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A PARTIAL GRAPHICAL MODEL WITH A STRUCTURAL PRIOR

ON THE DIRECT LINKS BETWEEN PREDICTORS AND

RESPONSES

Eunice Okome Obiang1, Pascal Jézéquel2,3,4 and Frédéric Pröıa1,*

Abstract. This paper is devoted to the estimation of a partial graphical model with a structural
Bayesian penalization. Precisely, we are interested in the linear regression setting where the estimation is
made through the direct links between potentially high-dimensional predictors and multiple responses,
since it is known that Gaussian graphical models enable to exhibit direct links only, whereas coefficients
in linear regressions contain both direct and indirect relations (due e.g. to strong correlations among
the variables). A smooth penalty reflecting a generalized Gaussian Bayesian prior on the covariates is
added, either enforcing patterns (like row structures) in the direct links or regulating the joint influence
of predictors. We give a theoretical guarantee for our method, taking the form of an upper bound on
the estimation error arising with high probability, provided that the model is suitably regularized.
Empirical studies on synthetic data and a real dataset are conducted.
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1. Introduction

We are interested in the recovery and estimation of direct links between high-dimensional predictors and a
set of responses. Whereas the graphical models seem a natural way to go, we propose to take account of a prior
knowledge on the predictors, when possible. This is typically the case when dealing with genetic markers whose
joint influence may be anticipated thanks to some kind of genetic distance, or when the predictors are supposed
to represent a continuous phenomenon so that consecutive covariates probably act together. In this regard, while
taking up the graphical approach, we introduce some Bayesian information in a structural regularization of the
estimation procedure, although the inference remains frequentist, thereby following the idea of Chiquet et al.
[7]. This strategy also enables to affect the amount of shrinkage by playing with some hyperparametrization
in the prior, while sparsity may be obtained via usual penalty-based patterns. Regarding the mathematical
formalization of the graphical models that we will just briefly discuss in this introduction, we refer the reader
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to the very complete handbook recently edited by Maathuis et al. [16]. We also refer the reader to the book
of Hastie et al. [11] and to the one of Giraud [10], both related to the standard high-dimensional statistical
methods. Before introducing the model and the organization of this work, let us describe the notation used
throughout the paper.

1.1. Notation

For any matrix A, |A|∗ = ‖vec(A)‖∗ is the elementwise `∗ norm of A and |A|−∗ is |A|∗ deprived of the diagonal
terms of A. We also note ‖A‖F = |A|2 the Frobenius norm of A and ‖A‖2 the spectral norm of A. The Frobenius
inner product between any matrices A and B of same dimensions is 〈〈A,B〉〉 = 〈vec(A), vec(B)〉 = tr(AtB)
whereas 〈u, v〉 = ut v is the inner product of the Euclidean real space. For any vector u, |u|0 is the number of
non-zero values in u. For a matrix A, [A]C is to be understood as the matrix A whose elements outside of the
set of coordinates C are set to zero and vec(A) is the vectorization of A into a column vector. The eigenvalues
of a square matrix A of size d with spectrum sp(A) are λi(A) taken in decreasing order (from λ1(A) = λmax(A)
to λd(A) = λmin(A)). The cones of symmetric positive semi-definite and definite matrices of dimension d are
S d+ and S d++ respectively.

1.2. The partial graphical model

In the classic Gaussian graphical model (GGM) setting, we aim at estimating the precision matrix Ω = Σ−1

of jointly normally distributed random vectors Y ∈ Rq and X ∈ Rp with zero mean and covariance Σ. The
point is that it induces a graphical structure among the variables and the support of Ω is closely related to the
conditional interdependences between them. Let us consider, now and in all the study, the sample covariances
of n independent observations (Yi, Xi), denoted by

S (n)
yy =

1

n

n∑
i=1

Yi Y
t
i , S (n)

yx =
1

n

n∑
i=1

YiX
t
i and S (n)

xx =
1

n

n∑
i=1

XiX
t
i . (1.1)

Maximizing the penalized likelihood of a GGM boils down to finding Ω ∈ S p+q++ that minimizes the convex
objective

Ln(Ω) = − ln det(Ω) + 〈〈S (n),Ω〉〉+ λ pen(Ω) (1.2)

where S (n) is the full sample covariance built from the blocks (1.1). The penalty function pen(Ω) is usually |Ω|1
or even |Ω|−1 . Efficient algorithms exist to get solutions for (1.2), see e.g. Banerjee et al. [2], Yuan and Lin [28],
Lu [15] or the graphical Lasso of Friedman et al. [9]. The reader may also look at the theoretical guarantees
of Ravikumar et al. [21]. However, thinking of Xi as a predictor of size p associated with a response Yi of size
q, the partial Gaussian graphical model (PGGM), developped e.g. by Sohn and Kim [26] or Yuan and Zhang
[29], appears as a powerful tool to exhibit direct relationships between the predictors and the responses. To
understand this, consider the decomposition into blocks

Ω =

(
Ωyy Ωyx
Ω t
yx Ωxx

)
and Σ =

(
Σyy Σyx
Σ t
yx Σxx

)

where Ωyy ∈ S q++, Ωyx ∈ Rq×p and Ωxx ∈ S p++ and where the same goes for Σxx, Σyx and Σxx. The precision
matrix Ω = Σ−1 satisfies, by blockwise inversion,

Ω−1
yy = Σyy − Σyx Σ−1

xx Σ t
yx and Ωyx = −(Σyy − Σyx Σ−1

xx Σ t
yx)−1 Σyx Σ−1

xx . (1.3)
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The conditional distribution peculiar to Gaussian vectors

Yi |Xi ∼ N (−Ω−1
yy ΩyxXi, Ω−1

yy )

gives a new light on the multiple-output regression Yi = B tXi +Ei with Gaussian noise Ei ∼ N (0, R), through
the reparametrization B = −Ω t

yx Ω−1
yy and R = Ω−1

yy . Whereas B contains direct and indirect links between the
predictors and the responses (due e.g. to strong correlations among the variables), Ωyx only contains direct
links, as it is shown by the graphical models theory. In other words, the direct links are closely related to the
concept of partial correlations between X and Y (see Meinshausen and Bülmann [17] or Peng et al. [19], for
the univariate case). For example, the direct link between predictor k and response ` may be evaluated through
the partial correlation Corr(Y`, Xk |Y6= `, X6= k) contained, apart from a multiplicative coefficient, in the `-th row
and k-th column of Ωyx (see e.g. Cor. A.6 in [10]) with the particularly interesting consequence that the support
of Ωyx is sufficient to identify direct relationships between X and Y . Hence, in the partial setting, the objective
reduces to the estimation of the direct links Ωyx together with the conditional precision matrix of the responses
Ωyy. Maximizing the penalized conditional log-likelihood of the model now comes down to minimizing the new
convex objective

Ln(Ωyy,Ωyx) = − ln det(Ωyy) + 〈〈S (n)
yy ,Ωyy〉〉+ 2 〈〈S (n)

yx ,Ωyx〉〉

+ 〈〈S (n)
xx ,Ω

t
yx Ω−1

yy Ωyx〉〉+ λ pen(Ωyy) + µpen(Ωyx) (1.4)

over (Ωyy,Ωyx) ∈ S q++ × Rq×p for some usual penalty functions. It is worth noting that pen(Ωyx) often plays a
crucial role in modern statistics dealing with high-dimensional predictors (and the natural choice is |Ωyx|1 to
get sparsity) while we may choose λ = 0, because the number of responses is generally small. In the seminal
papers [26, 29], the authors consider |Ωyy|1 and |Ωyy|−1 for pen(Ωyy), respectively. Yuan and Zhang [29] also
point out that no estimation of Ωxx is needed anymore. In a graphical model, the estimation of Ωyx and Ωyy
depends on the accuracy of the estimation of Ω which, in turn, is strongly affected by the one of Ωxx, especially
in a high-dimensional setting. The partial model overrides this issue, the focus is on Ωyx and Ωyy while Ωxx has
disappeared from the objective function (1.4). The latter is obtained either by considering the multiple-output
Gaussian regression scheme, or, as it is done in [29], by eliminating Ωxx thanks to a first optimization step
in (1.2). In this paper, we will consider the penalties

pen(Ωyy) = |Ωyy|−1 and pen(Ωyx) = |Ωyx|1 (1.5)

which correspond to the PGGM (Gm) of [29]. The Spring (Spr) of [7] can also be seen as a PGGM but with no
penalty on Ωyy (replaced with an additional structuring one on Ωyx, we will come back to this point thereafter),
so for Spr we may consider λ = 0. The generalized procedure (GenGm) at the heart of the study relies on a
combination between these two approaches. We will see in due time that we keep both the penalties of Gm
and the structuring one of Spr on Ωyx. Finally, the intermediate solution consisting in estimating Ωyy and B
through the conditional distribution Yi |Xi ∼ N (B tXi, Ω−1

yy ) with penalizations both on B and Ωyy, presented
and analyzed by Rothman et al. [23] and by Lee and Liu [14], is better known as a multivariate regression
with covariance estimation (MRCE). However, it has been shown that the objective function suffers from a lack
of convexity and that the optimization procedure may be debatable, in addition to the less convenient setup
for statistical interpretation (B contains both direct and indirect influences) compared to PGGM. Without
claiming to be exhaustive, let us conclude this quick introduction by citing some related works, like the structural
generalization of the Elastic-Net of Slawski et al. [25], the Dantzig approach of Cai et al. [6] put in practice on
genomic data [5], the greedy research of the non-zero pattern in Ω of Johnson et al. [13], the approach of Fan
et al. [8] using a non-convex SCAD penalty to reduce the bias of the Lasso in the estimation of Ω, the eQTL
data analysis of Yin and Li [27] which makes use of a sparse conditional GGM, and so on. All the references
inside will complete this concise list.
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Figure 1. Marginal shape of the generalized Gaussian distribution (d = 1 and V = 1) for some
β < 1 (dotted red), β = 1 (black) and some β > 1 (dotted blue). The noteworthy cases β = 1/2
(Laplace), β = 1 (Gaussian) and β = +∞ (uniform) are highlighted.

