\circ} \mathrm{C}$ in DMSO/PBS 1:1.

Figure S6: HRMS and corresponding isotopic patterns of the association complexes of $\mathbf{3}$ and $\mathbf{6 a}$ with histidine, cysteine and GSH (in positive or negative mode) observed after 24 h of incubation at $37^{\circ} \mathrm{C}$ in DMSO/PBS 1:1.

Table S3. HRMS identification of the association complexes of $\mathbf{3}$ and $\mathbf{6 a}$ with histidine, cysteine and GSH.

		Measured monoisotopic mass	Theoretical monoisotopic mass	Error (ppm)
$\mathbf{3 + G S H}$	$\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{AuN}_{3} \mathrm{O}_{6} \mathrm{~S}^{-}$	766.22224	766.22307	-1.08
$\mathbf{3}+\mathrm{Cys}$	$\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{AuNO}_{2} \mathrm{~S}^{-}$	580.15748	580.15902	-2.65
$\mathbf{3}+\mathrm{His}$	$\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{AuN}_{3} \mathrm{O}_{2}^{+}$	616.22179	616.22330	-2.45
$\mathbf{6 a + G S H}$	$\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{AuN}_{3} \mathrm{O}_{6} \mathrm{~S}^{+}$			
$\mathbf{6 a +}+\mathrm{Cys}$	$\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{AuNO}_{2} \mathrm{~S}^{-}$	580.15946	580.15902	0.76
$\mathbf{6 a +}+\mathrm{His}$	$\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{AuN}_{3} \mathrm{O}_{2}^{+}$	616.22515	616.22330	3.00

Figure S7: ESI(+)-MS of complex (CNC)Au alone or in solution with 1, 2 or 5 equivalents of GSH recorded after 24 h of incubation at $37^{\circ} \mathrm{C}$ in DMSO/PBS 1:1.

Figure S8: Stabilization of different DNA structures $(0.2 \mu \mathrm{M})$ by $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) \mathrm{Au}\left(\mathrm{N}^{\wedge} N\right)\right]^{+}$complexes $\mathbf{1 - 8}$ at 10 $\mu \mathrm{M}$ measured by FRET-melting assay; data represent the average and standard deviations of three experiments.

Figure S9: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at 298 K .

Figure S10: Jmod ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right]$ NMR spectrum of $\mathbf{1}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at 298 K .

Figure S11: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 a}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at 298 K .

Figure S12: Jmod ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 a}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at 298 K .

BF_{4}

4

Figure S14: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at 298 K .

Figure S15: Jmod ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of $\mathbf{3}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at 298 K .

Figure S16: ${ }^{1} \mathrm{H}$ NMR spectrum of 4 in $\mathrm{CD}_{3} \mathrm{CN}$ at 298 K .

Figure S17: Jmod ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 4 in $\mathrm{CD}_{3} \mathrm{CN}$ at 298 K .

Figure S18: ${ }^{1} \mathrm{H}$ NMR spectrum of 5 a in $\mathrm{CD}_{3} \mathrm{CN}$ at 298 K .

Figure S19: Jmod ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 5 a in $\mathrm{CD}_{3} \mathrm{CN}$ at 298 K .

Figure S20: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 b}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at 298 K .

Figure S21: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 a}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at 298 K .

Figure S22: Jmod ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{6 a}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at 298 K .

Figure S23: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 b}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at 323 K .

Figure S24: ${ }^{1} \mathrm{H}$ NMR spectrum of 7 in $\mathrm{CD}_{3} \mathrm{CN}$ at 323 K .

Figure S25: ${ }^{1} \mathrm{H}$ NMR spectrum of 8 in $\mathrm{CD}_{3} \mathrm{CN}$ at 298 K .

Figure S26: Jmod ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{8}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at 298 K .

Table S4: Calculated electronic and zero-point energies (in hartrees, H) of all compounds studied in this work obtained at the BPW91/ Au(SDD+f)6-31g(d,p) (other atoms) level of theory.

Complexes	Electronic energy	Zero-point energy
1	-1407.317078	0.546741
bipy	-495.1964221	0.1582318
2a	-1485.935611	0.6019494
Me_bipy	-573.8129423	0.2130365
2b	-1171.5155	0.3769161
Me ${ }_{2}$ bipy	-573.8129423	0.2130352
3	-1862.889171	0.6323482
$\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$ bipy	-950.7799686	0.2440807
4	-1483.522519	0.5596028
Phen	-571.4023264	0.1712111
5a	-1640.755722	0.6706048
Me ${ }_{4}$ Phen	-728.6268781	0.2822584
5b	-1326.33584	0.4459512
Me ${ }_{4}$ Phen	-728.6268781	0.2822592
6a	-1945.468461	0.7222703
Ph_{2} Phen	-1033.346682	0.3334371
6b	-1631.048277	0.49701
Ph_{2} Phen	-1033.346682	0.3334372
7	-1462.659172	0.5647677
$\mathrm{NH}(2-\mathrm{pyridyl})_{2}$	-550.5381651	0.1750494
8	-1541.247429	0.6202167
NEt(2-pyridyl) ${ }_{2}$	-629.1404062	0.232337
$\left(\mathrm{C}^{\wedge} \mathrm{C}\right)^{\text {tBu }} \mathrm{Au}^{+}$	-912.010434	0.3838097
$\left(\mathrm{C}^{\wedge} \mathrm{C}\right)^{\mathrm{H}} \mathrm{Au}^{+}$	-597.5814486	0.1587166

Table S5: Cartesian coordinates of optimized of all compounds studied in this work and corresponding
fragments

	\mathbf{x}	\mathbf{y}	\mathbf{z}
Complex 1			
C	0.727684	-2.469396	0.030855
C	1.308711	-1.188713	0.022113
C	2.669397	-1.000136	0.18186
C	3.537303	-2.109546	0.292496
C	2.961855	-3.381882	0.244201
C	1.583001	-3.564184	0.128174
H	3.085675	-0.000166	0.258153
H	3.590657	-4.26176	0.318234
H	1.177736	-4.572448	0.131364
C	-3.537317	-2.109533	-0.292498
C	-2.96187	-3.381872	-0.244241
C	-1.583015	-3.564178	-0.128231
C	-0.727696	-2.469393	-0.030894
C	-1.30872	-1.188709	-0.02212
C	-2.669408	-1.000128	-0.181846
H	-3.590673	-4.261747	-0.318289
H	-1.177751	-4.572442	-0.131447
H	-3.085686	-0.000155	-0.25811
Au	-0.000001	0.375056	-0.000001
C	0.618417	3.358285	-0.405367
C	2.309983	2.077205	-1.355967
C	1.139173	4.51519	-0.98672
C	2.887054	3.190493	-1.95589
H	2.721779	1.083935	-1.496098
C	2.29076	4.432063	-1.76269
H	0.636724	5.467038	-0.861199
H	3.774702	3.074196	-2.567681
H	2.703409	5.323883	-2.223854
C	-0.618386	3.358294	0.405357
C	-2.309969	2.077242	1.35596
C	-1.139127	4.515209	0.986703
C	-2.887027	3.19054	1.955877
H	-2.721779	1.083977	1.496096
C	-2.290717	4.432101	1.762671
H	-0.636666	5.46705	0.861178
H	-3.774677	3.074257	2.567667
H	-2.703355	5.323929	2.223831
N	-1.218383	2.160799	0.584276
N	1.218398	2.160781	-0.584281
C	5.04207	-1.876325	0.476162
C	5.587412	-1.060127	-0.712439
H	5.120798	-0.071127	-0.778095
H	6.665431	-0.903342	-0.600359

