Supplementary Information

Crystal Structures and Local Environments of NASICON-type Na₃FeV(PO₄)₃ and Na₄FeV(PO₄)₃ Positive Electrode Materials for Naion Batteries

Sunkyu Park^{1,2,3}, Jean-Noël Chotard^{1,5}, Dany Carlier^{2,5}, Iona Moog³, Matthieu Courty¹, Mathieu Duttine², François Fauth⁴, Antonella Iadecola⁵, Laurence Croguennec^{2,5} and Christian Masquelier^{1,5}

 ¹ Laboratoire de Réactivité et de Chimie des Solides, Université de Picardie Jules Verne, CNRS-UMR 7314, F-80039 Amiens Cedex 1, France
² CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB UMR 5026, F-33600 Pessac, France
³ TIAMAT, 15 Rue Baudelocque, 80000 Amiens
⁴ CELLS-ALBA Synchrotron, Cerdanyola del Vallès, E-08290 Barcelona, Spain
⁵ RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie, FR CNRS 3459, F-80039 Amiens Cedex 1, France

Synthesis conditions	Sites	δ (mm/s)	Δ (mm/s)	Γ (mm/s)	Rel. Area (%)
Solid-state in Ar	Fe ^{III}	0.46(2)	0.36(2)	0.43(2)	11(3)
	Fe ^{II} (1)	1.26(1)	2.15(1)	0.35(1)	70(3)
	Fe ^{ll} (2)	1.21(2)	2.36(2)	0.25(2)	11(3)
	Fe ^{ll} (3)	1.12(1)	1.50(2)	0.27(2)	8(3)
Sol-gel in Ar/H ₂	Fe ^{III}	0.47(2)	0.36(2)	0.41(2)	9(3)
	Fe ^{II} (1)	1.25(1)	2.13(2)	0.36(2)	78(3)
	Fe ^{II} (2)	1.20(2)	2.35(2)	0.28(2)	10(3)
	Fe ^{ll} (3)	1.10(2)	1.47(3)	0.27(2)	3(3)
Sol-gel in Ar	Fe ^{III}	0.50(2)	0.40(2)	0.44(2)	31(3)
	Fe ^{II} (1)	1.22(1)	2.07(1)	0.40(1)	64(3)
	Fe ^{ll} (2)	1.19(2)	2.34(2)	0.28(2)	5(3)
NaFePO ₄ [ref. 1]	Fe ^{ll} (2)	1.2	2.19	_	
Na ₃ Fe ₂ (PO ₄) ₃ [ref. 2]	Fe ^{III}	0.451(3)	0.326(6)	0.282(5)	

Table S1. Room temperature ⁵⁷Fe Mössbauer refined parameters, isomer shift (δ), quadrupole splitting (Δ), Full-Width at Half-Maximum (Γ) and Relative Area (%), of the target composition Na₄FeV(PO₄)₃ obtained through various synthesis conditions.

The Fe^{II}(3) site tends to appear with more sodiated phase. Although tiny peaks around $Q = 1 \text{ Å}^{-1}$ from the XRD patterns (see inset of FigureS1-3) were observed with more sodiated phase, further investigation is required to determine the origin of the signal.

Figure S1. Le Bail fitting of the target composition Na₄FeV(PO₄)₃ obtained through solid-state synthesis in Ar.

Figure S2. Le Bail fitting of the target composition $Na_4FeV(PO_4)_3$ obtained through sol-gel synthesis followed by an annealing in Ar/H_2

Figure S3. Le Bail fitting of the target composition Na₄FeV(PO₄)₃ obtained through sol-gel synthesis followed by an annealing in Ar

Figure S4. a) k^2 -weighted Fourier transforms of Fe K-edge EXAFS oscillations collected for Na₃Fe₂(PO₄)₃ (green), Na₃FeV(PO₄)₃ (black), and for the electrochemically sodiated samples obtained at cut-off voltages of 2 V (red) and 1.3 V (blue). **b)** Corresponding backward Fourier transforms in *q*-space.

Table S2. Refined parameters of first shell of Fe K-edge EXAFS spectra. *k*-range: 2.6 - 10.8 Å⁻ ¹, R-range: 1.0 - 2.1 Å, dR = 0, sine window.