1.3. Organization of the paper

To sum up, we have two goals in this paper:

1. Give some theoretical guarantees to the (slightly modified) model introduced in Chiquet et al. [7].
2. Generalize the result of Yuan and Zhang [29] to the case where a structural penalization is added in the

estimation step.

In Section 2, we introduce the model, consisting in putting a generalized Gaussian prior on the direct links
before the procedure of estimation of Ωyy and Ωyx, and we detail the new convex objective. Then we provide
some error bounds for our estimates, useful as theoretical guarantees of performance. Section 3 is devoted to
empirical considerations. We explain how we deal with the minimization of the new objective and we test the
method on simulations first, and next on a real dataset (a Canadian average annual weather cycle, see e.g.
[20]). After a short conclusion in Section 4, we finally prove our results in Section 5. The numerous constants
appearing in the results and the proofs are gathered in the Appendix, for the sake of readability.

2. A generalized Gaussian prior on the direct links

We use the definition given in formulas (1)–(2) of [18] for the so-called d-dimensional multivariate generalized
Gaussian GN (0, 1, V, β) distribution with mean 0, scale 1, scatter parameter V ∈ S d++ and shape parameter
β > 0. According to the authors, the density takes the form of

∀ z ∈ Rd, fV, β(z) =
β Γ(d2 )

π
d
2 Γ( d

2β ) 2
d
2β

√
det(V )

exp

(
− 〈z, V

−1z〉β

2

)

where Γ is the Euler Gamma function.
We clearly recognize the Gaussian N (0, V ) setting for β = 1. Moreover, for β = 1/2, it can be seen as a

multivariate Laplace distribution whereas it is known to converge to some uniform distribution as β → +∞. The
marginal shapes (d = 1 and V = 1) of the distribution are represented in Figure 1, depending on whether β < 1,
β = 1 or β > 1. Our results hold for all β > 1 but, as will be explained in due course, we shall not theoretically
deviate too much from the Gaussianity in the prior (even if we will allow ourselves some exceptions in the
practical works). The usual Bayesian approach for multiple-output Gaussian regression having B as matrix of
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coefficients and R as noise variance consists in a conjugate prior vec(B) ∼ N (b, R⊗ L−1) for some information
matrix L ∈ S p++ and a centering value b (see e.g. Sect. 2.8.5 of [22]). In the PGGM reformulation, we have
R = Ω−1

yy and B = −Ω t
yx Ω−1

yy as explained in Section 1, and of course we shall choose b = 0 to meet our
purposes. Thus,

vec(Ω t
yx) = −(Ωyy ⊗ Ip) vec(B) ∼ N (0,Ωyy ⊗ L−1)

is a natural prior for the direct links (this is in particular the choice of the authors of [7]). Following the same
logic, let us choose Ωyy ⊗ L−1 for scatter parameter and suppose that

vec(Ω t
yx) ∼ GN (0, 1,Ωyy ⊗ L−1, β). (2.1)

In this way, we can play on the intensity of the constraint we want to bring on Ωyx, from a non-informative
prior to quasi-boundedness through Laplace and Gaussian distributions. This prior entails an additional smooth
term acting as a structural penalization in the objective (1.4) that becomes

Ln(Ωyy,Ωyx) = − ln det(Ωyy) + 〈〈S (n)
yy ,Ωyy〉〉+ 2 〈〈S (n)

yx ,Ωyx〉〉

+〈〈S (n)
xx ,Ω

t
yx Ω−1

yy Ωyx〉〉+ η 〈〈L,Ω t
yx Ω−1

yy Ωyx〉〉β + λ |Ωyy|−1 + µ |Ωyx|1 (2.2)

with three regularization parameters (λ, µ, η). The smooth penalization lends weight to the prior on Ωyx and
thereby plays on the extent of shrinkage and structuring through β, whereas |Ωyx|1 and |Ωyy|−1 are designed to
induce sparsity. One can note that this is closely related to the log-likelihood of a hierarchical model of the form{

Yi |Xi,Ωyx ∼ N (−Ω−1
yy ΩyxXi, Ω−1

yy )
vec(Ω t

yx) ∼ GN (0, 1,Ωyy ⊗ L−1, β)

where the emphasis is on Ωyx in the prior and Ωyy remains a fixed parameter, although it is important to see
that, in this work, the estimation step does not rely on a posterior distribution. The following proposition is
related to the existence of a global minimum for our objective (2.2) with respect to (Ωyy,Ωyx) as soon as β > 1.

Proposition 2.1. Assume that β > 1. Then, Ln(Ωyy,Ωyx) defined in (2.2) is jointly convex with respect to
(Ωyy,Ωyx).

Proof. See Section 5.2.

Now and throughout the rest of the paper, denote by θ = (Ωyy,Ωyx) ∈ Θ = S q++ × Rq×p the (q × (q + p))-
matrix of parameters of the model, with true value θ ∗ = (Ω∗yy,Ω

∗
yx). As it is usually done in studies implying

sparsity, we will also consider S of cardinality |S|, the true active set of θ ∗ defined as S = {(i, j), θ ∗i,j 6= 0}, and

its complement S̄. Our results also depend on some basic assumptions related to the true covariances of the
Gaussian observations, and we will assume that the following holds.

Σ∗xx ∈ S p++, Ω∗yy ∈ S q++, B 6= 0 (that is, Ω∗yx 6= 0) and Ω∗yx LΩ∗ tyx ∈ S q++. (H1)

This is a natural hypothesis in our framework, in particular we suppose that there is at least a link between X
and Y .

Remark 2.2 (Null model). Even if it is of less interest, our study does not exclude the case where Ω∗yx = 0.
Indeed, we might as well consider that Ω∗yx = 0 and get the same results, but some constants should be refined.
On the other hand, Σ∗xx ∈ S p++ and Ω∗yy ∈ S q++ are crucial.
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Under (H1), the random matrices

An = (S (n)
yy − Σ∗yy)− Ω∗−1

yy Ω∗yx (S (n)
xx − Σ∗xx) Ω∗ tyx Ω∗−1

yy with ha = |An|∞ (2.3)

and

Bn = 2 ((S (n)
yx − Σ∗yx) + Ω∗−1

yy Ω∗yx (S (n)
xx − Σ∗xx)) with hb = |Bn|∞ (2.4)

are going to play a fundamental role, especially ha and hb. Let us now provide some theoretical guarantees for
the estimation of θ in our model, provided that the regularization parameters are located in a particular area
(λ, µ, η) ∈ Λ. Consider the penalized likelihood `λ,µ,η(θ) given in (2.2), and estimate θ by the global minimum

θ̂ = arg min
Θ

`λ,µ,η(θ) (2.5)

obtained for β > 1. To facilitate reading, we postpone the precise definition of the numerous constants to the
Appendix. We recall that p is the number of predictors, q is the number of responses and |S| is the size of the
true active set.

Theorem 2.3. Fix dλ > cλ > 1, dµ > cµ > 1, eλ > 0 and eµ > 0, and assume that the regularization parameters
satisfy (λ, µ, η) ∈ Λ = [cλ ha, dλ ha]× [cµ hb, dµ hb]× [0, η], where

η =
min

{
(cλ−1)λ
cλ `a

,
(cµ−1)µ
cµ `b

, eλ ha`a
,
eµ hb
`b

}
β s β−1

L

for some non-random constants sL, `a and `b defined in (A.2) and (A.3), and the random constants ha and hb
given above. Then, under (H1), there exists absolute constants b1 > 0 and b2 > 0 such that, for any 0 < b3 < 1
and as soon as n > n0, with probability no less that 1− e−b2n − b3, the estimator (2.5) satisfies

‖θ̂ − θ ∗‖F 6
16m∗ cλ,µ

√
|S|

γr,η,β,p

√
ln(10(p+ q)2)− ln(b3)

n

where γr,η,β,p, cλ,µ and m∗ are technical constants defined in (A.7), (A.8) and (A.9), respectively, and where
the minimal number of observations is given by

n0 = max

{
(ln(10(p+ q)2)− ln(b3)) c2λ,µ |S| (16m∗)2

r∗ 2 γ2
r,η,β,p

,

b1 (q + dsαe ln(p+ q)), ln(10(p+ q)2)− ln(b3)

}
(2.6)

with sα defined in (A.5) and r∗ in (A.6).