H	5.417212	-1.579822	-1.660824
C	5.82398	-3.195313	0.549564
H	6.889738	-2.981314	0.674895
H	5.512236	-3.809514	1.400512
H	5.713088	-3.787317	-0.364793
C	5.279245	-1.097886	1.785902
H	4.787373	-0.119596	1.777898
H	4.901445	-1.655323	2.648718
H	6.350778	-0.926932	1.934948
C	-5.042087	-1.876306	-0.476131
C	-5.279288	-1.097802	-1.785826
H	-6.350824	-0.926845	-1.934845
H	-4.787421	-0.119509	-1.777782
H	-4.9015	-1.655193	-2.648678
C	-5.823995	-3.195293	-0.549587
H	-5.713092	-3.78734	0.364742
H	-6.889755	-2.98129	-0.674896
H	-5.512258	-3.809453	-1.400567
C	-5.58741	-1.060171	0.712522
H	-5.417198	-1.579918	1.660876
H	-5.120792	-0.071176	0.778225
H	-6.665431	-0.903377	0.600466
$\mathbf{1}$ (N N) ligand			
C	0.745356	0.002446	-0.000585
C	2.682799	-1.158053	0.372056
C	1.461845	1.147949	-0.37312
C	3.483534	-0.069862	0.025128
H	3.140096	-2.098715	0.676599
C	2.851883	1.108471	-0.358921
H	0.938123	2.042881	-0.694264
H	4.56577	-0.150549	0.051865
H	3.430029	1.980384	-0.652233
C	-0.745356	0.002446	0.000585
C	-2.682799	-1.158053	-0.372056
C	-1.461845	1.147949	0.37312
C	-3.483534	-0.069862	-0.025128
H	-3.140096	-2.098715	-0.676599
C	-2.851883	1.108471	0.358921
H	-0.938123	2.042881	0.694264
H	-4.56577	-0.150549	-0.051866
H	-3.43003	1.980384	0.652233
N	-1.351019	-1.137101	-0.362675
N	1.351019	-1.137101	0.362675
Complex $2 \mathbf{2}$			
C	-0.729901	-2.612851	-0.640179

C	-1.298683	-1.422753	-0.144906	H	-6.690879	-1.138444	0.131065
C	-2.625354	-1.365038	0.244154	C	4.946024	-2.388281	0.496064
C	-3.483929	-2.468288	0.037702	C	4.984266	-2.219666	2.028323
C	-2.937068	-3.604954	-0.563101	H	6.020812	-2.154764	2.376475
C	-1.579451	-3.690947	-0.875021	H	4.467688	-1.310786	2.354062
H	-3.014685	-0.486188	0.74786	H	4.511036	-3.070197	2.528668
H	-3.563379	-4.467835	-0.758133	C	5.735208	-3.652533	0.128107
H	-1.182159	-4.622604	-1.268783	H	5.758387	-3.820526	-0.95379
C	3.483985	-2.468228	0.03766	H	6.770494	-3.548955	0.466947
C	2.937135	-3.604904	-0.563135	H	5.323408	-4.545558	0.608883
C	1.579517	-3.69092	-0.875039	C	5.638668	-1.182529	-0.169198
C	0.729952	-2.612837	-0.640188	H	5.601077	-1.256886	-1.26101
C	1.298719	-1.422729	-0.144921	H	5.179285	-0.23291	0.126524
C	2.625394	-1.364992	0.24412	H	6.690916	-1.138335	0.130988
H	3.563459	-4.467775	-0.758173	C	-3.719502	5.483841	0.192383
H	1.182235	-4.622583	-1.268795	H	-4.205576	5.470931	1.175066
H	3.014719	-0.486134	0.74782	H	-3.118217	6.393513	0.130694
Au	0.000002	0.152697	-0.122516	H	-4.511109	5.537294	-0.559823
C	-0.740692	3.114564	0.04527	C	3.71936	5.483923	0.19258
C	-2.655448	1.897509	-0.430849	H	3.118071	6.393587	0.130796
C	-1.498555	4.275748	0.186403	H	4.205305	5.471042	1.175328
C	-3.458072	3.023868	-0.332493	H	4.511064	5.537371	-0.559523
H	-3.072117	0.93389	-0.699432		N) ligand		
C	-2.885866	4.250892	0.016269	C	-0.74353	-0.415874	0.054349
H	-1.014882	5.218826	0.412307	C	-2.64746	-1.557597	0.579467
H	-4.522325	2.937547	-0.526649	C	-1.483417	0.72516	-0.28096
C	0.740612	3.114582	0.045294	C	-3.463516	-0.470637	0.275908
C	2.65541	1.897587	-0.430809	H	-3.091402	-2.490314	0.92583
C	1.498443	4.275779	0.186488	C	-2.874445	0.714419	-0.171308
C	3.458004	3.023963	-0.3324	H	-0.976373	1.610413	-0.655025
H	3.07211	0.933986	-0.69941	H	-4.54234	-0.551677	0.379469
C	2.885761	4.250961	0.016391	C	0.743542	-0.415627	-0.055976
H	1.014742	5.218837	0.412417	C	2.648955	-1.558727	-0.572663
H	4.522264	2.937674	-0.526532	C	1.481436	0.731583	0.26248
N	1.33435	1.928577	-0.215385	C	3.463005	-0.46613	-0.284859
N	-1.334394	1.928539	-0.215393	H	3.093777	-2.492532	-0.914929
C	-4.945965	-2.388363	0.496122	C	2.872353	0.721627	0.153349
C	-4.984193	-2.219745	2.028381	H	0.972591	1.622742	0.619732
H	-4.467627	-1.310857	2.354112	H	4.541213	-0.543292	-0.397527
H	-6.020737	-2.154858	2.376543	N	1.320689	-1.553598	-0.465223
H	-4.510944	-3.070267	2.528724	N	-1.318981	-1.550095	0.4764
C	-5.735133	-3.652629	0.128176	C	-3.699503	1.925761	-0.507096
H	-6.770416	-3.549068	0.467028	H	-3.960196	2.48081	0.401995
H	-5.758322	-3.820623	-0.95372	H	-3.158416	2.609331	-1.166856
H	-5.323312	-4.545647	0.608947	H	-4.637284	1.646612	-0.996435
C	-5.638634	-1.182623	-0.169135	C	3.699711	1.921793	0.522137
H	-5.17926	-0.232997	0.126579	H	3.101899	2.837135	0.523582
H	-5.601056	-1.256983	-1.260947	H	4.12724	1.804374	1.524928

