A Janot 
email: alexandre.janot@onera.fr
  
Using the SDP identification method for electromechanical systems

Keywords: State-Dependent-Parameter method, mechanical systems, least-squares techniques

The standard robot identification method is based on the use of the inverse dynamic model (IDM) and the application of Least Squares (LS) estimation while the robot is tracking trajectories. Although this approach has been successfully applied to several industrial robots, the standard friction model is assumed to be linear. In this paper, a two-step LS approach is proposed that corrects this limitation. In the first step, State-Dependent-Parameter (SDP) estimation is combined with the IDM to identify the nature of the friction effect. In a second step, the standard LS method is performed in order to obtain the estimates of the inertia and gravity parameters. The experimental results obtained on the 6 degrees-of-freedom TX40 robot show the effectiveness of this new approach.

INTRODUCTION

The standard approach to modeling robots is based on an inverse dynamic identification model combined with the least-squares estimation. This method, referred to as the Inverse Dynamic Identification Model with Least Squares (IDIM-LS), has been successfully applied to estimate the inertial parameters of several prototypes and industrial robots: see, [START_REF] Wu | An overview of dynamic parameter identification of robots[END_REF]), [START_REF] Gautier | A new closed-loop output error method for parameter identification of robot dynamics[END_REF]) and [START_REF] Janot | A generic instrumental variable approach for industrial robot identification[END_REF]) amongst others. We can obtain good results, provided a well-tuned derivative bandpass filtering of the joint position measurements is used to calculate the joint velocities and accelerations. However, the friction model is assumed to be described by a linear relationship in the viscous and Coulomb coefficients.

Friction modeling and identification have a long history, and this topic is so vast and rich that it is impossible to cite all the relevant works. The interested reader can refer to the following surveys [START_REF] Armstrong-Helouvry | A survey of models: analysis tools and compensation methods for the control of machines with friction[END_REF]), [START_REF] Bona | Friction compensation in robotics: An overview[END_REF]) and the references therein. We can divide friction models into two classes: 'static models' that depend only on the current velocity and 'dynamic' models that are more general. A particular case of a dynamic model is the load-dependent model [START_REF] Hamon | New dry friction model with load-and velocity-dependence and Table 5. Estimates of the inertial parameters dynamic identification of multi-dof robots[END_REF]). As regards identification methods, nonlinear estimation techniques are popular since the friction models are mostly nonlinear see, e.g., [START_REF] Bittencourt | Modeling and experiment design for identification of wear in a robot joint under load and temperature uncertainties based on friction data[END_REF]). Interestingly, in [START_REF] Hashemi | Parameter identification of a robot arm using separable least squares technique[END_REF]), the authors have shown that we can use the Separate Least-Squares (SLS) developed by [START_REF] Golub | The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate[END_REF]), to identify friction and inertial parameters provided that the friction models are static. According to [START_REF] Golub | The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate[END_REF]), SLS is more robust against initialization and convergence compared to other nonlinear methods.

An interesting approach that allows for the identification and estimation of nonlinearities in dynamic systems with the minimum of a priori assumptions is the exploitation of State-Dependent-Parameter (SDP) estimation. The SDP approach [START_REF] Young | Recursive Estimation and Time-Series Analysis: An Introduction for the Student and Practitioner[END_REF]) is a statistical identification procedure that can identify the presence and estimate the graphical nature of the nonlinearities in system models based only on the experimental sampled data. Surprisingly, the SDP method has not received much attention in the fields of electrical and mechanical engineering, although its potential was reported some years ago [START_REF] Young | Identification of nonlinear stochastic systems by state dependent parameter estimation[END_REF]). It may because the dynamic models of electromechanical systems are most often formulated directly from Newton's laws. The models are thus available in a physically meaningful form, and black-box identification is not considered necessary.

In this paper, we focus on the identification of static and load-independent friction models without any other prior assumptions about the nature of the nonlinearities. Based on the SLS principles and improving the first results presented in [START_REF] Janot | Identification and control of electro-mechanical systems using state-dependent parameter estimation[END_REF]), the contribution of the paper is two-fold. First, an SDP-based identification method that combines the IDM and the SDP method is introduced and experimentally validated on the TX40 robot. We show that this method, called IDIM-SDP, yields an accurate estimation of non-linear friction characteristics and can validate/invalidate the hypothesis of a loadindependent friction model. Second, the inertial parameters of the robot are identified by the IDIM-LS method based on the friction characteristics that are estimated by the IDIM-SDP method. Because the whole process makes of the IDIM-SDP and IDIM-LS approaches, this new identification method is called IDIM-SDP-LS.

