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Abstract: A district cooling system is a centralized cooling supply system
providing air conditioning to a set of buildings located in the same district. De-
signing and sizing such a system is very complex, as both the initial construction
cost and the operation cost of the cooling system during its entire life must be con-
sidered. We first propose a modeling approach aiming at formulating this combi-
natorial optimization problem as a mixed-integer linear program of tractable size.
We then extend a previously published hierarchical decomposition technique in
order to find the optimal solution in an efficient way. Finally, we provide prelimi-
nary computational results based on a real-life case study located in China.

1 INTRODUCTION
A district cooling system (DCS) is a centralized cooling supply system. It con-
sumes electricity to cool down water and distributes it through an underground
pipe network to the buildings in the district to provide them with air conditioning.
DCSs usually are highly energy-efficient cooling systems. Thus, according to the
Electrical and Mechanical Services Department of Hong Kong (EMSD, 2020),
using DCSs instead of traditional air-cooled air-conditioning systems results in
energy savings of 35%. DCSs also compare well with individual water-cooled
air-conditioning systems using cooling towers as the energy savings may be up to
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20%. Furthermore, this lower energy consumption leads to lower greenhouse gas
emissions, which helps reduce the environmental impact of the system.

Designing a DCS involves choosing the type and number of chillers to be
installed as well as the ice storage capacity. These decisions should take into ac-
count not only the construction costs, but also the operation costs of the system
during its whole lifetime. Computing these operation costs is a challenging prob-
lem. Namely, the demand for cooling power is highly variable and features a daily,
weekly and yearly seasonality together with random variations. Moreover, due to
technical reasons owing to the chillers, these operations costs are not at all propor-
tional to the produced cooling power. Thus, in order to accurately estimate them,
a detailed schedule describing, on a hourly basis, the on/off status and the load
allocation of each chiller should be built for an horizon spanning a whole year.
Furthermore, the deployment of a district cooling system is usually not a one-shot
decision but rather a process in which investment decisions are made step by step,
following the development of the district and the upward trend of the average de-
mand over the years. This implies that a multi-phase strategic deployment plan
should be built.

This optimization problem can be formulated as a mixed-integer program.
However, its resolution poses several difficulties. The first one comes from the
non-linearity of the chillers’ performance curves. These performance curves give,
for each chiller, the amount of electricity consumed as a function of the amount of
produced cooling power and thus play a key role in the estimation of the system
operation costs. Second, the need to simultaneously build a multi-year phasing
plan and a detailed operational schedule for each day of the planning horizon
leads to the formulation of a huge mathematical program, which cannot be solved
directly by current mathematical programming solvers. Finally, the use of clas-
sical decomposition methods, such as the Benders’ decomposition approach, is
not straightforward as it would imply sub-problems involving binary and/or inte-
ger decision variables. The mixed-integer program modeling the problem is thus
computationally intractable as such.

However, solution approaches exploiting the natural hierarchy between de-
cisions relative to the system design and decisions relative to the daily opera-
tion schedules have been investigated in several works. Weber et al. (2007) thus
studied the optimal design of a multi-energy system. A two-level optimization
method is implemented. The master optimization level explores the set of possi-
ble system designs with the use of an evolutionary algorithm. For each considered
system design, the slave optimization level calculates the optimal cost by linear
programming. This approach does not provide a guaranteed optimal solution and
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the formulation of the slave sub-problems as linear programs does not allow to
accurately model the way the system operates in practice. Iyer and Grossmann
(1998) also use a bi-level method to optimize the choice and sizes of equipment
for utility systems. At the design optimization level, the problem aims at fixing
the system infrastructure. All binary decision variables relative to the operation
schedules are removed from this master problem. Each time a potential infras-
tructure is found, the operation optimization level solves a set of single-period
scheduling sub-problems taking the current system infrastructure as input data.
Design cuts are used to tighten the gap between the solutions found at both lev-
els. Yokoyama et al. (2015) consider local energy supply systems and propose a
customized Branch & Cut algorithm exploiting the hierarchical relationship be-
tween the design and operation decision variables of the mathematical program.
The upper level problem corresponds to the initial optimization problem in which
all operational integer and binary variables are kept but relaxed to be continuous.
Each time an integer feasible solution is found at the upper level, a sequence of
single-period independent operation sub-problems is solved to check the feasibil-
ity and value of the current design solution. Note that Iyer and Grossmann (1998)
and Yokoyama et al. (2015) both consider a single-phase variant of the problem,
i.e. a variant in which all design decisions are one-shot decisions. Moreover,
their design infrastructure did not allow short-term intra-day energy storage. This
allows them to consider single-period (i.e. one-hour) scheduling sub-problems
rather than multi-period (i.e. 24-hour) scheduling sub-problems, which signifi-
cantly decreases the size of these sub-problems.

In the present work, we propose a solution approach for the optimal design,
over a multi-phase investment horizon, of a local district cooling system in which
intra-day ice storage is allowed. This approach relies on three key elements. First,
we seek to reduce the size of the initial optimization problem. We thus consider
a deployment plan involving a limited number of phases, some of which span-
ning several years. Moreover, we use the clustering approach described in Zatti
et al. (2019) to select a small set of typical days to represent with the smallest
possible loss of accuracy the various conditions under which the system will be
operated. Second, we build a piecewise linear approximation of the performance
curves of each chiller and propose a way to exploit their convexity to reduce the
size of the formulation of the operation scheduling sub-problems. This results
in the formulation of a large-size mixed-integer linear program (MILP). Thirdly,
we develop an exact solution algorithm based on the hierarchical decomposition
method recently proposed by Yokoyama et al. (2015) to solve this MILP.