H	4.534534	2.057733	-0.171967
Complex 2b			
C	3.230211	-0.731403	-0.23479
C	1.996945	-1.296132	0.148088
C	1.904735	-2.630091	0.516254
C	3.031063	-3.454148	0.381737
C	4.227429	-2.931249	-0.099271
C	4.336141	-1.570144	-0.38417
H	0.995148	-3.043662	0.939093
H	5.093164	-3.576193	-0.21486
H	5.294192	-1.158827	-0.689061
C	3.031127	3.454187	0.381335
C	4.227481	2.931211	-0.099618
C	4.336167	1.570071	-0.384357
C	3.230223	0.731368	-0.234872
C	1.996968	1.29616	0.147952
C	1.904787	2.630165	0.515958
H	5.093226	3.576126	-0.215289
H	5.294208	1.158701	-0.689209
H	0.995212	3.043803	0.938756
Au	0.425192	0.00002	0.052155
C	-2.533886	-0.74058	0.044842
C	-1.294467	-2.654978	-0.372723
C	-3.700722	-1.498557	0.124445
C	-2.424295	-3.457247	-0.334313
H	-0.319219	-3.071902	-0.593987
C	-3.667595	-2.885599	-0.046854
H	-4.653968	-1.014949	0.302706
H	-2.328231	-4.521048	-0.526495
C	-2.533904	0.740549	0.044886
C	-1.294567	2.654996	-0.372691
C	-3.700749	1.498495	0.124646
C	-2.424411	3.457235	-0.334147
H	-0.319349	3.071954	-0.594021
C	-3.66767	2.885546	-0.046591
H	-4.653964	1.01486	0.303001
H	-2.32839	4.521048	-0.526291
N	-1.335715	1.334223	-0.154942
N	-1.335668	-1.334217	-0.154916
C	-4.9075	-3.719911	0.06324
H	-4.930881	-4.231258	1.032765
H	-5.813453	-3.115348	-0.016655
H	-4.933981	-4.492091	-0.710425
C	-4.907581	3.719827	0.063673
H	-5.81353	3.115249	-0.016161
H	-4.930874	4.231122	1.033228
H	-4.934158	4.492048	-0.709948
H	2.96435	-4.50098	0.663079

H	2.964433	4.501055	0.662552
$\mathbf{2 b}\left(\mathrm{~N}^{\wedge} \mathrm{N}\right)$ ligand			
C	-0.743539	-0.415857	0.054338
C	-2.647449	-1.557611	0.57943
C	-1.483431	0.725171	-0.280955
C	-3.463519	-0.470655	0.275882
H	-3.091382	-2.49034	0.925771
C	-2.874462	0.714413	-0.171304
H	-0.976396	1.61044	-0.654992
H	-4.542343	-0.551708	0.37943
C	0.743538	-0.415613	-0.055968
C	2.648937	-1.558735	-0.572634
C	1.481445	0.731594	0.262486
C	3.462999	-0.466148	-0.284839
H	3.093747	-2.492551	-0.914882
C	2.872356	0.72162	0.153357
H	0.972615	1.622761	0.619735
H	4.541205	-0.543325	-0.397501
N	1.320669	-1.55359	-0.465201
N	-1.318973	-1.550092	0.476377
C	-3.699504	1.925777	-0.507049
H	-3.959349	2.481341	0.401969
H	-3.158755	2.608899	-1.16755
H	-4.637723	1.646619	-0.995533
C	3.699743	1.921784	0.52209
H	3.101722	2.836983	0.524534
H	4.128182	1.803923	1.524437
H	4.533933	2.058293	-0.172667

Complex 3

C	-3.563984	0.711386	0.156383
C	-2.283401	1.285342	0.246749
C	-2.094038	2.597903	0.638039
C	-3.20291	3.433763	0.899004
C	-4.475432	2.875094	0.754892
C	-4.658193	1.536932	0.402591
H	-1.094236	2.9951	0.783548
H	-5.354935	3.481329	0.939264
H	-5.666463	1.136787	0.337968
C	-3.202981	-3.433708	-0.898997
C	-4.475492	-2.875016	-0.754873
C	-4.658225	-1.536851	-0.40257
C	-3.563998	-0.711325	-0.156371
C	-2.283427	-1.285304	-0.246749
C	-2.094092	-2.597868	-0.638042
H	-5.355007	-3.481235	-0.939237
H	-5.666487	-1.136687	-0.337938
H	-1.094298	-2.995083	-0.78356
Au	-0.719821	0.000004	-0.000005

C	2.267018	0.68001	-0.290331	0	5.662466	2.589406	-1.726186
C	0.986359	2.510155	-0.937968	0	5.662422	-2.589493	1.726194
C	3.427019	1.293106	-0.764087	C	6.856293	3.225645	-2.221984
C	2.099841	3.182927	-1.42209	H	7.662355	2.517797	-2.037305
H	-0.006446	2.940183	-1.008955	H	6.756159	3.431105	-3.289597
C	3.344528	2.564762	-1.327901	H	7.031202	4.1623	-1.688862
H	4.384623	0.789304	-0.724693	C	6.856238	-3.225748	2.221998
H	2.014539	4.164609	-1.874956	H	7.031132	-4.16241	1.688883
C	2.267007	-0.68005	0.290323	H	7.662312	-2.517914	2.037317
C	0.986321	-2.510179	0.937952	H	6.756099	-3.4312	3.289612
C	3.426998	-1.293163	0.764084		N) ligand		
C	2.099791	-3.182967	1.422078	C	0.734002	-1.37337	-0.129039
H	-0.00649	-2.940194	1.008933	C	2.577931	-2.541452	-0.823763
C	3.344487	-2.564818	1.327896	C	1.500778	-0.226072	0.108081
H	4.384609	-0.789374	0.724695	C	3.426115	-1.454626	-0.626914
H	2.014474	-4.164648	1.874942	H	2.974713	-3.484037	-1.196975
N	1.069288	-1.300604	0.367216	C	2.870897	-0.269581	-0.14661
N	1.069308	1.30058	-0.367229	H	1.050554	0.676258	0.505127
C	-2.96828	4.883867	1.34052	H	4.489652	-1.510837	-0.831561
C	-2.195884	4.889392	2.675041	C	-0.734002	-1.37337	0.129039
H	-1.220707	4.398395	2.588645	C	-2.577931	-2.541452	0.823763
H	-2.018253	5.918726	3.004268	C	-1.500778	-0.226072	-0.108081
H	-2.760949	4.375399	3.45891	C	-3.426116	-1.454626	0.626914
C	-4.286643	5.643907	1.542325	H	-2.974713	-3.484037	1.196975
H	-4.072217	6.672082	1.849082	C	-2.870897	-0.269581	0.14661
H	-4.87668	5.693016	0.62116	H	-1.050554	0.676258	-0.505127
H	-4.903232	5.191675	2.32576	H	-4.489652	-1.510837	0.831561
C	-2.145743	5.624887	0.267879	N	-1.267201	-2.515782	0.584266
H	-1.158573	5.172866	0.123792	N	1.267201	-2.515782	-0.584266
H	-2.663076	5.626554	-0.696912	0	4.967068	0.883167	-0.136673
H	-1.984721	6.66559	0.568044	C	3.77489	0.896163	0.081371
C	-2.968383	-4.883817	-1.340514	C	-3.77489	0.896163	-0.081371
C	-2.145853	-5.624852	-0.267878	0	-4.967068	0.883167	0.136673
H	-1.984854	-6.665558	-0.568042	0	3.115838	1.967356	0.55671
H	-1.158672	-5.172851	-0.1238	0	-3.115838	1.967355	-0.556711
H	-2.663179	-5.626506	0.696916	C	3.930436	3.118579	0.800555
C	-4.286762	-5.643831	-1.542309	H	3.25413	3.882977	1.181888
H	-4.903349	-5.191586	-2.32574	H	4.706409	2.890557	1.535267
H	-4.07236	-6.672009	-1.849069	H	4.407928	3.453537	-0.123505
H	-4.876793	-5.692928	-0.62114	C	-3.930436	3.118579	-0.800555
C	-2.195996	-4.889359	-2.67504	H	-4.407921	3.453543	0.123507
H	-2.761055	-4.375355	-3.458906	H	-3.254131	3.882974	-1.181896
H	-1.220808	-4.398381	-2.588651	H	-4.706414	2.890555	-1.535261
H	-2.018387	-5.918696	-3.004267		lex 4		
0	4.462304	4.399735	-2.356007	C	-0.727882	-2.708859	0.022965
C	4.541019	3.29801	-1.864328	C	-1.310413	-1.42879	0.007244
C	4.540965	-3.298083	1.864328	C	-2.673181	-1.244942	0.155199
0	4.462234	-4.399807	2.356005	C	-3.539661	-2.356012	0.258842