The remaining sections of the paper are organized as follows: Section 2 reviews the standard IDIM-LS method; Section (3) introduces the new IDIM-SDP-LS approach; Section (4) is devoted to the experimental results; and Section (5) summarises the conclusions.

ROBOT MODELING AND IDENTIFICATION

Inverse dynamic model of robots

The inverse dynamic model (IDM) of robots with n moving links calculates the (n × 1) joint torques vector, τ idm , as a function of generalized coordinates and their derivatives, see [START_REF] Khalil | Modeling, identification and control of robots[END_REF]) and [START_REF] Gautier | A new closed-loop output error method for parameter identification of robot dynamics[END_REF]), τ idm = M (q) q + τ cor (q, q) + τ g (q) + τ f ,

where q, q and q are the (n × 1) vector of joint positions, velocities and accelerations; M (q) is the (n × n) inertia matrix; τ cor (q, q) is the (n × 1) vector of centrifugal and Coriolis torques; τ g (q) is the (n × 1) vector of gravitational torques; and τ f is the (n × 1) vector of friction torques. In robotics, it is convenient to introduce N (q, q) the (n × 1) vector that encompasses the centrifugal, Coriolis, gravitational and friction torques with N (q, q) = τ cor (q, q) + τ g (q) + τ f .

The 11 inertial parameters of a link j are XX j , XY j , XZ j , Y Y j , Y Z j and ZZ j the six components of the inertia matrix of link j at the origin of frame j; M X j , M Y j and M Z j , the components of the first moment of link j; M j the mass of link j; and Ia j the total inertia moment for the rotor and gears of actuator j. As pointed out in [START_REF] Khalil | Modeling, identification and control of robots[END_REF]), the set of identifiable inertial parameters has to be determined. Indeed, all of the inertial dynamical parameters are not identifiable: some have no influence on the IDM while others are regrouped via linear relations. By denoting β L as the (b L × 1) vector of identifiable inertial parameters, where b L is the minimum number of identifiable inertial parameters from which the IDM can be calculated, the modified Denavit and Hartenberg (DHM) notation allows for the formulation of the following IDM which is linear in relation to β L ,

τ idm = IDM L (q, q, q) β L + τ f (β f ) , (2) 
where IDM L (q, q, q) is the (n × b L ) matrix of basis functions associated with β L ; β f is the (n × b f ) vector of parameters of friction torques; and b f is the number of parameters required to model the friction characteristics.

Assuming that the joint j friction torque, τ f j , is modelled by the standard linear relationship

τ f j = F v j qj + F c j sign( qj ) , (3) 
where F v j and F c j are the viscous and Coulomb friction parameters of joint j. The IDM (2) is linear in a set of identifiable parameters, β, i.e.

τ idm = IDM (q, q, q) β , (4) 
where IDM (q, q, q) is the (n × b) matrix of basis functions of the bodies dynamics;

β = β T L β T f T is the (b × 1) vector of identifiable pa- rameters; and b = b L + b f is the number of identifiable parameters with b f = 2n.
Because of errors, uncertainties and noises, the (n × 1) vector of actual joint torques, τ , differs from τ idm by an error e. We obtain the the Inverse Dynamic Identification Model (IDIM) given by τ = IDM (q, q, q) β + e .

(5)

Identification of robots

Because the joint velocities and accelerations are not measured, they are estimated from the filtering and numerical differentiation of q m , the (n × 1) vector of the measured joint positions. The IDIM ( 5) is sampled while the robot is tracking some exciting trajectories, and we get the following over-determined system

y(τ ) = X q, q, q β + ε , (6) 
where X q, q, q is the (r × b) observation matrix resulting from the sampling of IDM q, q, q ; q is the (n × 1)

vector of the filtered joint position; q, q is the (n × 1) vectors of the joint velocities and accelerations calculated from a central differentiation of q; r is the number of samples; and ε is the (r × 1) vector of errors resulting from the sampling of e. With Ω the (r × r) covariance matrix of ε, the IDIM-LS estimates and their covariance matrix are given by βLS

= X T Ω -1 X -1 X T Ω -1 y(τ ) , (7) 
Σ LS = X T Ω -1 X -1 . ( 8 
)
The IDIM-LS method is popular because of its simplicity, and it was successfully validated on several prototypes and industrial robots. However, because robots are identified in closed-loop operations, we know that cautions must be taken with the LS method. In [START_REF] Janot | A generic instrumental variable approach for industrial robot identification[END_REF]), the authors have proved that with an appropriate tailor-made data-filtering, the LS estimates can be trusted. Besides, another strong assumption is the use of the linear friction model (3). We know that, at low velocities, friction models exhibit non-linear effects such as stiction or Stribeck's effect. In this case, we can no longer use the IDIM-LS method, and we have to modify it accordingly to potential non-linear friction models.