Proof. See Section 5.3.

Among all these constants, we can note that sL, `a, `b, ha and hb are useful to properly describe and restrict
Λ, the domain of validity of (λ, µ, η) for the theorem to hold. Once Λ is fixed, the other constants take part in
the upper bound of the estimation error. However, as it stands, the theorem is very difficult to interpret. The
next two remarks seem essential to have an overview of the orders of magnitude involved for the number of
observations, for p and q, for the estimation error and for the regularization parameters.
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Remark 2.4 (Validity band). Of course the degree of sparsity |S| is crucial in the estimation error, but it also
plays an indirect role in the probability associated with the theorem and in the numerous constants. In virtue
of Lemma 5.12, we can hope that λ and µ have a wide validity band, by adjusting cλ, cµ, dλ and dµ. In turn, η
also has a non-negligible area of validity, provided of course that `a, `b and sL, all depending on combinations
between Ω∗yx, Ω∗−1

yy and L, are small enough. Accordingly, it would be to our advantage if L was both sparse
and not chosen with too large elements. As it always appears together with η, we may as well take a normalized
version of L (e.g. |L|∞ 6 1).

Remark 2.5 (Order of magnitude). Even if the result holds for any β > 1, the terms ∝ p β−1 appearing in
some upper bounds of the proof clearly argue in favor of a moderate choice β ∈ [1, 1 + ε] for a small ε > 0,
depending on p. In other words, we cannot deviate too much from the Gaussianity in the prior on the direct
links. For example in a very high-dimensional setting (p ∼ 107), choosing ε = 0.1 leads to p β−1 ≈ 5 whereas we
may try larger values of ε for the more common high-dimensional settings p ∼ 103 or p ∼ 104. By contrast, we
can see that n0 must (at least) grow like q for the theorem to hold, so high-dimensional responses are excluded.
However in multiple-output regressions, even when p is extremely large, q generally remains small. According
to all these considerations, we may roughly say that, in a high-dimensional setting with respect to p,

‖θ̂ − θ ∗‖F .

√
|S| ln p

n

with a large probability, under a suitable regularization of the model. We recognize the usual terms appearing
in the error bounds of regressions with high-dimensional covariates, like the `2 error of the Lasso (see e.g. Chap.
11 of [11]). This is the same bound as in [29], but our additional structural penalty restricts Λ.

3. Simulations and real dataset

The minimization problem (2.5) is solved using a coordinate descent procedure, alternating between the
computations of

Ω̂yy = arg min
S q++

`λ,µ,η(Ωyy, Ω̂yx) and Ω̂yx = arg min
Rq×p

`λ,µ,η(Ω̂yy,Ωyx).

Each step is done by an Orthant-Wise Limited-Memory Quasi-Newton (OWL-QN) algorithm (see e.g. [1]). The
first subproblem is performed through half-vectorization (vech) to ensure symmetry and we set the objective to
+∞ on S̄ q++ to ensure positive definiteness of the solution. The coordinate descent is stopped when

‖Ω̂ (t)
yy − Ω̂ (t−1)

yy ‖2 6 εmax(1, ‖Ω̂ (t−1)
yy ‖2) and ‖Ω̂ (t)

yx − Ω̂ (t−1)
yx ‖2 6 εmax(1, ‖Ω̂ (t−1)

yx ‖2)

following two consecutive iterations t − 1 and t, where ε > 0 is a small threshold depending on the desired
precision. We are now going to try our method on synthetic data first, and then on a real dataset. We will pay
attention to the role played by β, in particular we will see that it can be useful as well as counterproductive,
depending on the situations.

3.1. Simulations

For each scenario, we first generate i.i.d. standard Gaussian vectors Xi ∈ Rp, then Yi ∈ Rq is simulated
according to the setting and we estimate Ωyy and Ωyx. From the relations detailed in Section 1, we recall that
Yi = B tXi + Ei with Ei ∼ N (0, R) is an equivalent formulation, provided that B = −Ω t

yx Ω−1
yy and R = Ω−1

yy .
In a compact form, we may also write

Y = XB + E or vec(Y ) = (Iq ⊗X) vec(B) + vec(E)
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where the i-th row of Y is Y t
i and the i-th row of X is X t

i . Thus, we can estimate B using the Lasso (Las) and
the Group-Lasso (GLas) in the vectorized form, to provide a basis for comparison between our method and the
usual penalized methods. The Lasso penalty is obviously ‖vec(B)‖1 to promote coordinate sparsity while, for
the Group-Lasso, we use the penalty ‖B1‖2 + . . .+ ‖Bp‖2 where Bi is the i-th row of B, to promote row sparsity
and exclude altogether some predictors from the model. We also implement some variants of our generalized
graphical model (GenGm). The case where Ωyy = R−1 is known and does not need to be estimated is the
Oracle (Or) and the case where η = 0 so that β has no influence is the classic PGGM (Gm). The case where
λ = 0 and β = 1 is called the Spring (Spr) by the authors of [7]. We will focus on structured scenarios. With
no structure in Ωyx, there is no reason why our method should outperform the usual PGGM. In a completely
random setting, we have observed that all PGGM procedures perform identically. In fact, a slight gain can be
obtained compared to Spr and Gm simply due to the flexibility induced by the additional parameter (Spr and
Gm are particular cases of GenGm). However, that clearly cannot counterbalance the extended computational
times, and GenGm should not be used for such situations. The calibration of the regularization parameters is
made using a cross-validation on a training set of size nt = 150 and the accuracy is evaluated thanks to the
mean squared prediction error (MSPE) on a validation set of size nv = 1000,

MSPE =

∥∥Y +X Ω̂ t
yx Ω̂−1

yy

∥∥2

F

q nv
. (3.1)

Due to the large amount of treatments, the grids for cross-validation are not very sharp here but they will be care-
fully refined for the real dataset of the next section. The covariance between the outputs is R = (r |i−j|)16 i, j6 q

for r = 1
2 and we work with p = 100. Each scenario is repeated N = 500 times and GenGm is evaluated with

numerous values of β, from 0.25 to 2 with a step of 0.25. The results of the following scenarios are summarized
in Figures 2–4, respectively.

– Scenario 1 (q = 1). We draw ωi = ± 1
2 for i = 1, . . . , 10 and we fill 10 randomly selected sections of size 3

in Ωyx with ωi. The remaining part of Ωyx is 0.
– Scenario 2 (q = 2). We draw ω = ± 1

2 and one randomly selected row of Ωyx is filled with ω while the other
is identically 0.

– Scenario 3 (q = 3). We draw ωi = ± 1
2 and we fill a randomly selected section of size 30 on the i-th row of

Ωyx with ωi, for i = 1, 2, 3. The remaining part of Ωyx is 0.

The row structure is promoted by a normalized first finite difference operator

L =
1

2



1 −1 0 . . . 0

−1 2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 2 −1
0 . . . 0 −1 1


(3.2)

which, through Ωyx LΩ t
yx, tends to penalize the difference between two consecutive values on a same row (as

does Fused-Lasso with `1 penalty). Yet, the Fused-Lasso is not a suitable alternative to GLas and Las in this
precise context because B = −Ω t

yx Ω−1
yy is not supposed to have a row structure even if Ωyx has one. For this

choice of L, one can note that, in the particular case where R = diag(σ 2
1 , . . . , σ

2
q ),

〈〈L,Ω t
yx Ω−1

yy Ωyx〉〉β =

 q∑
i=1

σ 2
i

p∑
j=2

(ωi,j − ωi,j−1)2

β >
q∑
i=1

σ 2β
i

p∑
j=2

|ωi,j − ωi,j−1| 2β
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Figure 2. Mean squared prediction error for N = 500 repetitions of the weakly structured
Scenario 1.

where ωi,j is the (i, j)-th element of Ωyx, so we may fairly expect that β > 1 is going to strengthen the smoothness
of the estimation and to enforce all the more the structuring.

Remark 3.1 (Validity of the hypotheses). We could as well add a small diagonal element in the matrix L defined
above, positive semi-definite but not invertible. The resulting effect would be a negligible ridge-like penalization
on the elements of Ωyx. This is not required for the estimation procedure but useful for Theorem 2.3 to hold
(see e.g. (H1)). Likewise, it seemed interesting to test some settings with β < 1 even if the theory developped
in the paper does not give any guarantee for them, as a basis for comparison.