C	-2.961548	-3.627174	0.21625	H	5.402201	-1.835867	1.712635
C	-1.581403	-3.805673	0.113217	C	5.825875	-3.446832	-0.498581
H	-3.09336	-0.247008	0.229153	H	5.519766	-4.058197	-1.353598
H	-3.58884	-4.508544	0.285103	H	6.893254	-3.23536	-0.614258
H	-1.173407	-4.812788	0.121808	H	5.705691	-4.040742	0.41335
C	3.539591	-2.356102	-0.258916	C	5.297882	-1.344793	-1.733998
C	2.961429	-3.627247	-0.21653	H	4.926776	-1.899006	-2.601769
C	1.581274	-3.805711	-0.113571	H	4.808152	-0.365381	-1.728211
C	0.72779	-2.708878	-0.023197	H	6.371182	-1.175994	-1.872608
C	1.310365	-1.428831	-0.007295	C	-0.593846	5.571429	-0.33237
C	2.673146	-1.245014	-0.155162	C	0.594056	5.571413	0.332287
H	3.588692	-4.508631	-0.285481	H	-1.073741	6.50649	-0.605142
H	1.173243	-4.81281	-0.122309	H	1.073998	6.506462	0.60502
H	3.093367	-0.247085	-0.228954	H	-2.964385	5.213485	-1.66123
Au	-0.000003	0.135317	0.000023	H	2.96457	5.213407	1.661175
C	-0.642349	3.113166	-0.321132) ligand		
C	-2.381651	1.896632	-1.247973	C	0.727945	-0.376535	-0.000053
C	-1.243473	4.342642	-0.678021	C	2.695654	-1.546504	-0.000147
C	-3.032001	3.066247	-1.66983	C	1.413889	0.869581	0.00017
H	-2.796263	0.918038	-1.464081	C	3.47465	-0.373653	0.000018
C	-2.473904	4.28987	-1.366992	H	3.184859	-2.52031	-0.00026
H	-3.964859	2.988872	-2.217175	C	2.823847	0.839758	0.000139
C	0.642439	3.113147	0.321149	H	4.558501	-0.43577	0.000027
C	2.381674	1.896567	1.248054	C	-0.727945	-0.376535	0.000053
C	1.243621	4.342609	0.677992	C	-2.695654	-1.546504	0.000147
C	3.032077	3.066167	1.66987	C	-1.413889	0.869581	-0.00017
H	2.796234	0.917961	1.464208	C	-3.47465	-0.373653	-0.000019
C	2.474045	4.289804	1.366974	H	-3.184859	-2.52031	0.00026
H	3.964925	2.988769	2.217228	C	-2.823847	0.839758	-0.000139
N	1.239724	1.919502	0.569654	H	-4.558501	-0.435771	-0.000027
N	-1.239692	1.919539	-0.569587	N	-1.375324	-1.56032	0.000238
C	-5.046593	-2.125957	0.428716	N	1.375325	-1.56032	-0.000238
C	-5.297798	-1.344993	1.734286	C	0.679673	2.098802	0.000113
H	-4.808001	-0.365614	1.728717	C	-0.679673	2.098802	-0.000113
H	-6.371078	-1.176161	1.873011	H	1.233425	3.034413	0.000215
H	-4.92667	-1.899456	2.601887	H	-1.233425	3.034413	-0.000215
C	-5.825984	-3.446691	0.498362	H	3.378276	1.775216	0.000204
H	-6.89335	-3.235199	0.614132	H	-3.378277	1.775216	-0.000203
H	-5.705859	-4.040388	-0.413715		lex 5a		
H	-5.519873	-4.058275	1.353222	C	0.722658	-3.095918	-0.091777
C	-5.583578	-1.314369	-0.766786	C	1.304451	-1.815352	-0.124445
H	-5.11937	-0.324055	-0.830205	C	2.647687	-1.635091	-0.402935
H	-5.402376	-1.835173	-1.712468	C	3.497149	-2.746629	-0.599695
H	-6.663137	-1.160809	-0.665327	C	2.924111	-4.017465	-0.507789
C	5.046544	-2.126078	-0.428646	C	1.560472	-4.193973	-0.27025
C	5.583486	-1.314823	0.767101	H	3.059117	-0.636363	-0.508903
H	6.663058	-1.161279	0.665752	H	3.539474	-4.899355	-0.644872
H	5.119308	-0.324511	0.830749	H	1.150899	-5.200263	-0.245635