THE IDIM-SDP-LS METHOD FOR ROBOT IDENTIFICATION

The State-Dependent Method

As pointed out previously, the SDP method is a blackbox identification procedure that can identify the presence and graphical nature of nonlinearities in dynamic system models based only on the experimental sampled data, [START_REF] Young | Recursive Estimation and Time-Series Analysis: An Introduction for the Student and Practitioner[END_REF]). SDP estimation is carried out in two distinct stages: the first, a non-parametric identification stage; and the second, a parametric estimation stage, where the constant parameters that characterize a selected parameterization of this structure are optimized in some appropriate manner.

In the first, non-parametric stage of SDP modelling, the recursive SDP estimation algorithm exploits the recursive fixed interval smoothing (FIS) estimation to obtain lag-free, smoothed estimates of the parameter variations.

As we see in the later experimental results, this nonparametric stage results in a plot of each SDP against its associated state variable, so providing a graphical portrayal of the non-linearity and its location within the model. In other words, non-parametric SDP estimation identifies the structure of the non-linear model, preparatory to the second, parametric estimation stage. Here, the non-linearities are normally parameterized in some parametrically efficient manner involving constant parameters that are estimated using a suitable optimization approach.

This two-stage approach is useful because it ensures that the model is parsimonious, with non-linearities identified and estimated only where they identified as being significant within the non-linear SDP model structure. The SDP approach often allows for the interpretation of the nonlinear model in some physically meaningful manner as shown in [START_REF] Young | Identification of nonlinear stochastic systems by state dependent parameter estimation[END_REF]). Of course, the readers can choose other nonlinear black-box approaches for friction identification, see [START_REF] Soderstrom | System Identification[END_REF]) and [START_REF] Ljung | System Identification: Theory for the User (2nd Edition)[END_REF]), provided they ensure that the identified nonlinear model is parsimoniously parameterized.

The IDIM-SDP method for friction identification

The first step in IDIM-SDP identification is to estimate the graphical nature of the frictional effect in each joint by exciting each link, while the others are maintained at their steady-states. This approach is common in robotics, see, e.g., [START_REF] Hamon | New dry friction model with load-and velocity-dependence and Table 5. Estimates of the inertial parameters dynamic identification of multi-dof robots[END_REF]). When only the link j is moving, while the other links stay at their steady-states, its IDM is given by

τ idmj = ZZ j qj + τ gj + τ fj ( qj ) , (9) 
where τ idmj is the joint j torque; τ gj is the joint j gravity torque given by τ gj = -gM X j cos (q j ) + gM Y j sin (q j ); g is the gravity constant with g = 9.81; and τ fj ( qj ) is the joint j friction torque, whose the form is a priori unknown to the user. At this stage, it is important to note that no prior assumptions are made about τ fj ( qj ). By considering τ fj ( qj ) as a velocity-dependent dynamic parameter, the representation of the nonlinear model ( 9) is linear in relation to ZZ j , M X j , M Y j and τ fj ( qj )

τ idmj = IDM j (q j , qj , qj )β j ( 10 
)
where IDM j (q j , qj , qj ) = [q j -g cos (q j ) g sin (q j ) 1] is the (1 × 4) vector of basis functions; and β j = [ZZ j M X j M Y j τ fj ( qj )] T is the (4 × 1) vector of dynamic parameters for the link j.

The actual torque τ j differs from τ idmj by an error e sdp j and the model is sampled while the robot is tracking trajectories that are selected to be sufficiently exciting for statistical estimation purposes. In this manner, the following over-determined system of equations is obtained

y j = X(q j , qj , qj )β j + sdp j (11)
where y j is the (n e × 1) sampled vector of τ j ; X(q j , qj , qj ) is the (n e × 4) sampled matrix of IDM j (q j , qj , qj ); (q j , qj , qj ) are constructed as explained in [START_REF] Gautier | A new closed-loop output error method for parameter identification of robot dynamics[END_REF]),

where qj (resp. qj , qj ) is the (n e × 1) sampled vector of q j (resp. qj , qj ); and sdp j is the (n e × 1) sampled vector of e sdp j .