First of all, one can observe that Las and GLas are left behind in all our simulations. This is not surprising since
the covariance between the outputs cannot be recovered with the standard Lasso, at least for q > 2. Generally,
GLas remains more robust compared to Las, probably due to the high level of sparsity in Ωyx approximately
passed to B (provided that the covariances in R are small enough), and exploited by the grouping effect. In the
weakly structured setting (Scenario 1), we also observe that, as expected, all PGGM procedures perform almost
identically, with obviously an advantage for Or (although small, illustrating the accuracy of the estimation). In
the strongly structured settings (Scenarios 2 and 3), Gm gives results below the expected level, because it is
not designed to promote such layouts. On the contrary, thanks to this choice of L showing here great efficiency,
GenGm and Spr are doing pretty well. Note that, in this context, GenGm with β = 1 is almost the same as
Spr since, q being small, λ does not play a crucial role. However, some empirical facts draw our attention: the
prediction error decreases with β to some extent, but the most interesting fact seems to be the simultaneous
decrease of its variance. It is likely that the increasing pressure exerted by β on the estimation procedure leads
to a higher homogeneity in the numerical results, despite the repetitions of random experiments under random
settings. In other words, the structuring seems to be strengthened and we also observe that the convergence
of the algorithm is faster, which logically follows from the latter remarks (especially clear when we compare
β = 0.25 and β = 2). On the other hand, for the opposite reason, we notice that the predictions are hardly
better than Gm (even worse in some cases), both on average and in terms of variability, for β < 1, and these
simulations tend to undermine such values of the hyperparameter. On the whole, GenGm with β > 1 might be
a sound approach for practitioners who place a high priority on structuring the estimations, even if Remark 3.2
below should probably temper this statement. To conclude, let us consider the strongly structured scenarios
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Figure 3. Mean squared prediction error for N = 500 repetitions of the strongly structured
Scenario 2.

Figure 4. Mean squared prediction error for N = 500 repetitions of the strongly structured
Scenario 3.

with L = Ip (without structuring) in the Oracle setting with β = 2, and let us compare the results with those
of Figures 3 and 4, obtained with the correct version of L given in (3.2). The results are displayed in Figure 5
where we can see that the benefit of structuring is manifest. Unsurprisingly, the results without structuring are
close to those of Gm since L = Ip only strengthens the shrinkage effect with ridge-like additional penalties.

Remark 3.2 (Computational time). To estimate (Ωyy,Ωyx) in the model Spr, the authors of [7] use a very
judicious and efficient method relying, in each step of the coordinate descent procedure, on a direct computation
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Figure 5. Mean squared prediction error for N = 500 repetitions of the strongly structured
Scenario 2 (left) and Scenario 3 (right) for Or, Gm and the unstructured Or (L = Ip), with
β = 2.

of the estimation of Ωyy together with an Elastic-Net estimation of Ωyx. This is possible for λ = 0 and β = 1,
but unfortunately cannot be implemented in the general setting. As a result, computational times remain an
issue that should be paid attention to.

Remark 3.3 (Oracle-type errors). The mean value of the estimation errors ‖Ω̂yx − Ωyx‖2F leads to the same
kind of observations for the models being compared in the simulations. But the minimal prediction error does
not always coincide with an optimal support recovery due to the shrinkage effect on the estimation of Ωyx, when
the coefficients or the covariates are not very contrasting. The so-called F -score is given by

F =
2 pr re
pr + re

where pr =
TP

TP + FP
and re =

TP

TP + FN

are the precision and the recall, respectively, and where T/F and P/N stand for true/false and positive/negative.
In the strongly structured scenarios, F is generally located between 0.60 and 0.65, and a deeper analysis shows
that a proportion of more than 0.99 of true non-zero values are recovered (that is, the part of the true active
set S related to Ωyx). If the models are not calibrated to reach the best prediction error but the best F -score,
F regularly exceeds 0.90, at least for the structured procedures.

Nevertheless, Scenarios 2 and 3 are very strongly structured, more than one would expect from an unknown
underlying generating process, and the real dataset of the next section is going to highlight the fact that the
improvement may be hardly noticeable with respect to β. But we will see that β can still be useful for variable
selection.

3.2. A real dataset

The dataset available as CanadianWeather in the R package fda contains daily temperature and precipitation
at 35 different locations in Canada, averaged over annual reports starting in 1960 and ending in 1994 (see e.g.
[20]). We intend to look at the direct links between the minimal and maximal rainfall (on the log10 scale) and
the temperature pattern in the 35 weather stations, so as to identify the times of the year that have a strong
effect on rainfall (positive as well as negative). In this context, n = 35, q = 2 and p = 365. Figure 6 shows
temperature and log-precipitation measured over a year in Montreal, chosen as an example, together with the
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Figure 6. Temperature and log-precipitation measured over a year in Montreal (left). Empirical
distribution of the minimal and maximal log-precipitation for the 35 weather stations (right).

empirical distribution of the minimal and maximal log-precipitation for the 35 weather stations. We can note
that, since the data are averaged over numerous years, outliers are unlikely even for the extremes (min and
max).

Some authors (see e.g. [24]) have already highlighted the pertinence of using the matrix L defined in (3.2)
in this dataset, because the predictors are ordered temporally so that the selection of isolated days instead of
relevant sequences of days seems an unreliable procedure for statistical interpretation. To assess the models, we
repeat N = 100 times the following experiment: nt = 25 observations are randomly selected for calibration (via
2-fold cross-validation) and estimation, the remaining nv = 10 observations are used to compute the MSPE (3.1)
related to the prediction of the minimum (minp) and maximum (maxp) precipitation. We can see in Figure 7
that all structured PGGM perform almost identically, with the phenomenon described in the previous section
still visible but to a lesser extent. We can even notice that structuring is hardly beneficial for this dataset, from
a purely numerical point of view. This conclusion can also be found in [24], where the author compares the
structured Elastic-Net with unstructured alternatives to predict the 0.25-, 0.50- and 0.75-quantiles of the log-
precipitation, through independent regressions. But we will see that, in terms of variable selection and statistical
interpretation, L and β still have a substancial role to play.

The point is that we have observed that the best prediction error does not usually coincide with a sparse
solution (see Rem. 3.3) when the coefficients or the covariates are not very contrasting. In particular, this was
the case of our simulation study with ± 1

2 coefficients and N (0, 1) covariates. So, just as they look at the Lasso’s
regularization paths, practitioners may choose the desired degree of sparsity, depending on p/n, by adjusting
the hyperparameters. Here, on the basis of the MSPE, most of the time we must retain µ� 10−2 and only a
few direct links are set to zero. To look for sequences of days directly related to minp and maxp, we decided to
constraint µ > 10−2 and focus on variable selection. The active set of Ωyx is evaluated on the basis of nt = 25
randomly chosen observations. The experiment is repeated N = 100 times, and the locations having a frequency
of occurrence that exceeds 0.5 are retained (or, equivalently, those whose estimates have a non-zero median).
This can be seen as a measure of variable importance. The results are given in Figures 8 and 9 for minp and
maxp, respectively, with a fixed set of regularization parameters and increasing values of β. The objective is
to show the influence of the latter, all other things being equal. The colored areas highlight the days having
a frequency of occurrence, represented by gray crosses, that exceeds 0.5 in the N = 100 repetitions of the
experiment. Note that, since we retain λ = 0 in these experiments, GenGm for β = 1 coincides with Spr. We
can see that the increasing pressure exerted by β on the estimation procedure tends to refine the selection by
giving priority to the most important variables and by dropping the others much more easily, at the cost of
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Figure 7. Mean squared prediction error for N = 100 repetitions of the experiment. GenGm
for β ∈ {0.5, 1, 1.5, 2} is compared with Spr, Gm, Las and GLas.

Figure 8. Variable selection for minp by GenGm with (λ, µ, η) = (0, 0.05, 1) and, from top to
bottom, β ∈ {0.5, 1, 1.5, 2}.

prediction results: we are undoubtedly in a selection process. The sequence of inclusions

Ŝβ2
⊂ Ŝβ1

for β1 < β2

that we observe for the estimated active sets is clearly a guarantee of quality for the selected variables.
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Figure 9. Variable selection for maxp by GenGm with (λ, µ, η) = (0, 0.05, 1) and, from top to
bottom, β ∈ {0.5, 1, 1.5, 2}.

The median values of the estimated direct links between the temperature of the days and the pair (minp,maxp)
are represented in Figure 10 together with the estimated regression coefficients, for β = 2. We recall that the
relation B = −Ω t

yx Ω−1
yy simply leads to

B̂ = −Ω̂ t
yx Ω̂−1

yy .

We detect sequences of influent days in November, December, January and February, especially related to minp,
positively at the end of the year and negatively at the beggining. This is broadly consistent with the analysis of
[24] – even if the responses are not extremes but quantiles in it – with however two differences: the regression
coefficients associated with maxp are much lower compared to minp whereas it is not that clear in the reference,
and an activity is also detected between July and August. The main explanation, at least for the first of them,
probably lies in the use of graphical models that take into account the correlation between responses. Indeed, as
can be seen in Figure 11 which gives an overview of the estimation of R obtained from the repeated experiments,
a non-zero correlation is detected between the responses (≈ 0.32). The influence of November and December
on all quantiles and that of January and February on the 0.75-quantile in [24] might actually be an artificial
effect of the correlation with the 0.25-quantile. This is what our study suggests by highlighting minp compared
to maxp: the ‘real’ effect appears to be on minp whereas maxp seems to react only through a phenomenon
of correlation with minp. From this point of view, the interest of graphical models instead of independent
regressions is particularly obvious.