C	-3.497049	-2.746717	0.599706	H	-4.6096	-0.756244	2.18595
C	-2.923994	-4.017539	0.50772	H	-6.151687	-1.563852	2.489675
C	-1.560358	-4.194014	0.27014	C	0.618438	5.154791	0.285192
C	-0.722565	-3.095936	0.091701	C	-0.618701	5.154756	-0.285176
C	-1.304382	-1.815384	0.124434	H	1.098306	6.100399	0.510607
C	-2.647613	-1.635155	0.402972	H	-1.09863	6.100336	-0.510577
H	-3.53934	-4.899446	0.644775	C	4.508546	2.48024	2.108029
H	-1.150768	-5.200296	0.245472	H	4.524881	2.947949	3.097574
H	-3.059053	-0.636438	0.508999	H	4.74788	1.422814	2.240583
Au	0.000015	-0.251441	-0.000002	H	5.313536	2.929625	1.517052
C	0.66661	2.717552	0.267782	C	3.301929	5.176783	1.530971
C	2.463271	1.499341	1.048801	H	4.279603	4.99926	1.976797
C	1.307344	3.934775	0.584788	H	3.44984	5.795606	0.639144
C	3.170772	2.65031	1.441632	H	2.713725	5.767008	2.242391
H	2.890365	0.517102	1.225293	C	-3.302174	5.176591	-1.531008
C	2.599044	3.89737	1.183141	H	-3.450191	5.795376	-0.639172
C	-0.666725	2.717515	-0.267784	H	-2.713967	5.766883	-2.242371
C	-2.463304	1.4992	-1.048834	H	-4.279804	4.999006	-1.976904
C	-1.307529	3.934701	-0.584791	C	-4.508609	2.479982	-2.10811
C	-3.170863	2.650128	-1.441678	H	-4.524952	2.94772	-3.097641
H	-2.890336	0.516935	-1.225334	H	-4.747865	1.422543	-2.240701
C	-2.599215	3.897221	-1.183169	H	-5.313645	2.929294	-1.517139
N	-1.274987	1.520621	-0.459485		N) ligand		
N	1.274943	1.520693	0.459474	C	-0.727779	-0.587578	0.000001
C	4.979792	-2.519329	-0.921422	C	-2.678497	-1.763511	0.000021
C	5.09822	-1.734409	-2.243233	C	-1.429782	0.647055	-0.000004
H	4.609732	-0.756037	-2.185769	C	-3.491502	-0.607555	0.000008
H	6.151845	-1.5636	-2.489483	H	-3.164956	-2.740772	0.000036
H	4.642111	-2.287297	-3.070396	C	-2.852917	0.627698	-0.000008
C	5.745721	-3.840611	-1.07508	C	0.727779	-0.587578	-0.000001
H	6.795773	-3.630078	-1.299776	C	2.678497	-1.763511	-0.000021
H	5.719093	-4.437992	-0.157804	C	1.429782	0.647055	0.000003
H	5.351356	-4.448228	-1.895886	C	3.491502	-0.607555	-0.000008
C	5.638009	-1.713081	0.215436	H	3.164956	-2.740772	-0.000036
H	5.181513	-0.724072	0.329781	C	2.852917	0.627698	0.000007
H	5.554633	-2.23895	1.17201	N	1.36253	-1.777414	-0.000012
H	6.701538	-1.558605	0.004162	N	-1.36253	-1.777414	0.000012
C	-4.979684	-2.519458	0.921501	C	-0.680764	1.867011	-0.000004
C	-5.637956	-1.713143	-0.215277	C	0.680764	1.867011	0.000004
H	-6.701481	-1.558705	-0.003959	H	-1.210529	2.81409	-0.000007
H	-5.181487	-0.724114	-0.329561	H	1.210529	2.81409	0.000007
H	-5.554597	-2.238941	-1.171891	C	-4.988346	-0.767148	0.000012
C	-5.74559	-3.840761	1.0751	H	-5.450151	-0.310351	-0.882555
H	-5.351188	-4.448427	1.895853	H	-5.260872	-1.826086	0.000042
H	-6.795637	-3.630254	1.299849	H	-5.450155	-0.310298	0.882549
H	-5.718988	-4.438082	0.157785	C	-3.624931	1.919716	-0.000031
C	-5.09807	-1.734628	2.243369	H	-4.701981	1.750028	0.000024
H	-4.641918	-2.287562	3.070477	H	-3.385936	2.525622	0.881422

H	-3.386016	2.525544	-0.88156	H	-3.177912	-4.194829	-1.859348
C	3.624931	1.919716	0.000031	C	1.932474	4.908552	-0.824406
H	3.385934	2.525624	-0.88142	H	0.87466	5.176002	-0.876113
H	3.386018	2.525542	0.881562	H	2.390696	5.522443	-0.042001
H	4.701981	1.750028	-0.000027	H	2.390353	5.192156	-1.777445
C	4.988346	-0.767148	-0.000011	C	4.630939	3.590551	-0.592693
H	5.450151	-0.31035	0.882555	H	4.454512	4.649805	-0.773924
H	5.260872	-1.826086	-0.000041	H	5.241882	3.504716	0.31268
H	5.450155	-0.310299	-0.882549	H	5.228445	3.204748	-1.426006
	lex 5b			C	4.630951	-3.590539	0.592687
C	-3.638574	0.680561	0.263831	H	5.241896	-3.504696	-0.312685
C	-2.355452	1.232448	0.437305	H	5.228455	-3.204739	1.426003
C	-2.180255	2.474252	1.030103	H	4.454528	-4.649795	0.773912
C	-3.308382	3.22081	1.396921	C	1.932491	-4.908548	0.824405
C	-4.584777	2.710493	1.181607	H	2.390713	-5.522438	0.041998
C	-4.751041	1.441202	0.628757	H	2.390374	-5.192152	1.777442
H	-1.193227	2.869041	1.247921	H	0.874679	-5.176002	0.876115
H	-5.456327	3.292935	1.464504	5b	N) ligand		
H	-5.751284	1.037663	0.499213	c	0.727805	-0.587684	-0.000152
C	-3.308375	-3.220817	-1.396918	C	2.678622	-1.763491	-0.000451
C	-4.584771	-2.7105	-1.181614	C	1.429747	0.646932	0.000213
C	-4.751038	-1.441207	-0.628768	C	3.491583	-0.607478	-0.000063
C	-3.638573	-0.680566	-0.263836	H	3.165134	-2.740732	-0.000762
C	-2.355449	-1.232453	-0.437302	C	2.852905	0.627729	0.000161
C	-2.180249	-2.47426	-1.030095	C	-0.727805	-0.587684	0.000155
H	-5.45632	-3.292941	-1.464515	C	-2.678623	-1.76349	0.000453
H	-5.751281	-1.037668	-0.49923	C	-1.429747	0.646932	-0.000213
H	-1.193221	-2.869049	-1.247907	C	-3.491584	-0.607478	0.000062
Au	-0.791529	-0.000002	0.000002	H	-3.165134	-2.740732	0.000764
C	2.171232	0.71348	-0.082341	C	-2.852906	0.627729	-0.000158
C	0.953274	2.652337	-0.362254	N	-1.362676	-1.777484	0.000593
C	3.388071	1.416033	-0.216556	N	1.362676	-1.777484	-0.000588
C	2.103997	3.440356	-0.545925	C	0.680775	1.86689	0.000163
H	-0.027555	3.112226	-0.425529	C	-0.680775	1.86689	-0.000172
C	3.351156	2.820848	-0.448031	H	1.210533	2.813966	0.000312
C	2.171235	-0.713476	0.082341	H	-1.210533	2.813966	-0.000331
C	0.953283	-2.652336	0.362256	C	4.988429	-0.767032	0.000033
C	3.388076	-1.416025	0.216553	H	5.260992	-1.825966	0.000481
C	2.104009	-3.440352	0.545925	H	5.450284	-0.310565	-0.882686
H	-0.027544	-3.112229	0.425533	H	5.450161	-0.30981	0.882423
C	3.351166	-2.820841	0.448028	C	3.624845	1.919798	0.000283
N	0.973484	-1.349717	0.110186	H	4.701904	1.750161	0.000576
N	0.973479	1.349718	-0.110184	H	3.386107	2.525596	-0.881327
C	4.607843	0.672179	-0.110064	H	3.385652	2.525742	0.881667
C	4.607846	-0.672167	0.11006	C	-3.624843	1.9198	-0.000274
H	5.553409	1.194708	-0.19907	H	-3.386075	2.52561	0.881319
H	5.553413	-1.194692	0.199064	H	-3.385676	2.525729	-0.881675
H	-3.177922	4.194821	1.859354	H	-4.701903	1.750165	-0.00053