The remaining of the paper is organized as follows. Section 2 gives a detailed

3



description of the problem under study. In Section 3, the approximation of the
nonlinear performance curves and the clustering method used to identify typical
days are first presented. The formulation of the optimization problem as an MILP
is then provided. Section 4 introduces the hierarchical decomposition algorithm
used to solve this MILP. In Section 5, the results of our preliminary computational
experiments based on a real-life case study in China are reported.

2 PROBLEM PRESENTATION
Before the actual construction of a cooling system, a thorough and reliable sys-
tem design is necessary. The system design consists in selecting the appropriate
chillers and in sizing the ice storage capacity to be installed. The main objective
is to design a system which will be able to meet the clients’ cooling demand at all
time while leading to the lowest long-term investments and operation costs.

2.1 Resources
A chiller is a machine that removes heat from a liquid by using a variety of tech-
niques such as vapor-compression. We consider here electric-powered chillers
which are used to cool water. These chillers can be classified into two main cat-
egories depending on their functionality. Standard chillers (denoted by STDC)
only produce cooling power to satisfy the instantaneous demand of the customers.
Ice chillers (denoted by ICEC) have two distinct operating modes: they either pro-
duce cooling power, but usually with a lower efficiency than the one of a STDC,
or they produce ice. This ice can be stored for a few hours in an ice storage tank
and be melted afterwards to provide cooling power.

Within each category of chillers (STDC or ICEC), there are chillers with dif-
ferent production capacity levels. Each level corresponds to a predefined produc-
tion range, i.e. to a minimum and maximum cooling power (or ice) it can provide
per hour when turned on, and to a set of performance curves. Namely, the en-
ergy consumption of a chiller is a function of the produced cooling power and
the ambient temperature. We thus have performance curves representing the rela-
tion between the electric power consumed by a chiller and the cooling power (or
ice) produced under different ambient temperatures. Note that these performance
curves are usually not linear. In the present paper, we will focus on the case of
non-linear convex performance curves. The more general non-convex case is left
for future work.
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Another key resource in the system is the ice storage tank. This tank is linked
to all the ice chillers of the system, can store the produced ice for a few hours and
release it afterwards to produce cooling power. It has a maximal storage capacity,
which can be chosen within a predefined range.

See Figure 1 for a schematic representation of the studied DCS.

Figure 1: Overview of a DCS

2.2 Cooling demand
As highlighted in the introduction, the cooling demand to be satisfied by the lo-
cal cooling system is highly variable. First, the demand for cooling power varies
throughout the day and is usually much higher at daytime than at night. There
are also weekly and yearly variations: the demand pattern of a weekday thus sig-
nificantly differs from the one observed during the week-end and the total daily
demand varies during the year, in particular with the summer and winter seasons.
Finally, during the first operating years of the system, the demand displays a gen-
eral upward trend as new clients join the district cooling system. After this initial
period, the demand usually gets more or less stable for the rest of the system
lifetime.

Parts of these demand variations display a seasonal pattern and are thus to
some extent predictable. However, the demand is also subject to the presence
of extreme weather conditions which are difficult to anticipate. Days with such
effects should be considered separately from others. This translates in particular
into the existence of extreme days, i.e. days in which the total daily or hourly
demand is exceptionally low or high as compared to its usual value.

A key requirement is that the system should be able to satisfy the demand
for cooling power at all time, whatever the hour of the day, the day in week or
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the season. In particular, it should be able to satisfy all the demand, even if it is
exceptionally low or high.

2.3 Electricity supply
The chillers are powered by electricity bought from an external utility provider.

Similar to the cooling power demand, the electricity price displays daily, weekly
and yearly variations. In particular, within a day, three types of periods, termed
peak, flat and valley periods, can be distinguished. They correspond respectively
to the highest, intermediate or lowest prices. Peak periods are usually at noon and
in the evening, the valley periods at night and early in the morning and the rest
of the day corresponds to flat periods. These price variations can be exploited to
reduce the total energy cost, e.g. by producing ice at night when the demand for
cooling power is low and the electricity rather cheap, storing it for a few hours
and releasing ice to produce cooling power at daytime when the demand is high
and the electricity more expensive.

Moreover, in many cases, the contract with the electricity provider includes a
maximum allowed instantaneous power consumption from the grid. This upper
limit is set contractually at the beginning of each year. The corresponding cost,
called the contract fee, is proportional to the subscribed maximum power. This
contract fee differs from the electricity consumption cost. It namely buys the
permission of consuming electric power and sets an upper limit (expressed in
kW) to this instantaneous consumption. In contrast, the electricity consumption
cost depends on the total amount of consumed electric energy which is expressed
in kWh.

2.4 Costs
The total cost of the system comprises two main parts: the design cost and the
operation cost.

The design cost is the sum of the purchase, installation and maintenance costs
of the chillers and ice storage tank, and of the annual contract fee. Once the
cooling system design is chosen, this cost will be determined.