Let us also mention that, interestingly enough, we notice that the role of η tends to depreciate for the large
values of β. For example, for the same regularization parameters (λ, µ) = (0, 0.05) and β = 2, the difference
between the estimated active sets for η = 0.1 and η = 1 is almost negligible (depending on the experiments,
between 1 and 3 days are concerned, on average). Based on these studies and observations, we might conclude
that β is insignificant when we are interested in the best prediction error on a validation set (even counterpro-
ductive with respect to computational times, e.g. compared to Spr), whereas it seems to have a substancial role
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Figure 10. Estimated direct links (top) and regression coefficients (bottom) for the pair
(minp,maxp) by GenGm with (λ, µ, η) = (0, 0.05, 1) and β = 2, after the N = 100 experiments.
Dotted lines divide the panel into months.

Figure 11. Estimated correlation between minp and maxp by GenGm with (λ, µ, η) =
(0, 0.05, 1) and β = 2, after the N = 100 experiments. The off-diagonal entry is approximately
0.32.

to play when focusing on selection, by accelerating the discrimination of variables. In the first case, η has to be
carefully adjusted while in the second case, β will quickly help to reach the desired sparsity.

Remark 3.4 (Structure matrix). For the simulations and the real dataset, we have used the popular first finite
difference operator given in (3.2). Other examples can be found in the literature, like the promotion of a genetic
distance for genomic selection in Brassica napus [7] or the bidimensional discretization of the Laplacian to work
on handwritten digit recognition [24]. More generally, L can be used in a classic Bayesian prior supposed to
promote some covariance structure on the direct links, with no ‘physical’ structuring in mind (like temporal,
spatial or genetic proximity).

4. Conclusion

In conclusion, our work is a generalization of [29], using the same technical tools to establish an upper
bound on the estimation error when a prior on the direct links generates an additional structural penalty in the
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objective, provided that the model is suitably regularized. Our work is also an improvement of [7] since, while
being inspired by the methodology of the authors, we generalize the prior and give some theoretical guarantees.
The empirical study shows that the hyperparametrization in the prior, although more expensive in adjusting
the parameters, is likely to refine the selection results but clearly, this does not appear as a crucial improvement
compared to the two previous points. Let us conclude the paper by highlighting two weaknesses that might be
trails for future studies. On the one hand, the Laplace distribution is often used as a prior in the Bayesian Lasso
(see e.g. Sect. 6.1 of [11]). However, our reasonings do not allow β = 1/2, which may correspond to a multivariate
Laplace distribution on the direct links. Combined with the first finite difference operator L, the choice β = 1/2
could generate a Fused-Lasso-type penalty. In this regard, it would be challenging and interesting to obtain
some theoretical guarantees for β > 1/2 and not only for β > 1, even if our probably too brief simulation study
does not encourage the choice of β < 1. On the other hand, λ = 0 is a natural choice when q is small (this is in
particular the configuration of [7]), not to mention that it is computionally faster. But, the proof of our theorem
needs λ > cλ ha > 0 to hold. We think that a reasoning enabling to deal with λ = 0 should also be beneficial to
the study. More generally, it would be instructive to consider a very high-dimensional setting (p� n and not
only p ∼ 102 although always larger than n, as in our experiments). Such studies should follow with omic data.

5. Technical proofs

We start in a first part by some useful linear algebra lemmas that will be repeatedly used subsequently,
well-known for most of them. In a second part, we prove the joint convexity of the objective and our main
result.

5.1. Linear algebra

Lemma 5.1. Let A ∈ S d+ and U ∈ Rd×`. Then, U tAU ∈ S `+.

Proof. Since A is symmetric with non-negative eigenvalues, there is an orthogonal matrix P such that A =
PDP t with D = diag(sp(A)) ∈ S d+. Thus, for all v ∈ R`, it follows that 〈v, U tAU v〉 = ‖D1/2 P t U v‖2 > 0.

Lemma 5.2. Let A ∈ S d++ and B ∈ S d+. Then for all i, λi(AB) > 0.

Proof. The equality AB = A1/2 (A1/2BA1/2)A−1/2 shows that AB and A1/2BA1/2 are similar, so they must
share the same eigenvalues. From Lemma 5.1, λi(A

1/2BA1/2) > 0 .

Lemma 5.3. Let A ∈ S d+ and B ∈ S d+. Then,

λmin(A) tr(B) 6 tr(AB) 6 λmax(A) tr(B).

Proof. Since A− λmin(A)Id ∈ S d+ and B ∈ S d+,

tr((A− λmin(A)Id)B) = tr(B1/2 (A− λmin(A)Id)B
1/2) > 0

from Lemma 5.1, thus tr(AB) > λmin(A) tr(B). The other inequality is obtained through λmax(A)Id −A ∈ S d+.

Lemma 5.4. Let A ∈ S d++ and B ∈ S d+. Then,

λmin(A)λmin(B) 6 λmin(AB) and λmax(AB) 6 λmax(A)λmax(B).

Proof. On the one hand, λmax(AB) 6 ‖AB‖2 6 ‖A‖2 ‖B‖2 = λmax(A)λmax(B), since A and B are symmetric
and since, from Lemma 5.2 and by hypothesis, all eigenvalues appearing in the relation are non-negative. Suppose
now that B is invertible so that both A−1 and B−1 belong to S d++. Then, λmax((AB)−1) 6 λmax(A−1)λmax(B−1)
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and this immediately gives λmin(AB) > λmin(A)λmin(B). If B is not invertible, the relation trivially holds since
we still have λmin(AB) > 0 from Lemma 5.2.

Lemma 5.5. Let A ∈ S d+ and U ∈ Rd×`. Then,

λmin(A) ‖U‖2F 6 tr(U tAU) 6 λmax(A) ‖U‖2F .

Proof. Denote by ui the i-th column of U . It is not hard to see that the i-th diagonal element of U tAU is
u tiAui > λmin(A) ‖ui‖2 > 0. Thus,

tr(U tAU) =
∑̀
i=1

u tiAui > λmin(A)
∑̀
i=1

‖ui‖2 = λmin(A) ‖U‖2F .

The upper bound stems from 0 6 u tiAui 6 λmax(A) ‖ui‖2.

Lemma 5.6. Let A and B be symmetric matrices of same dimensions. Then,

λmin(A) + λmin(B) 6 λmin(A+B) and λmax(A+B) 6 λmax(A) + λmax(B).

Proof. These are just two special cases of Weyl inequalities. We refer the reader to Theorem 4.3.1 of [12], for
example.

5.2. Convexity of the objective

We know from Proposition 1 of [29] and the convexity of the elementwise `1 norm that Ln(Ωyy,Ωyx) −
η 〈〈L,Ω t

yx Ω−1
yy Ωyx〉〉β is itself convex, but it remains to show that this is still the case with the additional

smooth penalty.

Proof of Proposition 2.1

Recall that Θ = S q++ × Rq×p and consider the mapping Φ : Θ→ S p+ defined as

∀ (A,B) ∈ Θ, Φ(A,B) = B tA−1B.

We can already note from Lemma 5.1 that tr(Φ(A,B)) > 0. Moreover, for all 0 6 h 6 1 and all Zi = (Ai, Bi) ∈
Θ, i = 1, 2, it is easy to see that

Sh(Z1, Z2) = hΦ(Z1) + (1− h) Φ(Z2)− Φ(hZ1 + (1− h)Z2) (5.1)

is the Schur complement of hA1 + (1− h)A2 in the matrix

Mh(Z1, Z2) = h

(
A1 B1

B t
1 B t

1 A
−1
1 B1

)
+ (1− h)

(
A2 B2

B t
2 B t

2 A
−1
2 B2

)
. (5.2)

But the decomposition

(
A1/2 A−1/2B

0 0

)t(
A1/2 A−1/2B

0 0

)
=

(
A B
B t B tA−1B

)
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directly shows that Mh(Z1, Z2) in (5.2) is symmetric and positive semi-definite. It is well-known (see e.g.
Appendix A.5.5 of [4]) that in that case, the Schur complement (5.1) must also be positive semi-definite.
Consequently, for Zi = (Ωi,yy,Ωi,yxL

1/2), i = 1, 2, taking the trace of Sh(Z1, Z2) and considering β > 1,

〈〈L,P t
h Q
−1
h Ph〉〉β = (tr(Φ(hZ1 + (1− h)Z2)))β

6 (h tr(Φ(Z1)) + (1− h) tr(Φ(Z2)))β

= (h 〈〈L,Ω t
1,yx Ω−1

1,yy Ω1,yx〉〉+ (1− h) 〈〈L,Ω t
2,yx Ω−1

2,yy Ω2,yx〉〉)β

6 h 〈〈L,Ω t
1,yx Ω−1

1,yy Ω1,yx〉〉β + (1− h) 〈〈L,Ω t
2,yx Ω−1

2,yy Ω2,yx〉〉β

where Ph = hΩ1,yx + (1 − h) Ω2,yx and Qh = hΩ1,yy + (1 − h) Ω2,yy. This convexity inequality concludes the
proof.