C	-4.98843	-0.767032	-0.000042	H	1.665725	-5.172015	0.313314
H	-5.450289	-0.310583	0.882684	H	3.169491	-5.65168	-0.492488
H	-5.450158	-0.309792	-0.882425	H	2.49721	-6.645749	0.811712
H	-5.260993	-1.825966	-0.000513	C	3.476023	4.832524	-1.515048
Complex 6a				C	2.654097	5.616187	-0.472716
C	4.052226	-0.705707	0.180426	H	2.497221	6.645742	-0.811723
C	2.77151	-1.277845	0.289132	H	1.66573	5.172009	-0.313332
C	2.592912	-2.577101	0.729721	H	3.169489	5.651673	0.492484
C	3.704556	-3.398709	1.020043	C	4.79715	5.580851	-1.741781
C	4.975096	-2.841932	0.855108	H	5.413544	5.098646	-2.507268
C	5.150637	-1.516529	0.455411	H	4.587255	6.598371	-2.085477
H	1.595922	-2.97405	0.891738	H	5.386063	5.660301	-0.822005
H	5.857552	-3.437094	1.060463	C	2.70665	4.792072	-2.85063
H	6.15695	-1.113859	0.3769	H	3.271462	4.246417	-3.612975
C	3.704566	3.398701	-1.02004	H	1.729661	4.30787	-2.748273
C	4.975104	2.841924	-0.855095	H	2.534369	5.809144	-3.218971
C	5.150642	1.51652	-0.455396	C	-4.210176	-0.642453	-0.226153
C	4.052228	0.7057	-0.180417	C	-4.210175	0.642461	0.226157
C	2.771513	1.277839	-0.289132	H	-5.149678	-1.154233	-0.399486
C	2.59292	2.577094	-0.729725	H	-5.149676	1.154242	0.399492
H	5.857563	3.437085	-1.060445	H	-1.593952	-4.309367	-1.40462
H	6.156954	1.11385	-0.376877	H	-1.593943	4.309371	1.404617
H	1.595931	2.974043	-0.891749	C	-4.148225	-3.47247	-1.294594
Au	1.207187	-0.000001	-0.000003	C	-5.070854	-2.971368	-2.226626
C	-1.767287	-0.693431	-0.192667	C	-4.351372	-4.750108	-0.7515
C	-0.533583	-2.579479	-0.709222	C	-6.174192	-3.733086	-2.600637
C	-2.990442	-1.353242	-0.461309	H	-4.903306	-2.001065	-2.685882
C	-1.687945	-3.294192	-1.03451	C	-5.46449	-5.501081	-1.117236
H	0.446597	-3.032205	-0.811315	H	-3.647807	-5.14251	-0.022143
C	-2.940746	-2.703479	-0.924981	C	-6.376645	-4.995034	-2.042656
C	-1.767285	0.693434	0.192667	H	-6.872804	-3.343141	-3.334807
C	-0.533578	2.579481	0.709219	H	-5.61947	-6.482442	-0.67916
C	-2.990439	1.353248	0.46131	H	-7.241166	-5.584818	-2.332222
C	-1.687938	3.294196	1.034508	C	-4.148217	3.472479	1.294596
H	0.446604	3.032205	0.811309	C	-4.351362	4.750117	0.751499
C	-2.94074	2.703485	0.924982	C	-5.070845	2.971381	2.226631
N	-0.565292	1.319918	0.285888	C	-5.464478	5.501092	1.117235
N	-0.565294	-1.319916	-0.285891	H	-3.647798	5.142515	0.02214
C	3.476008	-4.832532	1.515047	C	-6.174181	3.733103	2.600642
C	2.706624	-4.792082	2.850622	H	-4.9033	2.001079	2.685887
H	1.729636	-4.30788	2.748258	C	-6.376632	4.99505	2.042658
H	2.534339	-5.809154	3.218961	H	-5.619455	6.482453	0.679158
H	3.27143	-4.246428	3.612972	H	-6.872792	3.343161	3.334813
C	4.797132	-5.580861	1.74179	H	-7.241151	5.584837	2.332224
H	4.587234	-6.598381	2.085483	$6 \mathrm{a}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)$ ligand			
H	5.386053	-5.66031	0.822019	C	-0.729154	1.867687	-0.014335
H	5.41352	-5.098657	2.507283	C	-2.671177	3.065389	-0.102039
C	2.65409	-5.616194	0.472707	C	-1.427966	0.627549	0.00273

C	-3.4623	1.906296	-0.076388	H	6.811384	0.975665	-0.613474		
H	-3.149934	4.043498	-0.146589	C	4.36691	-3.039459	1.756452		
C	-2.852822	0.664188	-0.006763	C	5.643664	-2.558733	1.482996		
C	0.729154	1.867686	0.014335	C	5.810881	-1.3612	0.788464		
C	2.671177	3.065389	0.102038	C	4.698869	-0.646472	0.339087		
C	1.427965	0.627549	-0.00273	C	3.415447	-1.174501	0.573791		
C	3.4623	1.906295	0.076387	C	3.239345	-2.338994	1.306411		
H	3.149934	4.043497	0.146587	H	6.514759	-3.105842	1.830446		
C	2.852822	0.664187	0.006763	H	6.811355	-0.975709	0.613626		
N	1.352507	3.062993	0.060519	H	2.252208	-2.703854	1.570376		
N	-1.352507	3.062993	-0.060521	Au	1.85118	-0.00001	-0.000022		
C	-0.680324	-0.593234	0.000893	C	-1.115545	0.719255	0.022532		
C	0.680323	-0.593234	-0.000891	C	0.118911	2.674104	0.079742		
H	-1.218053	-1.535215	-0.008752	C	-2.338459	1.424594	0.123876		
H	1.218051	-1.535215	0.008755	C	-1.035462	3.445625	0.222431		
H	-4.545404	1.984645	-0.079454	H	1.098562	3.139108	0.075138		
H	4.545404	1.984644	0.079453	C	-2.289183	2.84675	0.251329		
C	-3.693248	-0.558625	0.054244	C	-1.115553	-0.71924	-0.022593		
C	-3.570673	-1.478588	1.105717	C	0.118883	-2.674101	-0.079818		
C	-4.673183	-0.782858	-0.922533	C	-2.338475	-1.424567	-0.123921		
C	-4.402344	-2.593397	1.172986	C	C	-1.0355	-3.445611		-0.22249
:---									
H									