The operation cost corresponds to the cost of the electricity consumed when
the system operates to satisfy the customers’ cooling demand. Due to the non-
linearity of the chillers’ performance curves, this cost is not proportional to the
amount of produced cooling power. In order to accurately estimate it, we need to
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build a detailed production schedule for each day of the planning horizon using a
fine time discretization.

The objective of this optimization problem is to find a system design which can
minimize the sum of the design and operation costs. Therefore, the best system
design as well as the most cost-efficient daily optimal operation strategy corre-
sponding to the chosen system should be searched.

3 PROBLEM MODELING

3.1 Selection of typical days
The huge size of the optimization problem, which combines both long-term design
and detailed (usually with an hourly timestep) production scheduling decisions,
makes it computationally intractable. A possible way of getting over this difficulty
consists in selecting, within the available data, a subset of typical days and extreme
days which will represent the various conditions under which the system will be
operated. These days should be carefully chosen as they will have a strong impact
on the selection of the chillers and sizing of the ice storage tank.

This can be done by solving a clustering problem such as the k-medoid prob-
lem. In our case, this problem consists in partitioning the set of days belonging
to the available historical time series into groups or clusters and in choosing one
member (i.e. one day) in each cluster to represent it so as to minimize the total
Euclidian distance between each day in the time series and its representative. In
this work, we use the extension of the k-medoid problem proposed by Zatti et al.
(2019) to select typical days for optimizing the design of our system.

3.2 Piecewise linear approximation of the performance curves
The performance curves of a given type of chiller are supplied by its manufac-
turer. They give, for a discrete set of values of the ambient temperature, the
amount of electric energy consumed as a function of the output cooling power.
Their non-linearity is a major source of difficulty for the resolution of our opti-
mization problem. We thus propose to build a piecewise linear approximation of
each curve.

This approximation is built using the following procedure. We first fix a pre-
defined number of breakpoints in the piecewise linear approximation to be built.
We then determine the coordinates of these breakpoints by heuristically solving a
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small non-linear optimization problem aiming at minimizing the distance between
the approximate performance curve and the actual one.

Then, for each hour of each selected day, we use historical data about the
average ambient temperature to determine the approximate performance curve
that should be used to compute the energy consumption of each type of chiller
during each time period.

3.3 Notation
The problem modeling relies on a three-level time discretization. The forecast
lifetime of the system is first divided into a set of phases or investment periods,
each one typically spanning one or several years: we assume that design decisions
such as the installation of a new chiller can be only made at the beginning of a new
phase. Let Φ be the number of considered phases. Within each considered phase,
the various conditions under which the system will be operated will be represented
by a number of preselected typical days and extreme days. We denote by Dφ the
set of typical days and extreme days used to represent the various daily demand
patterns during phase φ ∈ {1, ...,Φ}. Each selected day d of phase φ has a weight
wφ,d corresponding to the number of days it represents, i.e. to the number of days
of the original historical time series which were assigned to the cluster it belongs
to. Finally, in order to describe the intra-day variations of the cooling demand
and electricity price, each selected day is divided into 24 one-hour periods. For
the sake of readability, in what follows, we use the letter t to represent the time
period (φ,d,h) corresponding to phase φ, selected day d and hour h. Let Demt
(resp. EPt) represent the cooling power demand (resp. the electricity price) at
time period t.

There are different types of chillers that may be installed in the system. Each
type of chiller m = (p, l) can be described by its category p∈ {ST DC, ICEC} (i.e.
standard or ice chiller), which defines the list of commodities Cp ⊂ {COLD, ICE}
it can produce, and its production capacity level l ∈{1, ...,Lp}. Let M = {(p, l)|p∈
{ST DC, ICEC}, l ∈ {1, ...,Lp}} be the set of all chiller types. We denote by Pmin

m,c
and Pmax

m,c the minimum and maximum output power of a chiller of type m = (p, l)
producing commodity c ∈ Cp. As explained above, the performance curve of a
chiller of type m producing commodity c at time period t is approximately repre-
sented by a piecewise linear function comprising Bt,m,c breakpoints. Let at,m,c,b
and ot,m,c,b be the abscissa and ordinate of breakpoint b of this piecewise linear
function.

With respect to the design of the system, some restrictions have to be taken into
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account. There is namely an upper bound SDmax
m to the total number of chillers of

type m that may be installed in the system. The total ice storage capacity built in
the system should also stay below a maximum allowed capacity StoCmax. More-
over, in terms of design costs, we denote by FCφ,m the fixed cost of investing in a
chiller of type m at phase φ. This fixed cost comprises the construction or capital
expenditure cost at phase φ and the total maintenance cost of the chiller over its
whole lifetime (from phase φ to phase Φ ). Regarding the ice storage capacity, the
installation cost is broadly proportional to the installed capacity. We denote by
LCφ the cost of building one unit of ice storage capacity at phase φ. Finally, the
unit subscription cost for the maximum instantaneous power is assumed denoted
by SCφ. Note that all the design costs FCφ,m, LCφ and SCφ are assumed uniform
along each deployment phase.

3.4 Variables
In order to model the problem as a mixed-integer linear program, we introduce
two sets of decision variables.

The first set of decision variables corresponds to long-term design decisions
which will determine the general structure of the system, together with the multi-
year phasing plan. Thus, SDφ,m represents the integer number of chillers of type
m to be installed at the beginning of phase φ, StoCφ is a continuous variable
representing the ice storage capacity built at the beginning of phase φ and Cφ is
the maximum allowed electric power consumption contracted with the electric-
ity provider for phase φ. These variables will be referred to as design decision
variables in what follows.