The estimate of β j , denoted by βj , is computed with the "sdp" identification routine in the CAPTAIN Toolbox for Matlab; and the associated relative error is calculated as %e idm-sdp = sdp j / y j with sdp j = y j -X(q j , qj , qj ) βj .

Detecting load-dependent friction models

This new IDIM-SDP technique is particularly interesting because it allows the user to validate/invalidate the assumption of a load-independent friction model. According to [START_REF] Hamon | New dry friction model with load-and velocity-dependence and Table 5. Estimates of the inertial parameters dynamic identification of multi-dof robots[END_REF]), a load-dependent friction can be modeled as

τ fj = α j |τ loadj |sign( qj ) + F v j qj + F c j sign( qj ) , (12) 
where τ loadj = ZZ j qj + τ gj ; and α j is coefficient of dependency. By inserting ( 12) into ( 9) with |τ loadj | = τ loadj sign(τ loadj ), and sign(τ loadj )sign( qj ) = sign(τ loadj qj ) = sign(P loadj ) where P loadj is the joint j mechanical power, we obtain

τ idmj = ZZ j ( qj )q j + τ gj ( qj ) + τ f 0j , (13) 
where ZZ j ( qj ) = γ j ZZ j ; τ gj ( qj ) = -gM X j ( qj )cos(q j ) + gM Y j ( qj ) with M X j ( qj ) = γ j M X j and M Y j ( qj ) = γ j M Y j ; γ j = 1 + α j |P loadj |; and τ f 0j = F v j qj + F c j sign( qj ). Like equation ( 9), ( 13) is also linear to the velocity-dependent parameters. If the friction model is load-dependent, then the IDIM-SDP method will estimate velocity-varying parameters instead of constant parameters.

The IDIM-SDP-LS approach

In this section, we show that the SDP approach can be advantageously combined with IDIM-LS to account for nonlinear friction models. First, let us consider equation ( 2), and let τf-sdp ( q) the (n × 1) vector of friction models captured by the SDP method. Second, let τ L = ττf-sdp be the (n×1) vector of joint torques purged from nonlinear friction models. One obtains

τ L = IDM L (q, q, q) β L + e L , (14 
) where e L is the (n×1) of errors resulting e and a mismatch between τ f and τf-sdp . By sampling ( 14), while robot is tracking exciting trajectories, we get the following overdetermined system

y L (τ L ) = X L q, q, q β L + ε L , (15) 
where X L q, q, q is the (r × b L ) observation matrix resulting from the sampling of IDM L q, q, q ; and ε L is the (r × 1) vector of errors resulting from the sampling of e L . The LS estimates of and their covariance matrix are given by βL

= X T L Ω -1 X L -1 X T L Ω -1 y l (τ L ) , (16) 
Σ L = X T L Ω -1 X L -1 . ( 17 
)
This new identification method devoted to robots is based on the principles of the SLS introduced by [START_REF] Golub | The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate[END_REF]). In the first step, it makes use of IDIM-SDP to capture the friction characteristics while, in the second step, IDIM-LS is run to identify the inertial parameters. Because this new approach is based on IDIM-SDP and IDIM-LS, it is called IDIM-SDP-LS.

EXPERIMENTAL RESULTS

Presentation

The TX40 robot has a serial structure with six rotational joints. The columns of IDM L are calculated with the Newton-Euler recursive algorithm implemented in the SYMORO+ software, [START_REF] Khalil | Modeling, identification and control of robots[END_REF]). The TX40 robot has 60 base dynamic parameters that are also calculated with the SYMORO+ software. To excite the friction and inertial parameters, the exciting trajectories (q r , qr , qr ) are designed so that qr are squares and qr are trapezoidal, with various magnitudes. By combining these trajectories, one obtains cond(X) = 200. (q r , qr , qr ) sufficiently excite the system and allow for good estimation of the base parameters, [START_REF] Gautier | Exciting trajectories for the identification of base inertial parameters of robots[END_REF]).