H	-4.277636	-2.591543	-2.10923	H	-4.299883	-3.291153	1.999401
C	-5.719731	-5.353761	-0.752821	H	-6.014451	-3.680976	0.243789
H	-4.935683	-6.470004	0.915836	Complex 7			
H	-6.242792	-4.059569	-2.394776	C	0.729538	-2.43908	-0.305414
H	-6.582522	-5.999986	-0.883231	C	1.314214	-1.175445	-0.095739
H	4.235739	3.953629	-2.32781	C	2.672163	-1.033019	0.129254
H	4.235628	-3.953669	2.327844	C	3.530133	-2.153929	0.084006
6b ($N^{\wedge} N$) ligand				C	2.952668	-3.39555	-0.192005
c	0.729154	1.867673	0.014326	C	1.576462	-3.542886	-0.370166
C	2.671175	3.065379	0.102008	H	3.09467	-0.06151	0.362596
C	1.427966	0.627535	-0.00274	H	3.575072	-4.281373	-0.247516
C	3.462299	1.906286	0.076364	H	1.166025	-4.534887	-0.538094
H	3.149931	4.043488	0.146547	C	-3.530133	-2.153929	0.084006
C	2.852823	0.664176	0.006747	C	-2.952668	-3.39555	-0.192005
C	-0.729154	1.867673	-0.014327	C	-1.576462	-3.542886	-0.370166
C	-2.671175	3.06538	-0.102009	C	-0.729538	-2.43908	-0.305414
C	-1.427967	0.627536	0.00274	C	-1.314214	-1.175445	-0.095739
C	-3.4623	1.906287	-0.076364	C	-2.672163	-1.033019	0.129254
H	-3.149931	4.043489	-0.146549	H	-3.575072	-4.281373	-0.247516
C	-2.852823	0.664178	-0.006747	H	-1.166025	-4.534887	-0.538094
N	-1.352505	3.06298	-0.060498	H	-3.09467	-0.06151	0.362596
N	1.352505	3.06298	0.060496	Au	0	0.381322	-0.164446
C	0.680323	-0.593247	-0.000894	C	1.228907	3.12597	0.527666
C	-0.680324	-0.593246	0.000895	C	2.554247	2.020607	-1.023605
H	1.21805	-1.535229	0.008752	C	2.21256	4.105916	0.710616
H	-1.218051	-1.535229	-0.008749	C	3.555843	2.969872	-0.92596
H	4.545403	1.984635	0.079427	H	2.639574	1.166525	-1.686462
H	-4.545403	1.984636	-0.079427	C	3.390038	4.015194	-0.014384
C	3.69326	-0.558627	-0.054249	C	-1.228907	3.12597	0.527666
C	3.570659	-1.478638	-1.105677	C	-2.554246	2.020607	-1.023605
C	4.673243	-0.782798	0.922494	C	-2.21256	4.105917	0.710615
C	4.402349	-2.593433	-1.172934	C	-3.555843	2.969872	-0.925961
H	2.833857	-1.303951	-1.884684	H	-2.639574	1.166525	-1.686462
C	5.50101	-1.900523	0.856855	C	-3.390038	4.015194	-0.014385
H	4.772035	-0.080122	1.745422	N	-1.429333	2.075516	-0.282594
C	5.367917	-2.80967	-0.190946	N	1.429333	2.075517	-0.282594
H	4.299874	-3.291161	-1.999392	C	5.029415	-1.968505	0.349678
H	6.249508	-2.06225	1.627519	C	5.614527	-0.964666	-0.663172
H	6.014453	-3.680975	-0.243789	H	5.146435	0.021728	-0.576013
C	-3.69326	-0.558627	0.054249	H	6.687822	-0.833853	-0.488931
C	-4.673237	-0.782802	-0.922498	H	5.47871	-1.316415	-1.691113
C	-3.570664	-1.478633	1.105682	C	5.805399	-3.286622	0.219705
C	-5.501004	-1.900527	-0.856859	H	6.867858	-3.107004	0.410718
H	-4.772025	-0.08013	-1.74543	H	5.465808	-4.033687	0.944308
C	-4.402354	-2.593428	1.172939	H	5.720879	-3.714849	-0.784602
H	-2.833867	-1.303942	1.884692	C	5.227185	-1.428368	1.780271
C	-5.367916	-2.80967	0.190947	H	4.73408	-0.461473	1.926566
H	-6.249497	-2.062259	-1.627526	H	4.823911	-2.124503	2.522309

H	6.29371	-1.29081	1.98848	C	-2.655998	-1.27511	0.132275
C	-5.029415	-1.968505	0.349678	C	-3.498399	-2.404589	0.226634
C	-5.614527	-0.964664	-0.663171	C	-2.901398	-3.662784	0.115444
H	-6.687822	-0.833852	-0.488929	C	-1.522392	-3.81195	-0.038997
H	-5.146434	0.021729	-0.576011	H	-3.091422	-0.286352	0.232874
H	-5.47871	-1.316413	-1.691112	H	-3.510744	-4.55773	0.170702
C	-5.805399	-3.286621	0.219704	H	-1.098278	-4.811502	-0.081129
H	-5.465809	-4.033688	0.944306	C	3.57106	-2.309762	0.164105
H	-6.867858	-3.107003	0.410717	C	3.006437	-3.583463	0.063734
H	-5.720879	-3.714848	-0.784604	C	1.62947	-3.768614	-0.066559
C	-5.227185	-1.428369	1.780272	C	0.768455	-2.675666	-0.125246
H	-4.823911	-2.124505	2.522309	C	1.336376	-1.386921	-0.086352
H	-4.73408	-0.461475	1.926567	C	2.697742	-1.202793	0.084128
H	-6.29371	-1.290812	1.988481	H	3.640275	-4.461786	0.108454
H	4.446553	2.883835	-1.537367	H	1.230902	-4.778937	-0.100877
H	-4.446553	2.883835	-1.537367	H	3.111141	-0.203761	0.174938
H	4.160671	4.770089	0.107635	Au	-0.005896	0.131804	-0.309993
H	-4.160671	4.77009	0.107634	C	-1.251179	2.920852	0.036718
H	2.035181	4.9365	1.386586	C	-2.500036	1.622239	-1.446897
H	-2.035181	4.9365	1.386585	C	-2.182366	3.959746	-0.074936
N	0	3.233729	1.188603	C	-3.455998	2.611868	-1.603777
H	0	3.951693	1.900152	H	-2.571731	0.672538	-1.966329
	N) ligand			C	-3.298084	3.795548	-0.885517
C	1.258042	-0.428801	0.014748	C	1.168283	2.923164	0.176829
C	2.597194	1.355154	0.488702	C	2.489776	1.745751	-1.343841
C	2.361679	-1.198805	-0.399645	C	2.181557	3.87919	0.335364
C	3.755905	0.68548	0.108463	C	3.507621	2.680315	-1.274924
H	2.65105	2.381065	0.85106	H	2.562278	0.868095	-1.977306
C	3.623072	-0.629388	-0.339368	C	3.358893	3.745868	-0.385703
C	-1.258068	-0.428694	-0.013804	N	1.369732	1.842043	-0.602417
C	-2.596721	1.355447	-0.488563	N	-1.447068	1.761547	-0.621082
C	-2.362158	-1.198775	0.399327	C	-5.002409	-2.20883	0.45574
C	-3.755828	0.685703	-0.109732	C	-5.220604	-1.471319	1.792125
H	-2.650154	2.381475	-0.850657	H	-4.747706	-0.483752	1.797522
C	-3.623448	-0.629295	0.337907	H	-6.291029	-1.326564	1.973998
N	-1.374295	0.821598	-0.461058	H	-4.808619	-2.044234	2.6288
N	1.374731	0.821368	0.462265	C	-5.755795	-3.54495	0.513555
H	4.723133	1.173694	0.162659	H	-6.821638	-3.357492	0.676135
H	-4.722999	1.173932	-0.16479	H	-5.660144	-4.108283	-0.420444
H	4.492835	-1.201264	-0.651075	H	-5.405765	-4.176649	1.336373
H	-4.493535	-1.20123	0.648607	C	-5.595792	-1.37197	-0.694857
H	2.22115	-2.211282	-0.768796	H	-5.142645	-0.376369	-0.750974
H	-2.222037	-2.211335	0.7684	H	-5.44787	-1.867309	-1.66002
N	-0.000059	-1.023346	0.001065	H	-6.672169	-1.23353	-0.546732
H	-0.000096	-2.030546	0.000489	C	5.073286	-2.074606	0.366077
Complex 8				C	5.295743	-1.327587	1.696506
C	-0.690759	-2.697011	-0.112174	H	6.365163	-1.155522	1.859751
C	-1.294092	-1.426055	-0.062904	H	4.798236	-0.352288	1.707467