The second set of decision variables are used to build the operational schedule
for each selected day d ∈Dφ of each phase φ. In the present work, we will focus
on the special case in which all performance curves of the chillers are convex.
This assumption allows us to use aggregate performance curves (see Appendix for
more detail about this) and to build the schedule while considering, in each period
t, aggregate scheduling variables, i.e. variables pertaining to the set of chillers of
identical type producing the same commodity c during t, instead of disaggregate
scheduling variables, i.e. variables pertaining to the status and output of each
individual chiller installed in the system in period t.

We thus introduce St,m,c the integer number of chillers of type m producing
commodity c during period t, Pt,m,c the total amount of commodity c produced by
the chillers of type m during period t and Qt,m,c the total electric consumption of
the chillers of type m producing commodity c in period t. Moreover, in order to
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monitor the ice storage and release, we define STOt the amount of ice stored in
the tank at the beginning of period t and Rt the amount of ice released during t.
These decisions will be referred to as operation decision variables in what follows.

3.5 Objective function
We seek to minimize the sum of the design and operation costs of the system over
its whole lifetime. The objective function of the mathematical program is thus
given by:

min
Φ

∑
φ=1

αφ

[
∑

m∈M
FCφ,mSDφ,m + LCφStoCφ +SCφCφ

+ ∑
d∈Dφ

wφ,d

23

∑
h=0

∑
m∈M

∑
c∈Cp

EPφ,d,hQφ,d,h,m,c

]
(1)

where αφ is the actualization rate for the costs incurred in phase φ.

3.6 Constraints
Similar to the decision variables, the constraints of the mathematical model can
be classified into two groups: design constraints and operation constraints.

3.6.1 Design constraints

Design constraints are constraints involving only design decision variables. In
the present case, for each type of chiller m ∈M , we have the following constraint
which states that the total number of chillers of type m included in the DCS should
be less than the maximum number of chillers of this type allowed.

Φ

∑
ϕ=1

SDϕ,m ≤ SDmax
m (2)

Similarly, Constraint (3) makes sure that the total ice storage capacity of the
system stays below the maximum allowed value.

Φ

∑
ϕ=1

StoCϕ ≤ StoCmax (3)
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3.6.2 Operation constraints

Operations constraints are constraints involving operation decision variables, to-
gether with design variables in some cases. For each time period t, we have the
following set of constraints.

Demand satisfaction The demand for cooling power must be satisfied at all
time. This can be done either by directly using the cooling power produced by the
currently turned on chillers and by releasing some ice from the ice storage tank.

∑
m∈M

Pt, m,COLD +Rt = Demt (4)

Chillers Regarding the chillers, two sets of constraints should be introduced in
the formulation.

First, for each type of chiller m ∈ M , the total number of operating (i.e.
turned on) chillers should be less than the number of chillers currently installed in
the DCS:

∑
c∈Cp

St,m,c ≤
φ

∑
ϕ=1

SDϕ,m (5)

Second, for each type of chiller m ∈M and each commodity c ∈ Cp it can
produce, the total amount produced by the turned on chillers should stay within
the allowed production range:

Pt,m,c ≤ Pmax
m,c St,m,c (6)

Pt,m,c ≥ Pmin
m,c St,m,c (7)

Electric consumption As shown in Appendix, when the chillers’ performance
curve are convex, the aggregate electric consumption of the set of chillers cor-
responding to a given type m = (p, l) ∈M and producing commodity c ∈ Cp in
t belongs to the epigraph of a piecewise linear function defined by breakpoints
b = 1...Bt,m,c . We thus have, for each m = (p, l) ∈M , each c ∈ Cp and each
b ∈ {1...Bt,m,c−1}, the following inequality:

Qt,m,c ≥ st,m,c,bPt, m, c + ct,m,c,bSt,m,c (8)
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where st,m,c,b =
ot,m,c,b+1−ot,m,c,b
at,m,c,b+1−at,m,c,b

is the slope of the line segment between break-
points b and b+1 and ct,m,c,b = ot,m,c,b−st,m,c,bat,m,c,b the corresponding constant
value. Note that Constraints (8) accurately compute the electric consumption of a
set of chillers only if the corresponding performance curve is convex. The more
general case of non-convex performance curve is left for future work.

Moreover, the total amount of electric energy consumed in period t is limited
by an upper bound, Cφ× 1hour, which represents the maximum instantaneous
power Cφ contracted with the electricity provider times the duration of the period
(one hour):

∑
m∈M

∑
c∈Cp

Qt,m,c ≤ Cφ (9)

Ice storage Regarding the ice storage, three constraints should be considered in
each time period.

First, the amount of ice stored in the tank should not exceed the current storage
capacity.

STOt ≤
φ

∑
ϕ=1

StoCϕ (10)

Second, the amount of ice released during the period should be less than the
amount stored in the tank at the beginning of the period.