The TX40 robot is PID-controlled. For the three first joints, we have d ω nj = 10Hz, and for the last three joints, we have d ω nj = 20Hz. For the six joints, the desired damping is set to d ζ j = 1.0 to avoid overshoots. Finally, data are stored with a measurement frequency f m = 1kHz.

Identification of friction characteristics

The estimate of the joint position q is calculated with a 50 Hz fourth-order Butterworth filter while its two time derivatives q, q are calculated with a central difference algorithm. Then, a parallel decimation is carried out with a lowpass Tchebyshef filter with a cutoff frequency of 10 Hz. The filters are tuned accordingly to the rules given in [START_REF] Gautier | A new closed-loop output error method for parameter identification of robot dynamics[END_REF]).

In order to identify the friction characteristics, the experiments are conducted in a similar way to that described in [START_REF] Hamon | New dry friction model with load-and velocity-dependence and Table 5. Estimates of the inertial parameters dynamic identification of multi-dof robots[END_REF]). Each joint is excited, while the others are maintained at their steady-states. The "sdp" routine in the CAPTAIN toolbox is then used to identify β j with y j as the vector of measurements, X qj , qj , qj as the observation matrix, and S j = qj qj qj qj as the matrix of states. Choosing S j in this manner indicates to the algorithm that the parameters ZZ j , M X j , M Y j and τ fj ( qj ) are likely to be velocity-dependent, and this is consistent with equation ( 9).

For the first four joints, the IDIM-SDP estimates of ZZ j , M X j , M Y j their standard deviations and the relative errors, %e idim-sdp , %e idim-ls are regrouped in Table 3 . The IDIM-SDP-estimated parameters obtained with the second joint are plotted in Fig. 2. Similar results are obtained with the other joints and so they are not presented here.

For all the joints, the IDIM-SDP estimates of ZZ j , M X j , M Y j remain constant and this is confirmed by the optimized Noise-Variance-Ratios (NVR) that control the rate of variation in the SDP algorithm which are virtually null, i.e., less than 1e-16; whereas they are close to 0.1 for τ fj ( qj ). This large difference suggests that only τ fj ( qj ) is velocity-dependent, so validating the assumption of a load-independent friction model. This is confirmed by the plotting of the IDM-SDP estimates of ZZ j , M X j and M Y j in Fig. 2). The identified values are given in Table 1 and Table 2.

The friction characteristics are extracted from τ j using ZZ 0 j , M X 0 j , M Y 0 j the CAD values of ZZ j , M X j , M Y j , respectively, i.e., τ ext-fj ( qj ) = τ j -ZZ 0 j qj + gM X 0 j cos(q j ) (

-gM Y 0 j sin(q j ) . The friction characteristics identified by the IDIM-SDP method for the second link are plotted in Fig. 3, which also shows the linear friction model estimated by the standard IDIM-LS method and the extracted shape of the nonlinearity for the second joint. There is a good agreement between the friction characteristics estimated by the IDIM-SDP method and those of the extracted friction, whereas a mismatch remains between those of the standard linear friction model and extracted torque. Similar results are obtained with the other joints, and they are not presented here. These results are confirmed by the comparison of the model outputs and the data shown in Fig. 1. As we can see, the standard linear friction model is not accurate enough when the velocity passes through zero. On the other hand, the IDIM-SDP estimated model explains the data much better, with a relative error of 5% and so it is clear that this should be used to obtain the final parameterized friction model.

The results obtained with the fifth and sixth joints are not reported here because the shapes captured by the IDIM-SDP method show that the usual linear friction model is sufficient in these cases, with no significant differences between the IDIM-LS and IDIM-SDP estimates.

According to the SDP estimation results in 3, the friction characteristics represent a Stribeck effect so that, for the first four joints, τ fj ( qj ) can be modeled as

τ fj ( qj ) = F v j qj + F c j sign( qj ) (19) (F s j -F c j )exp -(| qj |/V s j ) δj ,
where F s j is the joint j stiction coefficient; V s j is the joint j Stribeck's velocity; and δ j is the joint j power coefficient that usually lies between 0.5 and 3.0. The parameters F v j , F c j , F s j , V s j and δ j are estimated by a standard nonlinear least-squares optimization algorithm, e.g., the Fig. 1. Direct comparisons between the results obtained from the standard IDIM-LS method and the new IDIM-SDP approach when applied to the second joint.