5.3. Theoretical guarantees

Proof of Theorem 2.3

Let Rn(θ) be the the smooth part of the objective (2.2),

Rn(θ) = − ln det(Ωyy) + 〈〈S (n)
yy ,Ωyy〉〉+ 2 〈〈S (n)

yx ,Ωyx〉〉

+ 〈〈S (n)
xx ,Ω

t
yx Ω−1

yy Ωyx〉〉+ η 〈〈L,Ω t
yx Ω−1

yy Ωyx〉〉β . (5.3)

For any θ ∈ Θ and t ∈ R, by a Taylor expansion,

Rn(θ ∗ + t (θ − θ ∗)) = Rn(θ ∗) + t 〈〈∇Rn(θ ∗), θ − θ ∗〉〉+ et(θ, θ
∗) (5.4)

for some second-order error term et(θ, θ
∗). Consider the reparametrization

φ(t) = Rn(θ ∗ + t (θ − θ ∗)) (5.5)

so that φ′(0) = 〈〈∇Rn(θ ∗), θ − θ ∗〉〉. Let δθyy = Ωyy − Ω∗yy and δθyx = Ωyx − Ω∗yx, let also δθ = θ − θ ∗ in a
compact form. The estimation error is denoted

δϑ = θ̂ − θ ∗ = (Ω̂yy − Ω∗yy, Ω̂yx − Ω∗yx) = (δϑyy, δϑyx). (5.6)

Before we start the actual proof, some additional lemmas are needed. They constitute a local study in a sort of
r∗-neighborhood of θ ∗ that we define as

Nr,α(θ ∗) =
{
θ ∈ Θ, ‖δθ‖F 6 r∗ and |[δθ]S̄ |1 6 α|[δθ]S |1

}
. (5.7)

Our strategy can be summarized as follows:

– (Lem. 5.9) Show that there exists a configuration for the regularization parameters (λ, µ, η) so that the
estimation error satisfies |[δϑ]S̄ |1 6 α|[δϑ]S |1 for some α > 0.

– (Lem. 5.10) Find some r∗ > 0 and γr,η,β,p > 0 such that e1(θ, θ ∗) > γr,η,β,p‖δθ‖2F as soon as θ ∈ Nr,α(θ ∗).
– (Lem. 5.11) Exploit this result to show that the estimation error must also satisfy ‖δϑ‖F 6 r∗ provided

that max{ha, hb} is small enough.
– (Lem. 5.12) Conclude that the theorem holds with high probability, provided that n is large enough.

For the sake of readability, we refer the reader to the Appendix for the numerous constants that are about
to appear in the following lemmas and proofs. Thereafter, Nr,α(θ ∗) will always refer to α in (A.4) and r∗
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in (A.6), while the second hypothesis (H2) given below is to be assumed with the smallest integer greater than
sα in (A.5). This is a random hypothesis, which will be controlled with a probability, related to the proximity
between the empirical covariance and the true covariance of the predictors, since we recall that S (n) has no
reason to be an excellent approximation of Σ∗ when p� n. This is also assumed by the authors of [29], it is a
kind of restricted isometry propertie (RIP), well-known in high-dimensional studies. In particular, we will see
through Lemma 5.12 that it is satisfied with high probability provided that n is large enough.

∀u 6= 0 such that |u|0 6 dsαe,
1

2
u t Σ∗xx u 6 u t S (n)

xx u 6
3

2
u t Σ∗xx u. (H2)

In addition, λmax(Ω∗yx S
(n)
xx Ω∗ tyx) 6

7

5
λmax(Ω∗yx Σ∗xx Ω∗ tyx).

The next two lemmas give some bounds for expressions that will appear repeatedly.

Lemma 5.7. Under (H1) and (H2), for all θ ∈ Nr,α(θ ∗), we have the bound

λmax(Ω−1
yy Ωyx S

(n)
xx Ω t

yx) 6 ωS

where ωS is given in (A.1). In addition,

tr(δθyx S
(n)
xx δθ tyx) >

λmin(Σ∗xx)

10
‖δθyx‖2F .

Proof. Similar reasonings may be found in the proofs of Lemmas 1-2 of [29]. We simply reworked the constants
to make them stick to our study.

Lemma 5.8. Under (H1), for all θ ∈ Nr,α(θ ∗), we have the bounds

λmin(Ω−1
yy Ωyx LΩ t

yx) > ωL and λmax(Ω−1
yy Ωyx LΩ t

yx) 6 ωL

where ωL and ωL are given in (A.1). As a corollary,

pωL 6 〈〈L,Ω t
yx Ω−1

yy Ωyx〉〉 6 pωL.

Proof. From Lemmas 5.1 and 5.6,

2λmin(Ωyx LΩ t
yx) > 2

(
λmin(Ω∗yx LΩ∗ tyx) + λmin(δθyx LΩ∗ tyx + Ω∗yx Lδθ

t
yx)
)

> 2
(
λmin(Ω∗yx LΩ∗ tyx)− ‖δθyx LΩ∗ tyx + Ω∗yx Lδθ

t
yx‖2

)
> 2

(
λmin(Ω∗yx LΩ∗ tyx)− 2 ‖δθyx‖F ‖LΩ∗ tyx‖2

)
> λmin(Ω∗yx LΩ∗ tyx)

as soon as ‖δθyx‖F 6 r∗. From Lemma 5.4, we get

λmin(Ω−1
yy Ωyx LΩ t

yx) >
λmin(Ωyx LΩ t

yx)

λmax(Ωyy)
>
λmin(Ω∗yx LΩ∗ tyx)

4λmax(Ω∗yy)

where the inequality in the denominator comes from λmax(Ωyy) 6 λmax(Ω∗yy) + λmax(δθyy), via Lemma 5.6,
and the fact that λmax(δθyy) 6 ‖δθyy‖F 6 r∗ 6 λmax(Ω∗yy). For the upper bound, a similar logic gives, with
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Lemma 5.5,√
λmax(Ωyx LΩ t

yx) 6
√
λmax(Ω∗yx LΩ∗ tyx) +

√
tr(δθyx Lδθ tyx)

6
√
λmax(Ω∗yx LΩ∗ tyx) + ‖δθyx‖F

√
λmax(L) 6

√
2λmax(Ω∗yx LΩ∗ tyx)

for ‖δθyx‖F 6 r∗. It follows from Lemma 5.4 that

λmax(Ω−1
yy Ωyx LΩ t

yx) 6
λmax(Ωyx LΩ t

yx)

λmin(Ωyy)
6

4λmax(Ω∗yx LΩ∗ tyx)

λmin(Ω∗yy)

where the inequality in the denominator comes from λmin(Ωyy) > λmin(Ω∗yy) + λmin(δθyy), via Lemma 5.6, and
the fact that 2λmin(δθyy) > −2 ‖δθyy‖F > −2 r∗ > −λmin(Ω∗yy). The corollary that concludes the lemma is now
immediate.

Lemma 5.9. Assume that λ, µ and η are chosen according to the configuration of the theorem. Then,
under (H1), the estimation error satisfies

|[δϑ]S̄ |1 6 α |[δϑ]S |1

where α > 0 is given in (A.4).

Proof. Taking t = 1 in the Taylor expansion (5.4) with θ = θ̂ and considering the definition of φ in (5.5), by
convexity,

Rn(θ̂)−Rn(θ ∗) > φ′(0).

The first derivative of φ will be explicitely computed in (5.11). For t = 0, we find

φ′(0) = −〈〈Ω∗−1
yy , δϑyy〉〉+ 〈〈S (n)

yy , δϑyy〉〉+ 2 〈〈S (n)
yx , δϑyx〉〉

+ 2 〈〈S (n)
xx ,Ω

∗ t
yx Ω∗−1

yy δϑyx〉〉 − 〈〈S (n)
xx ,Ω

∗ t
yx Ω∗−1

yy δϑyy Ω∗−1
yy Ω∗yx〉〉

+ ηβ s β−1
L

[
2 〈〈L,Ω∗ tyx Ω∗−1

yy δϑyx〉〉 − 〈〈L,Ω∗ tyx Ω∗−1
yy δϑyy Ω∗−1

yy Ω∗yx〉〉
]

= 〈〈An + ηβ s β−1
L CA, δϑyy〉〉+ 〈〈Bn + ηβ s β−1

L CB , δϑyx〉〉

where sL is given in (A.3), where, through the blockwise relations (1.3), we recognize the random matrices
An (with max norm ha) and Bn (with max norm hb) defined in (2.3) and (2.4), and where, coming from the
structural regularization term,

CA = −Ω∗−1
yy Ω∗yx LΩ∗ tyx Ω∗−1

yy and CB = 2 Ω∗−1
yy Ω∗yx L.