Rt ≤ STOt (11)

Third, the evolution of the ice inventory stored in the tank should comply with
inventory balance equations. We first consider time periods (φ,d,h) correspond-
ing to h ∈ {0...22} as the last hour of the day h = 23 requires a special treatment.
For each period (φ,d,h) such that h ∈ {0...22}, we have:

STOφ,d,h +
LICEC

∑
l=1

Pφ,d,h,ICEC,l,ICE−Rφ,d,h

= STOφ,d,h+1 (12)

Constraints (12) state that the amount of ice stored at the beginning of hour
h+ 1, STOφ,d,h+1, is equal to the amount of ice already stored at the beginning
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of hour h, STOφ,d,h, plus the total amount of ice produced by the ice chillers of
various capacity levels during h minus the ice melted during h. Note that the loss
of ice stored in the tank during a day is assumed to be negligible.

Moreover, for each time period (φ,d,h) corresponding to h = 23, i.e. to the
last hour of the selected day, we have the following inventory balance equation:

STOφ,d,23 +
LICEC

∑
l=1

Pφ,d,23,ICEC,l,ICE−Rφ,d,23

= STOφ,d,0 (13)

Namely, in practice, the entering inventory of a given day in the scheduling
horizon is imposed by the leaving inventory of the previous day. In our case, we
do not consider each individual day of the scheduling horizon but rather a number
of representative days which will not necessarily occur successively in practice.
We thus impose that the leaving ice inventory of a selected day d, computed as
STOφ,d,23 +∑

LICEC
l=1 Pφ,d,23,ICEC,l,ICE−Rφ,d,23 should be equal to the entering in-

ventory of the same selected day d, STOφ,d,0. This might be understood as the
fact that the selected day d will be cyclically repeated wφ,d times in the simplified
scheduling horizon used in our optimization problem for phase φ.

4 SOLUTION APPROACH
The mathematical program (1)-(13) formulated in Section 3 displays a particular
structure. We namely have a set of independent sub-problems. Each of them
corresponds to optimizing the detailed schedule for a single selected day d of a
single phase φ and involves operation variables and operation constraints relative
only to the corresponding day (φ,d). These independent sub-problems are linked
together by the design variables.

A Benders decomposition approach might seem appropriate for a problem
displaying such a structure in which coupling variables link together a set of in-
dependent sub-problems. However, its application is not straightforward here as
each sub-problem involves integer variables (namely variables St,m,c) and Benders
decomposition algorithms rely on the strong duality theory to generate Benders
cuts. We thus investigate another hierarchical decomposition approach recently
proposed by Yokoyama et al. (2015).
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4.1 Hierarchical structure of the problem
To better highlight the hierarchical structure of the problem and more easily ex-
plain the decomposition approach, we will use a compact formulation of the prob-
lem.

Vector x represents in a synthetic way the design variables relative to all
phases, i.e. x = (SD1,StoC1,C1, ...,SDφ,StoCφ,Cφ). Vector yk represents all the
continuous operation variables relative to a given selected day k = (φ,d) whereas
zk stands for all the binary or integer variables relative to day k.

With this notation, Problem (1)-(13) can be formulated as follows.

minZ = f0(x)+ ∑
k∈K

fk(yk,zk) (14)

h(x)≤ 0 (15)
gk(x,yk,zk)≤ 0 ∀k ∈K (16)
x ∈ Zν (17)
yk ∈ Rµ ∀k ∈K (18)

zk ∈ Zλ ∀k ∈K (19)

In the objective function (14), the term f0(x) corresponds to the design cost
whereas the term fk(yk,zk) computes the operation cost for each selected day k in
the set K = {(φ,d),φ = 1...Φ,d ∈Dφ}. Constraints (15) correspond to the design
constraints. Constraints (16) represent in a concise manner all the operations con-
straints relative to day k ∈ K . Constraints (17)-(19) give the definition domain of
each variable vector. Problem (14)-(19) will be referred to as the Complete Model
(CM) in what follows.

Note how all design variables are defined as integer variables in (17). This
restriction is added to the problem as it is a necessary condition for the use of the
hierarchical decomposition algorithm proposed by Yokoyama et al. (2015).

This hierarchical decomposition algorithm uses as a starting point a relaxation
of (CM) in which the design variables x are kept integer or binary whereas the
binary or integer operation variables z are relaxed. This gives the following semi-
relaxed or upper level problem denoted by (SRM).

14



minZSRM = f0(x)+ ∑
k∈K

fk(yk, z̃k) (20)

h(x)≤ 0 (21)
gk(x,yk, z̃k)≤ 0 ∀k ∈K (22)
x ∈ Zν (23)
yk ∈ Rµ ∀k ∈K (24)

z̃k ∈ Rλ ∀k ∈K (25)

Problem (SRM) thus involves the same number of variables and constraints as
the initial problem (14)-(19). However, the number of binary and integer variables
is drastically reduced, which should ease its resolution.

Furthermore, the hierarchical decomposition algorithm relies on the key ob-
servation that in Problem (CM), when the design of the system is determined,
the problem can be decomposed into a set of small independent operation sub-
problems. Let Problem OMk(x]) be the Operation Model relative to the optimiza-
tion of the schedule of day k ∈K , given a fixed design of the system described by
vector x]. It is formulated as:

minZk(x]) = fk(yk,zk) (26)

gk(x],yk,zk)≤ 0 (27)
yk ∈ Rµ (28)

zk ∈ Zλ (29)

4.2 Decomposition algorithm
The decomposition algorithm proposed by Yokoyama et al. (2015) exploits the
hierarchical structure described above. Thus, at the upper level, a relaxed version
of the initial problem, i.e. problem SRM, is solved by a Branch & Cut algo-
rithm. Each time a potential incumbent solution (x], ỹ, z̃) is found during this
tree search, the corresponding values of the design variables x] are used as input
data to solve a series of independent scheduling sub-problems, namely problems
OMk(x]),k ∈ K . This gives an accurate estimation of the feasibility and value of
the potential design solution x] at the operation level. If x] is found to be feasible
and less expensive than the current incumbent solution, it is accepted as the new
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incumbent solution. Otherwise, it is rejected. When all the branches are searched
in the upper level Branch & Bound search tree, the current incumbent solution
gives the optimal solution of the original problem. This hierarchical decompo-
sition approach, provided it converges within the allotted computation time, thus
guarantees the optimality of the found solution.