"lsqnonlin" MATLAB function, and by using the above Stribeck friction model. The estimates are regrouped in Table 3 andTable 4, and clearly emphasize the fact that the Stribeck effect is significant for the three first joints (F s j differs significantly from F c j ).

Identification of the inertia and gravity parameters of the TX40 robot

Some base parameters have a poor contribution to the dynamics because they have small values and so can be omitted to simplify the dynamic models without affecting their accuracy. These are omitted after the application of the F test, as explained in [START_REF] Janot | A generic instrumental variable approach for industrial robot identification[END_REF]). The IDIM-SDP estimates are given in Table 5. The relative error is %e idim-sdp = 5.3%, the identified values slightly differ from their CAD values, the autocorrelation function of the final model residuals shows that these are not significantly autocorrelated (i.e. they represent white noise), and relative errors obtained with cross-validations, not shown here, are around %e idim-sdp = 6.0%. All these satisfactory diagnostics suggest that the IDIM-LS estimated frictional characteristics can be trusted. This paper has introduced a new approach to robot identification called the IDIM-SDP-LS method. This method consists of two main steps. In the first of these, the IDIM-SDP estimation of the significant nonlinearities in the 4.12e0 (4.00e-2) 1.48e0 (1.54e-2) F c j 5.06e0 (4.05e-2) 2.07e0 (2.00e-2) F s j 5.81e0 (5.72e-2) 2.15e0 (1.84e-2) V s j 5.00e-2 (1.95e-3) 5.00e-2 (2.40e-3) δ j 2.72e0 (3.87e-2) 1.60e0 (3.81e-2)

system is combined with the inverse dynamic model to identify the graphical nature of the friction characteristics.

In the second step, the inertia and gravity parameters are estimated by a standard LS approach based on the inverse dynamic model and the SDP-estimated friction characteristics. The practical utility of this new methodology is demonstrated by its application to the TX40 industrial robot.

Future works will focus on inserting an IV approach to obtain a method robust against a correlation between the observation matrix and the vector of errors and able to take nonlinear friction models into account. They will also consider other black-box identification methods to make further comparisons. 1.29e-1 (1.3e-2) F c 5 2.80e0 (6.4e-2) ZZ 3

1.21e-1 (8.8e-2) Ia 6 9.85e-2 (9.4e-3) M Y 3 -6.05e-2 (1.2e-3) F v 6 0.69e0 (1.4e-2) Ia 3 9.00e-2 (8.1e-3) F c 6 2.00e0 (6.1e-2)

Fig. 2 .

 2 Fig. 2. IDM-SDP estimates of inertial parameters of the second link i.e. ZZ 2 , M X 2 and M Y 2 .

Table 1 .

 1 IDIM-SDP estimates of ZZ j , M X j and M Y j for the 1st and 2nd joints

	Parameters	Joint 1	Joint 2
	ZZ j	1.24 (1.00e-2)	1.55 (1.40e-2)
	M X j	0.00 (1.00e-3)	2.84 (2.41e-2)
	M Y j	0.00 (2.00e-3) 2.21e-2 (7.05e-4)
	%e idim-sdp	4.3 %	3.7%
	%e idim-ls	4.9 %	7.3 %

Table 2 .

 2 IDIM-SDP estimates of ZZ j , M X j and M Y j for the 3rd and 4th first joints

	Parameters	Joint 3	Joint 4
	ZZ j	1.21e-1 (1.59e-3)	4.62e-2 (5.15e-3)
	M X j	0.00 (3.42e-5)	-2.10e-2 (2.40e-4)
	M Y j	-6.10e-2 (0.90e-4)	0.00 (0.85e-4)
	%e idim-sdp	4.1%	3.8%
	%e idim-ls	6.2 %	4.6 %

Table 3 .

 3 Estimates of friction parameters for the 1st and 2nd joints

	Parameters	Joint 1	Joint 2
	F v j	11.90e0 (0.11e0)	8.05e0 (8.10e-2)
	F c j	4.21e0 (4.0e-2)	5.55e0 (5.40e-2)
	F s j	4.78e0 (3.80e-2)	7.97e0 (8.54e-2)
	V s j	2.50e-2 (1.05e-3) 5.00e-2 (2.30e-3)
	δ j	2.09e0 (1.8e-2)	2.78e0 (2.53e-2)

Table 4 .

 4 Estimates of friction parameters for the 3rd and 4th first joints

	Parameters	Joint 3	Joint 4
	F v j		
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