Whence it follows from the well-known relation |tr(M1M2)| 6 |M1|∞ |M2|1, where M1 and M2 are compatible
matrices, that

φ′(0) > − λ

cλ
|δϑyy|1 − ηβ s β−1

L `a |δϑyy|1 −
µ

cµ
|δϑyx|1 − ηβ s β−1

L `b |δϑyx|1

making use of the constants (A.3), λ > cλ ha and µ > cµ hb. For the sake of clarity, let

∆n(θ, θ ∗) = Rn(θ) + λ |Ωyy|−1 + µ |Ωyx|1 −Rn(θ ∗)− λ |Ω∗yy|−1 − µ |Ω∗yx|1.
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For all θ ∈ Θ,

|Ωyy|−1 − |Ω∗yy|
−
1 = |[Ω∗yy + δθyy]S |−1 + |[δθyy]S̄ |−1 − |[Ω∗yy]S |−1
>
∣∣|[Ω∗yy]S |−1 − |[δθyy]S |−1

∣∣+ |[δθyy]S̄ |−1 − |[Ω∗yy]S |−1
> |[δθyy]S̄ |1 − |[δθyy]S |1

from the triangle inequality and the fact that, as Ω∗yy is positive definite, the diagonal must belong to S, i.e.
(j, j) ∈ S for all 1 6 j 6 q so that any square matrix M of size q is such that [M ]S̄ has diagonal elements all
equal to zero. A similar bound obviously holds for |Ωyx|1 − |Ω∗yx|1. Now, a straightforward calculation shows
that

∆n(θ̂, θ ∗) > c
(
|[δϑyy]S̄ |1 + |[δϑyx]S̄ |1

)
− c

(
|[δϑyy]S |1 + |[δϑyx]S |1

)
(5.8)

where

c = max

{
(cλ + 1)λ

cλ
+ ηβ s β−1

L `a,
(cµ + 1)µ

cµ
+ ηβ s β−1

L `b

}
and

c = min

{
(cλ − 1)λ

cλ
− ηβ s β−1

L `a,
(cµ − 1)µ

cµ
− ηβ s β−1

L `b

}
.

Thus, provided that c > 0, which is stated in the configuration of the theorem, it only remains to note that,
necessarily,

∆n(θ̂, θ ∗) 6 0

since θ̂ is the global minimizer of θ 7→ Rn(θ) + λ |Ωyy|−1 + µ |Ωyx|1. The identification of α given in (A.4) easily
follows.

Lemma 5.10. Under (H1) and (H2), the second-order error term of (5.4) satisfies, for t = 1 and all θ ∈
Nr,α(θ ∗),

e1(θ, θ ∗) > γr,η,β,p ‖δθ‖2F

where γr,η,β,p > 0 is given in (A.7).

Proof. From the definition of φ in (5.5) and the fact that φ′(0) = 〈〈∇Rn(θ ∗), θ − θ ∗〉〉, there exists h ∈ ]0, 1[
satisfying

e1(θ, θ ∗) =
1

2
φ′′(h). (5.9)

To simplify the calculations, let

uL = 〈〈L,Ω t
yx Ω−1

yy Ωyx〉〉. (5.10)

We are going to study the behavior of Rn(Ωyy,Ωyx) in the directions Ωyy = Ω∗yy + t δθyy and Ωyx = Ω∗yx + t δθyx
through φ(t), where we recall that δθyy = Ωyy − Ω∗yy and δθyx = Ωyx − Ω∗yx. One can see that φ(t) moves from
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Rn(Ωyy,Ωyx) to Rn(Ω∗yy,Ω
∗
yx) as t decreases from 1 to 0. The first derivative is

φ′(t) = −〈〈Ω−1
yy , δθyy〉〉+ 〈〈S (n)

yy , δθyy〉〉+ 2 〈〈S (n)
yx , δθyx〉〉

+ 2 〈〈S (n)
xx ,Ω

t
yx Ω−1

yy δθyx〉〉 − 〈〈S (n)
xx ,Ω

t
yx Ω−1

yy δθyy Ω−1
yy Ωyx〉〉

+ ηβ u β−1
L

[
2 〈〈L,Ω t

yx Ω−1
yy δθyx〉〉 − 〈〈L,Ω t

yx Ω−1
yy δθyy Ω−1

yy Ωyx〉〉
]
. (5.11)

The second derivative is tedious to write but straightforward to establish,

φ′′(t) = 〈〈Ω−1
yy , δθyy Ω−1

yy δθyy〉〉+ 2
[
〈〈S (n)

xx , δθ
t
yx Ω−1

yy δθyx〉〉 − 2 〈〈S (n)
xx ,Ω

t
yx Ω−1

yy δθyy Ω−1
yy δθyx〉〉

+ 〈〈S (n)
xx ,Ω

t
yx Ω−1

yy δθyy Ω−1
yy δθyy Ω−1

yy Ωyx〉〉
]

+ 2 ηβ u β−1
L

[
〈〈L, δθ tyx Ω−1

yy δθyx〉〉 − 2 〈〈L,Ω t
yx Ω−1

yy δθyy Ω−1
yy δθyx〉〉

+ 〈〈L,Ω t
yx Ω−1

yy δθyy Ω−1
yy δθyy Ω−1

yy Ωyx〉〉
]

+ ηβ(β − 1)u β−2
L

[
2 〈〈L,Ω t

yx Ω−1
yy δθyx〉〉 − 〈〈L,Ω t

yx Ω−1
yy δθyy Ω−1

yy Ωyx〉〉
]2
. (5.12)

First, from the combination of Lemmas 5.1 and 5.8, we clearly have uL > 0. We also note that 0 6 ‖ 2
cM1 −

cM2‖2F = 4
c2 ‖M1‖2F − 4 〈〈M1,M2〉〉+ c2 ‖M2‖2F for any c 6= 0 and any matrices M1 and M2 of same dimensions.

It follows, after some reorganizations, that for any c 6= 0 and d 6= 0,

φ′′(t) > 〈〈Ω−1
yy , δθyy Ω−1

yy δθyy〉〉

+ c1 〈〈Ω−1
yy , δθyx S

(n)
xx δθ tyx〉〉+ c2 〈〈S (n)

xx ,Ω
t
yx Ω−1

yy δθyy Ω−1
yy δθyy Ω−1

yy Ωyx〉〉

+ ηβ u β−1
L

[
d1 〈〈Ω−1

yy , δθyx Lδθ
t
yx〉〉+ d2 〈〈L,Ω t

yx Ω−1
yy δθyy Ω−1

yy δθyy Ω−1
yy Ωyx〉〉

]
where c1 = 2− 4

c2 , c2 = 2− c2, d1 = 2− 4
d2 and d2 = 2− d2. Here we exploited the previous inequality twice,

uL > 0 and β > 1. From Lemmas 5.1, 5.3, 5.7 and 5.8, using sp(M1M2) = sp(M2M1) for square matrices M1

and M2, we obtain

〈〈L,Ω t
yx Ω−1

yy δθyy Ω−1
yy δθyy Ω−1

yy Ωyx〉〉 6 ωL 〈〈Ω−1
yy , δθyy Ω−1

yy δθyy〉〉

where ωL is defined in (A.1). Replacing L by S
(n)
xx and ωL by ωS , a similar bound obviously holds. Suppose

that c and d are chosen so that c1 > 0, d1 > 0, c2 < 0 and d2 < 0. Then,

φ′′(t) > 〈〈Ω−1
yy , δθyy Ω−1

yy δθyy〉〉
[
1− |c2|ωS − ηβ u β−1

L |d2|ωL
]

+ c1 〈〈Ω−1
yy , δθyx S

(n)
xx δθ tyx〉〉+ ηβ u β−1

L d1 〈〈Ω−1
yy , δθyx Lδθ

t
yx〉〉

> 〈〈Ω−1
yy , δθyy Ω−1

yy δθyy〉〉
[
1− |c2|ωS − ηβ (pωL)β−1|d2|ωL

]
+ c1 〈〈Ω−1

yy , δθyx S
(n)
xx δθ tyx〉〉+ ηβ (pωL)β−1d1 〈〈Ω−1

yy , δθyx Lδθ
t
yx〉〉.

Now choose εS > 0 and εL > 0 small enough so that εS ωS + ηβ p β−1 ω βL εL < 1 and fix c =
√

2 + εS and
d =
√

2 + εL. We finally obtain

φ′′(t) > a1 〈〈Ω−1
yy , δθyy Ω−1

yy δθyy〉〉+ a2 〈〈Ω−1
yy , δθyx S

(n)
xx δθ tyx〉〉+ a3 〈〈Ω−1

yy , δθyx Lδθ
t
yx〉〉 (5.13)

where these positive constants are respectively given by

a1 = 1− εS ωS − ηβ p β−1 ω βL εL, a2 =
2 εS

2 + εS
and a3 = ηβ (pωL)β−1 2 εL

2 + εL
.
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The combination of Lemmas 5.1, 5.3 and 5.5 gives, uniformly in t ∈ [0, 1],

〈〈Ω−1
yy , δθyy Ω−1

yy δθyy〉〉 > λmin(Ω−1
yy ) tr(δθyy Ω−1

yy δθyy) >
‖δθyy‖2F

4λ2
max(Ω∗yy)

where the inequality in the denominator comes from λmax(Ωyy) 6 2λmax(Ω∗yy) already established in the proof
of Lemma 5.8. Similarly,

〈〈Ω−1
yy , δθyx Lδθ

t
yx〉〉 > λmin(Ω−1

yy ) tr(δθyx Lδθ
t
yx) >

λmin(L) ‖δθyx‖2F
2λmax(Ω∗yy)

.

Lemma 5.7 directly enables to bound the last term,

〈〈Ω−1
yy , δθyy S

(n)
xx δθyy〉〉 > λmin(Ω−1

yy ) tr(δθyx S
(n)
xx δθ tyx) >

λmin(Σ∗xx) ‖δθyx‖2F
20λmax(Ω∗yy)

.