More precisely, the algorithm comprises the following main steps. See also
Figure 2 for a flow chart of the decomposition algorithm.

Step 1 A Branch & Bound search tree is carried out within the feasible space
of problem SRM: see 1© on the flow chart. The branching is done on the design
variables x until there is no open node left, in which case we end the calculation,
or an integer feasible solution of SRM, denoted by (x], ỹ, z̃), is obtained, in which
case we go to Step 2. The value Z̃(x]) = f0(x])+∑k∈K fk(ỹk, z̃k) provides a lower
bound of the actual cost of the design solution x].

Step 2 Before accepting x] as a new incumbent solution for the upper level
problem, we check its feasibility and compute its actual cost Z(x]).
- We first initialize the value of Z(x]) as Z(x])←− Z̃(x]).
Then, for each k ∈K :
- We solve Sub-problem OMk(x]) using a standard Branch & Cut algorithm: see
2© on the flow chart.

- If OMk(x]) is unfeasible, x] cannot be feasible for Problem (CM). We stop and
go to Step 4.
- Otherwise, we record the optimal integer solution of OMk(x]), (yk,zk), and its
optimal cost fk(yk,zk).
- We update the current estimation of the actual cost of the design solution x] by
computing Z(x])←− Z(x])+ fk(yk,zk)− fk(ỹk, z̃k).
- If Z(x]) is larger than the incumbent value, x] cannot be an optimal solution of
Problem (CM). We stop and go to Step 4: see 3© on the flow chart.
- If all days in K have been considered, we go to Step 3. Otherwise, we go on
with the next day in K .

Step 3 We replace the incumbent solution by (x],y,z) and the incumbent value
by Z(x]) and go to Step 4: see 4© on the flow chart.

Step 4 We reject the current node in Problem SRM to prevent the solver from
taking the semi-relaxed objective value of the design solution x], Z̃(x]), as a valid
upper bound to be used for the rest of the Branch & Bound search at the upper
level. This allows us to guarantee that the cutoff value taken into account to close
nodes in the branching process is the actual cost Z(x]) of the current incumbent
design solution x], see Yokoyama et al. (2015). Then go back to Step 1: see 5©
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on the flow chart.

Figure 2: Flow chart of hierarchical decomposition algorithm

Finally, we noted in our preliminary experiments, that while running the hi-
erarchical algorithm described above, we often had to solve multiple times the
same operations problem OMk(.). Namely, two different design solutions x1 and
x2 may e.g. be similar for the first phases and differ only for the last phases. It
may also happen that two different design solutions x1 and x2 differ with respect
to the decisions relative to the first phases of the horizon but give the same system
infrastructure for the last phases. In both cases, operations problems OMk(x1) and
OMk(x2) will be equivalent for all the selected days k corresponding to the phases
in which x1 and x2provide the same system infrastructure.

In order to avoid this useless computational effort, we thus modify the imple-
mentation of the hierarchical decomposition algorithm. When the operation cost
of a newly encountered system infrastructure needs to be evaluated for a given
phase, the operation sub-problems relative to this phase are solved and the cor-
responding optimal operation cost ∑k st. d∈Dφ

fk(yk,zk) is recorded in memory.
Then, over the course of the algorithm, each time the operation cost of a design
solution corresponding to the same system infrastructure in the same phase needs
to be evaluated, we simply use the recorded value without recomputing it from
scratch.
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5 PRELIMINARY NUMERICAL RESULTS
In order to assess the performance of the proposed solution approach, we consider
a real-life case study corresponding to a DCS under construction in China.

The expected lifetime of the cooling system is 30 years. The total annual
cooling demand is anticipated to increase in the first three years and stay stable
afterwards. We thus consider Φ= 3 investment phases. Phases 1 and 2 correspond
to the first two years whereas Phase 3 corresponds to the last 28 years. To show
the increase in demand, we compare in Table 1 the total yearly demand, which is
the sum of demand of one year, and the maximum hourly demand for each phase.
New chillers and storage capacity should be installed at the beginning of the first
three years to guarantee that the cooling supply will meet the increasing demand.
The hourly cooling demand value is predicted by combining historical data on
the cooling consumption in the area and forecasts on the future number of clients
which will connect to the DCS.