H	4.91265	-1.908119	2.541639
C	5.862527	-3.390328	0.414622
H	5.766078	-3.959115	-0.515974
H	6.925638	-3.174083	0.558376
H	5.543617	-4.028386	1.245184
C	5.623971	-1.226293	-0.797202
H	5.471704	-1.728045	-1.758313
H	5.143018	-0.243523	-0.847771
H	6.698802	-1.059138	-0.668705
H	-4.296094	2.455243	-2.270704
H	4.395876	2.564939	-1.885182
H	-4.018983	4.601758	-0.981774
H	4.14227	4.490395	-0.280616
H	-2.005902	4.898245	0.431286
H	2.028885	4.732613	0.983251
N	-0.07803	3.060123	0.805527
C	-0.139277	3.594806	2.182654
H	-0.938439	3.04805	2.693745
H	0.793686	3.27325	2.654104
C	-0.327718	5.099822	2.396641
H	-1.36658	5.416016	2.278646
H	-0.043965	5.343278	3.424979
H	0.289473	5.708123	1.730294
$8\left({ }^{\wedge} N\right)$ ligand			
C	1.205024	-0.033244	-0.097076
C	3.47922	0.056567	-0.441285
C	1.320864	-1.294424	0.522721
C	3.696749	-1.186645	0.133703
H	4.311418	0.638829	-0.834975
C	2.57904	-1.861608	0.629265
C	-1.270066	0.057889	-0.112606
C	-2.569251	-1.824052	-0.344305
C	-2.401754	0.820764	0.247905
C	-3.746005	-1.153042	-0.033084
H	-2.587324	-2.887655	-0.579464
C	-3.642119	0.203137	0.274451
N	-1.368045	-1.247062	-0.394528
N	2.276411	0.624959	-0.55354
H	4.695411	-1.60507	0.199973
H	-4.698331	-1.672024	-0.021125
H	2.687035	-2.832367	1.105709
H	-4.522276	0.77784	0.549964
H	0.446382	-1.811424	0.888722
H	-2.309032	1.864231	0.523467
N	-0.013131	0.659548	-0.214233
C	0.058572	2.092689	-0.527945
H	0.846917	2.218559	-1.2719
H	-0.88719	2.374042	-0.996597

C	0.359558	2.969241	0.683336
H	1.331855	2.70555	1.107454
H	0.39547	4.022626	0.386297
H	-0.395981	2.861113	1.46811
$\left(\mathrm{C}^{\wedge} \mathrm{C}\right) \mathrm{Au}^{+}(\mathrm{tBu})$			
C	0.728058	-1.256345	0.000019
C	1.351752	-0.005335	0.000028
C	2.694143	0.25448	-0.000001
C	3.57115	-0.860647	-0.000006
C	2.992465	-2.134023	0.000006
C	1.61139	-2.337327	0.000029
H	3.095856	1.263508	-0.000002
H	3.63353	-3.007665	-0.000001
H	1.218132	-3.350326	0.000051
C	-3.57115	-0.860647	0.000004
C	-2.992465	-2.134023	-0.000001
C	-1.61139	-2.337327	-0.00002
C	-0.728058	-1.256345	-0.000011
C	-1.351752	-0.005335	-0.000025
C	-2.694143	0.25448	-0.000003
H	-3.63353	-3.007665	0.000007
H	-1.218132	-3.350326	-0.000039
H	-3.095856	1.263507	-0.000006
Au	0	1.529769	0.000001
C	5.083206	-0.609343	-0.000009
C	5.463746	0.192197	-1.260894
H	4.975183	1.171738	-1.293195
H	6.543847	0.36783	-1.276115
H	5.196039	-0.35029	-2.172917
C	5.873087	-1.926514	-0.000188
H	6.943831	-1.703485	-0.000214
H	5.666709	-2.529776	0.889813
H	5.666619	-2.529589	-0.890294
C	5.463783	0.191878	1.261069
H	4.975194	1.171394	1.293643
H	5.196123	-0.350854	2.17296
H	6.543883	0.367529	1.276294
C	-5.083206	-0.609343	0.000003
C	-5.46378	0.191868	-1.261082
H	-6.543879	0.367522	-1.276308
H	-4.975188	1.171382	-1.293663
H	-5.196122	-0.350872	-2.172968
C	-5.873087	-1.926515	0.000192
H	-5.66662	-2.529583	0.890303
H	-6.94383	-1.703485	0.000215
H	-5.666709	-2.529783	-0.889804
C	-5.463747	0.192207	1.260882
H	-5.196039	-0.350271	2.17291

	-1.975188	1.17175	1.293173
H	-4.9743849	0.367836	1.276102
$\left(\mathrm{C}^{\wedge} \mathrm{C}\right) \mathrm{Au}^{+}(\mathrm{H})$			
C	-0.729581	-1.463503	-0.000003
C	-1.344891	-0.207947	-0.000001
C	-2.692842	0.050798	-0.000002
C	-3.528118	-1.080831	-0.000004
C	-2.981301	-2.361093	-0.000006
C	-1.600006	-2.558216	-0.000005
H	-3.115664	1.051078	0
H	-3.64119	-3.222761	-0.000008
H	-1.194883	-3.56602	-0.000007
C	3.528118	-1.080831	0.000001
C	2.981301	-2.361093	-0.000002
C	1.600006	-2.558216	-0.000003
C	0.729581	-1.463503	-0.000002
C	1.344891	-0.207947	0
C	2.692842	0.050798	0.000002
H	3.64119	-3.222761	-0.000003
H	1.194883	-3.56602	-0.000005
H	3.115664	1.051078	0.000004
Au	0	1.326544	0.000002
H	4.603961	-0.936018	0.000002
H	-4.603961	-0.936018	-0.000005