In conclusion, combining (5.9), (5.13) and the upper bounds above,

e1(θ, θ ∗) >
a1 ‖δθyy‖2F
8λ2

max(Ω∗yy)
+
a2 λmin(L) ‖δθyx‖2F

4λmax(Ω∗yy)
+
a3 λmin(Σ∗xx) ‖δθyx‖2F

40λmax(Ω∗yy)

> min

{
a1

8λ2
max(Ω∗yy)

,
a2 λmin(L)

4λmax(Ω∗yy)
+
a3 λmin(Σ∗xx)

40λmax(Ω∗yy)

}
‖δθ‖2F

and we clearly identify γr,η,β,p > 0.

Lemma 5.11. Assume that λ, µ and η are chosen according to the configuration of the theorem. Suppose also
that ha in (2.3) and hb in (2.4) satisfy

max{ha, hb} <
r∗ γr,η,β,p

cλ,µ
√
|S|

where r∗ is given in (A.6), γr,η,β,p in (A.7) and cλ,µ in (A.8). Then, under (H1) and (H2), the estimation error
satisfies ‖δϑ‖F 6 r∗.

Proof. By convexity of the objective and optimality of θ̂, each move from θ ∗ in the direction t δϑ for t ∈ [0, 1]
must lead to a decrease of the objective, i.e.

Rn(θ ∗ + t δϑ) + λ |Ω∗yy + t δϑyy|−1 + µ |Ω∗yx + t δϑyx|1 −Rn(θ ∗)− λ |Ω∗yy|−1 − µ |Ω∗yx|1 6 0.

Taking the notation of (5.8), this can be rewritten as ∆n(θ ∗ + t δϑ, θ ∗) 6 0. If ‖δϑ‖F 6 r∗ then choose t = 1,
otherwise calibrate 0 < t < 1 such that ‖t δϑ‖F = r∗. Then, from Lemma 5.9, it clearly follows that θ ∗ + t δϑ ∈
Nr,α(θ ∗). Hence, the reasoning preceding (5.8) still holds and, together with Lemma 5.10, we obtain

0 > c
(
|[t δϑyy]S̄ |1 + |[t δϑyx]S̄ |1

)
− c

(
|[t δϑyy]S |1 + |[t δϑyx]S |1

)
+ γr,η,β,p ‖t δϑ‖2F

> −c |[t δϑ]S |1 + γr,η,β,p ‖t δϑ‖2F
> −cλ,µ max{ha, hb}

√
|S| ‖t δϑ‖F + γr,η,β,p ‖t δϑ‖2F

where we used c > 0 and Cauchy-Schwarz inequality to get |[·]S |21 6 |S| ‖[·]S‖2F . The constant cλ,µ may be
explicitely computed from the configuration of (λ, µ, η) and is given in (A.8). Note that in the proof of Lemma 5.9,
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it was sufficient to see that Rn(θ)−Rn(θ ∗) > φ′(0) whereas here, we must consider Rn(θ)−Rn(θ ∗) = φ′(0) +
e1(θ, θ ∗) to meet our purposes. That explains the presence of γr,η,β,p ‖t δϑ‖2F in the inequality. We deduce that
the error must satisfy

‖t δϑ‖F 6
cλ,µ

√
|S|max{ha, hb}
γr,η,β,p

.

As a corollary, it holds that ‖δϑ‖F > r∗ ⇒ cλ,µ
√
|S|max{ha, hb} > r∗ γr,η,β,p or, conversely written,

cλ,µ
√
|S|max{ha, hb} < r∗ γr,η,β,p ⇒ ‖δϑ‖F 6 r∗.

Lemma 5.12. Assume that λ, µ and η are chosen according to the configuration of the theorem. Then,
under (H1), there exists absolute constants b1 > 0 and b2 > 0 such that, for any b3 ∈ ]0, 1[ and as soon as

n > max
{
b1 (q + dsαe ln(p+ q)), ln(10(p+ q)2)− ln(b3)

}
,

with probability no less that 1− e−b2n − b3 both the random hypothesis (H2) is satisfied and the upper bound

max{ha, hb} 6 16m∗
√

ln(10(p+ q)2)− ln(b3)

n

holds, where ha and hb are given in (2.3) and (2.4), sα is defined in (A.5) and m∗ in (A.9). Hence, one can
find a minimal number of observations n0 such that the theorem holds with high probability as soon as n > n0.

Proof. All the ingredients of the proof are established in [29]. The authors start by recalling that there exists
absolute constants b1 > 0 and b2 > 0 such that hypothesis (H2) is satisfied with probability no less than 1− e−b2n

as soon as n > b1 (q + dsαe ln(p + q)). We also refer the reader to Lemma 5.1 and Theorem 5.2 of [3], or to
Lemma 7.4 of [10] for the random bounds of the restricted isometry constants. Afterwards, they prove (see Prop.
4) that, as soon as n > ln(10(p+ q)2)− ln(b3) for some b3 > 0, with probability 1− b3,

max{ha, hb} 6 16m∗
√

ln(10(p+ q)2)− ln(b3)

n
.

To find the minimal number of observations, we just need to make sure that the above bound is itself smaller
than the one of Lemma 5.11. It is then not hard to see that we may retain the minimal size n0 given in (2.6).

Appendix A. Some constants

This appendix is entirely dedicated to the constants appearing in the theoretical guarantees. Indeed, a
centralization seemed necessary to clarify the rest of the paper, especially the understanding of the main theorem.
First, we need to define some constants related to L and to the true values of the model. The bounds

ωL =
λmin(Ω∗yx LΩ∗ tyx)

4λmax(Ω∗yy)
, ωL =

4λmax(Ω∗yx LΩ∗ tyx)

λmin(Ω∗yy)
, ωS =

4λmax(Ω∗yx Σ∗xx Ω∗ tyx)

λmin(Ω∗yy)
(A.1)

are useful to control the eigenvalues of some recurrent expressions (Lems. 5.7 and 5.8), uniformly in a
neighborhood of θ ∗ = (Ω∗yy,Ω

∗
yx). The true value of the term at the heart of the structural regularization

is

sL = 〈〈L,Ω∗ tyx Ω∗−1
yy Ω∗yx〉〉. (A.2)
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It plays a role in the proof of Lemma 5.9 and, as a consequence, in the definition of the area of validity Λ. This
important lemma also requires to define

`a = |Ω∗−1
yy Ω∗yx LΩ∗ tyx Ω∗−1

yy |∞ and `b = 2 |Ω∗−1
yy Ω∗yx L|∞ (A.3)

and, in the context of the theorem,

α =
max

{
(cλ+1)λ
cλ

+ ηβ s β−1
L `a,

(cµ+1)µ
cµ

+ ηβ s β−1
L `b

}
min

{
(cλ−1)λ

cλ
− ηβ s β−1

L `a,
(cµ−1)µ

cµ
− ηβ s β−1

L `b

} . (A.4)

From α and the cardinality of the true active set |S|, let

sα = |S|
[
1 +

12α2 λmax(Σ∗xx)

λmin(Σ∗xx)

]
(A.5)

which serves as an upper bound in the random hypothesis (H2). Similarly, let

r∗ = min{r∗1 , r∗2 , r∗3 , r∗4} (A.6)

where

r∗1 =
λmin(Ω∗yy)

2
, r∗2 =

√
10−
√

7√
5

√
λmax(Ω∗yx Σ∗xx Ω∗ tyx)

3
√

3
2
√

2

√
λmax(Σ∗xx)

, r∗3 =
λmin(Ω∗yx LΩ∗ tyx)

4 ‖LΩ∗ tyx‖2

and

r∗4 =
(
√

2− 1)
√
λmax(Ω∗yx LΩ∗ tyx)√
λmax(L)

.

Together with α given above, r∗ is necessary to build the so-called neighborhood Nr,α(θ ∗) defined in (5.7),
which plays a fundamental role in all our reasonings. It is important to note that, under the configuration of the
theorem and hypothesis (H1), α > 0 and r∗ > 0. Then, Lemma 5.10 highlights a new constant, characterizing
a strong local convexity of the smooth part of the objective in the neighborhood Nr,α(θ ∗),

γr,η,β,p = min

{
a1

8λ2
max(Ω∗yy)

,
a2 λmin(L)

4λmax(Ω∗yy)
+
a3 λmin(Σ∗xx)

40λmax(Ω∗yy)

}
(A.7)

where, as it is detailed in the proof of the lemma in question,

a1 = 1− εS ωS − ηβ p β−1 ω βL εL, a2 =
2 εS

2 + εS
and a3 = ηβ (pωL)β−1 2 εL

2 + εL

for some well-chosen εS > 0 and εL > 0. Here again, we make sure that γr,η,β,p > 0. In the same way, in the
context of the theorem,

cλ,µ = max

{
(cλ + 1) dλ

cλ
+ eλ,

(cµ + 1) dµ
cµ

+ eµ

}
(A.8)
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is needed through Lemma 5.11. Finally, independently of the structure matrix L,

m∗ = |diag(Σ∗xx)|∞ + |diag(Ω∗−1
yy Ω∗yx Σ∗xx Ω∗ tyx Ω∗−1

yy )|∞ (A.9)

is going to play a significative role in the upper bound of the theorem.
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