There are LST DC = 3 types of standard chillers and LICEC = 2 types of ice
chillers available. Their maximum output capacity Pmax

p,l,c and installation cost
FCφ,m (in millions of CNY) are shown in Table 2. Note that chillers of type
(ST DC,1) and (ST DC,2) have the same maximum output capacity Pmax

p,l,COLD but
chillers of type (ST DC,2) are less efficient and less expensive than the ones of
type (ST DC,1). For each type of chiller and each corresponding commodity, the
minimum output power Pmin

p,l,c is equal to 0.10Pmax
p,l,c. Figures 3 and 4 display the

performance curves of the available standard and ice chillers at an ambient tem-
perature of 30◦C. We use Bt,m,c = 4 breakpoints to build the piecewise linear
approximation of the performance curve of the chillers of type m producing com-
modity c at time period t. The coordinates are determined by solving a small non-
linear optimization problem thanks to a heuristic method belonging to the numpy
package in Python. Finally, for each type of chiller m, the maximum number of
chillers that can be installed, SDmax

m is set to 10.
The unit cost of installing ice storage capacity LCφ is 222.16CNY per kWh and

the unit subscription cost for the maximum instantaneous power allowed, SCφ, is
276CNY per kW. Since the installed storage capacity and the subscribed contract
power are discretized, a unit of storage capacity is 6000kWh and a unit of contract
power is 3000kW. The installed storage capacity should be lower than StoCmax =
200GWh and the contract power should be no more than 30GW. The discount rate
αφ is 8%.

The electricity price features a daily seasonality but no weekly nor yearly vari-
ations. Figure 5 shows the unit price of electricity as a function of the hour of the
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day. As the electricity price does not change with the day in the week or the sea-
son, the typical days and extreme days are selected so as to represent as best as
possible the variations in the cooling power demand. For each phase, 30 typical
days are selected using the approach proposed by Zatti et al. (2019) and 4 ex-
treme days are identified: the day with the highest hourly demand, the one with
the highest total demand, the one with the lowest non-zero hourly demand and
the one with the lowest non-zero total demand. Therefore, there are a total of
34×3 = 102 operation sub-problems.

This results in the formulation of a large-size MILP. The model involves 64381
variables, among which 22053 are integer and 600 are binary, as well as 101422
constraints. This MILP is solved using the hierarchical decomposition algorithm
presented in Section 4. This algorithm is implemented in Python using the math-
ematical programming solver CPLEX12.8. All the problems are solved using a
machine with a Intel Xeon 2.90GHz processor and 16GB RAM.

Table 3 describes the optimal solution in terms of the number of chillers and
the storage capacity built in each phase, together with the contract power. Figure 6
shows the operation of chillers and storage in one of the typical days. The periods
in which the ice production of (ICEC,2) seems to take negative value correspond
to periods in which ice is produced and stored in the tank.

Furthermore, we carried out additional experiments in order to get a prelimi-
nary assessment of the computational efficiency of the hierarchical decomposition
algorithm and to evaluate the impact of the selection of representative days on the
infrastructure design. We thus created 4 additional instances based on our case
study by varying the number of selected days per phase from 6 to 34. The cor-
responding results are provided in Table 4. The first line in the table indicates
the number of selected days for each phase. Lines 2 to 5 provide indications on
the size of the MILP to be solved: we note that the number of variables and con-
straints in the problem increases linearly with the number of selected days. Lines
6 to 9 correspond to the results obtained while directly solving Problem (CM)
with CPLEX12.8 whereas Lines 10 to 13 correspond to the results obtained with
the hierarchical decomposition algorithm. For each algorithm, we report the com-
putation time (which was limited to a maximum of 2 hours), the total and design
cost of the best solution found within the available time limit and the remaining
gap (i.e. the relative difference between the values of the best solution and the
best lower found after 2 hours of calculation).

These results first show that the hierarchical decomposition algorithm is sig-
nificantly more efficient than the standard Branch & Cut algorithm embedded in
CPLEX12.8. Namely, with this algorithm, we were able to solve to optimality the

19



5 considered instances, and this with a computation time divided by a factor of at
least 2.25.

Moreover, results from Table 4 also show that the system infrastructure found
by solving the MILP depends on the number of selected days. This can be seen
among others by the fact that the investment cost varies with the number of se-
lected days, which indicates that the structure of the system and the deployment
plan vary with this number. We note however that, when using the hierarchical
decomposition approach, both the total cost and the investment cost become sta-
ble when more than 26 selected days are considered for each phase. Additional
computational experiments are needed to determine the exact value of the mini-
mum number of selected days per phase above which the system design does not
change any more.

Figure 3: Performance curves of STDC at 30◦C

Figure 4: Performance curves of ICEC at 30◦C

6 Conclusion
We presented a modeling and solving approach for the optimal design of a district
cooling system involving intra-day energy storage over a multi-phase horizon.
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Phase 1 2 3
Length (yr) 1 1 28
Total Yearly Demand (GWh) 54.7 250.0 276.8
Max Hourly Demand (MWh) 13.6 62.2 93.8

Table 1: Phases and Demand

Type Pmax
p,l,COLD Pmax

p,l,ICE FCm

(STDC,1) 8791 - 13
(STDC,2) 8791 - 12
(STDC,3) 5000 - 7.7
(ICEC,1) 8087 5626 13
(ICEC,2) 5000 3478 8.3

Table 2: Available chillers

Phase 1 2 3
(STDC,1) 0 0 0
(STDC,2) 1 5 3
(STDC,3) 0 1 0
(ICEC,1) 0 0 0
(ICEC,2) 1 0 0
Storage Capacity (MWh) 24 0 0
Contract Power (MW) 3 9 15

Table 3: Optimal system design and phasing obtained with 30 typical days and 4
extreme days at the operation level
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Figure 5: Electricity Price of a Day