Sample	d(Fe – O) (Å)	E _o (eV)	σ² (Ų)	R-factor
$Na_4FeV(PO_4)_3$ / cut-off at 1.3 V	2.067(5)	0.1	0.0121(5)	0.009
$Na_{3+x}FeV(PO_4)_3$ / cut-off at 2.0 V	2.053(5)	0.2	0.0122(5)	0.012
$Na_3FeV(PO_4)_3$ / as-synthesized	1.986(5)	0.4	0.0071(5)	0.002
$Na_3Fe_2(PO_4)_3$ / reference	1.986(5)	0.3	0.0074(5)	0.001

Figure S5. a) k^2 -weighted Fourier transforms of V K-edge EXAFS oscillations collected for Na₃V₂(PO₄)₃ (green), Na₃FeV(PO₄)₃ (black), and for the samples electrochemically sodiated at cut-off voltages of 2 V (red) and 1.3 V (blue). **b)** Corresponding backward Fourier transforms in *q*-space.

Table S3. Refined parameters of first shell of V K-edge EXAFS spectra. k-range: 2.7 - 10.7 10.7	Å⁻¹,
R-range: 1.0 - 2.2 Å, dR = 0, sine window.	

Sample	d(V – O) (Å)	E₀ (eV)	σ² (Ų)	R-factor
$Na_4FeV(PO_4)_3$ / cut-off at 1.3 V	2.023(5)	-1.1	0.0038(5)	0.0091
$Na_{3+x}FeV(PO_4)_3$ / cut-off at 2.0 V	2.033(5)	0.2	0.0041(5)	0.0078
$Na_3FeV(PO_4)_3$ / as-synthesized	2.018(5)	0.1	0.0032(5)	0.0107
$Na_3V_2(PO_4)_3$ / reference	2.018(5)	1.1	0.0028(5)	0.0095

Sample	Sites	δ (mm/s)	Δ (mm/s)	Г (mm/s)	Rel. Area (%)
Na₄FeV(PO₄)₃ cut-off 1.3 V (Sample C)	Fe ^{III}	0.47(2)	0.50(2)	0.38(2)	13(3)
	Fe ^{II}	1.24(1)	2.25(2)	0.38(1)	87(3)
Na _{3+x} FeV(PO ₄) ₃ cut-off 2.0 V (Sample B)	Fe ^{III}	0.47(2)	0.46(3)	0.34(2)	26(2)
	Fe ^{II}	1.23(1)	2.23(1)	0.37(2)	74(2)
Na ₃ FeV(PO ₄) ₃ as-synthesized (Sample A)	Fe ^{III}	0.46(1)	0.33(1)	0.28(1)	97(3)
	Fe ^{II}	1.15(2)	2.10(4)	0.34(3)	3(3)
Na ₃ Fe ₂ (PO ₄) ₃ [ref. 2]	Fe ^{III}	0.451(3)	0.326(6)	0.282(5)	

Table S4. Room temperature 57 Fe Mössbauer refined parameters of Na₃FeV(PO₄)₃ and electrochemically sodiated samples at cut-off voltages of 2 V and 1.3 V.

The overall oxidation states of ex-situ samples obtained by Mössbauer spectroscopy may slightly differ from those obtained by X-ray absorption spectroscopy as it was difficult to measure the two different techniques with the same samples.

Figure S6. Rietveld refinement of $Na_4V_2(PO_4)_3$ obtained from $Na_3V_2(PO_4)_3$ through electrochemical sodiation.

Figure S7. SEM images of as-synthesized Na₃FeV(PO₄)₃

Figure S8. Comparison of the electrochemical curves of carbon black electrode and $Na_3FeV(PO_4)_3$ electrode with a cut-off voltage of 1.3 V vs. Na^+/Na (sample C).

References

- Kosova, N. V.; Podugolnikov, V. R.; Devyatkina, E. T.; Slobodyuk, A. B. Structure and Electroch emistry of NaFePO₄ and Na₂FePO₄F Cathode Materials Prepared via Mechanochemical Route. *Mater. Res. Bull.* 2014, *60*, 849–857. https://doi.org/10.1016/j.materresbull.2014.09.081.
- Idczak, R.; Tran, V. H.; Świątek-Tran, B.; Walczak, K.; Zając, W.; Molenda, J. The Effects of Mn Substitution on the Structural and Magnetic Properties of the NASICON-Type Na₃Fe_{2-x}Mn_x(PO ₄)₃ Solid Solution. *J. Magn. Magn. Mater.* 2019, 491, 1–11. https://doi.org/10.1016/j.jmmm.2 019.165602.