Figure 6: Operation Result of a Typical Day in Phase 3

The modeling approach relies on a clustering algorithm to identify a subset of
typical days and on a piecewise linear approximation of the chillers’ performance
curves. It results in the formulation of a large-size mixed-integer linear program.
An improved hierarchical decomposition method is then implemented to opti-
mally solve this MILP. This decomposition method exploits the hierarchy between
upper-level infrastructure design decision and lower-level operation scheduling
decisions. Our preliminary computational results carried out on a real-life case
study located in China show that the proposed hierarchical decomposition algo-
rithm significantly outperforms a mathematical programming solver at providing
optimal solutions of the MILP. Moreover, our results also show that, provided a
minimum number of typical days are taken into account to estimate the operation
costs, the final system infrastructure and the deployment phasing do not change
with the subset of selected typical days, which is an important point to gain the
trust of the decision makers.

There are several possible directions for future research suggested by the present
work. First, additional computational experiments are needed to evaluate the im-
pact of the use of a limited number of representative days and of the piecewise
linear approximation of the chillers’ performance curves on the solution provided
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Instance #Days 6 10 18 26 34
Size #Var 11461 19021 34141 49216 64381

#IntVar 3909 6501 11685 16869 22053
#BinVar 180 240 360 480 600
#Const. 17938 29854 53710 77566 101422

CPLEX Comp. time 1726s >7200s >7200s >7200s >7200s
Obj. Value 5.50×108 5.70×108 5.75×108 5.75×108 5.75×108

Invest. Cost 2.45×108 2.35×108 2.36×108 2.36×108 2.37×108

Relative Gap 0.00% 0.02% 0.15% 0.34% 0.42%
Hier. Dec. Comp. time 220s 922s 942s 1435s 1831s

Objec. Value 5.50×108 5.70×108 5.74×108 5.75×108 5.75×108

Invest. Cost 2.45×108 2.35×108 2.35×108 2.35×108 2.35×108

Relative Gap 0.00% 0.00% 0.00% 0.00% 0.00%

Table 4: Comparison between complete model and hierarchical decomposition

by the proposed approach. Second, on a longer term perspective, it would be in-
teresting to extend the proposed approach to consider non-convex performance
curves for the chillers and to study more general local energy systems, in partic-
ular systems simultaneously providing a district with several sources of energy
(electricity, heat, cold, ...).
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APPENDIX

Convex performance curves
When the performance curves of the chillers are convex, we have the following
property.

For a set of identical chillers producing the same commodity, the optimal
load allocation consists in equally distributing the total output power between the
chillers.

Proof. The proof is done by contradiction. Suppose we have two identical chillers,
producing a total cooling power of P with chiller 1 producing P1 and chiller 2 pro-
ducing P2 > P1. Let π : P 7→ Q = π(P) be the convex performance curve of these
two chillers. The total amount of electricity consumed by the two chillers produc-
ing P is Q = π(P1)+π(P2).

We show that this load allocation is not optimal, i.e. that it is possible to reduce
the total amount of consumed electricity. Namely, let δP be a small variation in
the output. By decreasing the output of chiller 2 by δP, we can obtain a decrease
in the electricity consumed by this chiller of π′(P2)δP, where π′ is the derivative
function of π. In order to still be able to provide a total output of P, we increase the
output of chiller 1 by δP, which leads to an increase in its electricity consumption
of π′(P1)δP.

By convexity of function f , π′(P1)< π′(P2). Hence the total amount of elec-
tricity consumed with the load allocation (P1 + δP,P2− δP) is smaller than the
one consumed with the load allocation (P1,P2). The result follows.

Let us now focus on the case in which the performance curve π is convex
and piecewise linear. When multiple identical chillers are simultaneously pro-
ducing the same commodity, the relation providing the total amount of consumed
electricity as a function of the total amount of output power can be plotted as an
aggregate performance curve. We have the following property:
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Let π be the piecewise linear and convex performance curve of a given type
of chiller. π involves B breakpoints. Let (ab,ob) be the abscissa and ordinate of
breakpoint b.

The aggregate performance curve ΠS of S identical chillers of this type is also
piecewise linear and convex. It involves B breakpoints whose coordinates are
given by (Sab,Sob).

Proof. Let us consider the case where the total output of the S chillers is P ∈
[SPmin;SPmax] where [Pmin,Pmax] is the production range of a single chiller.

By Lemma 1, the optimal load allocation consists in requiring each chiller
γ = 1...S to produce the same output Pγ = P

S . Let b be the index of the breakpoint
of function f such that Pγ ∈ [ab,ab+1]. The energy consumed by each chiller γ is
thus given by: Qγ = sbPγ + cb where sb and cb are the slope and constant value of
the bth line segment of π. The total energy consumed by the S chillers is thus equal
to Q = sbP+ cbS. This equality holds for any value of P such that P

S ∈ [ab,ab+1],
i.e. any value of P ∈ [Sab,Sab+1]. This means that ΠS is linear over the segment
[Sab,Sab+1], with a slope equal to sb and a constant value of cbS.

By generalizing this result to all possible values of the total output P, we
have that ΠS is a piecewise linear function involving B breakpoints of coordinates
(Sab,Sob). Moreover the slope of ΠS on its bth segment is sb. As π is convex, we
have sb ≤ sb+1,b = 1...B. ΠS is thus convex.
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