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1. Introduction
Seismology is the major observational tool to map the structure and properties of Earth's interior. Global 
studies of the Earth benefit from hundreds of thousands of seismograms to make observations. The prop-
erties of seismic wave phase arrivals within seismograms (arrival time, amplitude, coda) provide meas-
urements of Earth's velocity and attenuation structures. Although some studies use automated waveform 
processing to identify seismic phases (e.g., Chambers et al., 2005; Earle & Shearer, 1994; Houser et al., 2008), 
visual inspection of waveforms is commonly employed due to higher accuracy (e.g., Deuss, 2009; Flanagan 
& Shearer, 1998; Schmerr & Garnero, 2006; Waszek et al., 2018). However, handpicking is time-consuming, 
and susceptible to decisions and potential inconsistencies of the scientist. Different compilation methods 
produce a range of data sets resulting in variable geophysical models, as evidenced by variations in global 
mantle discontinuity topography maps obtained from the same data types (e.g., Deuss, 2009; Flanagan & 
Shearer, 1998; Huang et al., 2019; Schmerr & Garnero, 2006; Waszek et al., 2021).

Abstract Typical seismic waveform data sets comprise hundreds of thousands to millions of records. 
Compilation is performed by time-consuming handpicking of phase arrival times, or signal processing 
algorithms such as cross-correlation. The latter generally underperform compared to handpicking. 
However, differences in picking methods creates variations in models and interpretation of Earth's 
structure. Here, we exploit the pattern recognition capabilities of Convolutional Neural Networks 
(CNN). Using a large handpicked data set, we train a CNN model to identify the seismic shear phase SS. 
This accelerates, automates, and makes consistent data compilation, a task usually completed by visual 
inspection and influenced by scientists' choices. The CNN model is employed to identify precursors to 
SS generated by mantle discontinuities. It identifies precursors in stacked and individual seismograms, 
producing new measurements of the mantle transition zone with quality comparable to handpicked data. 
This rapid acquisition of high-quality observations has implications for automation of future seismic 
tomography studies.

Plain Language Summary Energy from seismic events such as earthquakes propagates 
through the Earth as waves, which are detected as waveform signals at a global network of instruments. 
The travel times of these waves inform regarding the properties of the material they traverse, allowing 
seismologists to generate models of Earth's interior. Typical data sets of these measurements total 
hundreds of thousands. Compilation is performed by either manually handpicking the arrival times, or by 
signal processing algorithms. The latter generally underperform in comparison to handpicking, however 
inconsistencies between handpicked data sets create disagreement between models of Earth's structure. 
Here, we use machine learning methods to train a computational model to identify seismic waveforms. 
We use a large handpicked data set of shear waves “SS,” which travel through the mantle and reflect 
once from Earth's surface. Precursors to SS are generated by discontinuities beneath Earth's surface, and 
their travel times relative to SS are linked to discontinuity depths. We train a model to identify SS signals, 
and find that it can also identify SS precursors. This capability to rapidly obtain new measurements with 
quality comparable to handpicked data has implications for automation of the development of new Earth 
models.
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The task of picking seismic phases relies upon visual cues, in order to identify true detections amongst the 
background noise in seismograms, and distinguish the correct portion of the signal. Naturally, it is easier for 
the human eye to discern the correct peak associated with a particular seismic phase when trained to do so. 
This is the inspiration for the use of a Convolutional Neural Network (CNN) to perform this task, finding 
the necessary patterns through representation learning (LeCun et al., 2015). The use of deep learning trains 
a system that is capable of taking seismic data, identifying characterizing features of the waveforms, and 
producing an informed selection of arrival time and signal quality based on these signatures.

CNNs are the preferred deep learning algorithm for pattern recognition problems due to their ability to iden-
tify any set of objects given enough layers (Girshick et al., 2014; Krizhevsky et al., 2017; Simonyan & Zisser-
man, 2014). Within seismology, CNNs have proven capable of detecting and locating earthquakes (Perol 
et al., 2018), performing seismic arrival labeling (McBrearty et al., 2019), denoising data (Zhu et al., 2019), 
and picking arrival times of seismic phases (Ross et al., 2018; Zhu & Beroza, 2018).

Here, we apply CNNs to make new observations of seismic phases sensitive to mantle discontinuities. The 
two major global discontinuities at 410 and 660-km depth (“410,” “660”) bound the mantle transition zone 
(“MTZ”). They result from mineral phase transitions in olivine as pressure and temperature increase with 
depth (Ito & Takahashi, 1989; Katsura & Ito, 1989). Due to their opposing Clapeyron slopes, the disconti-
nuities' depths respond oppositely to temperature. In cold regions the 410 becomes shallower and the 660 
becomes deeper; vice versa in hot regions. Consequently, their separation is a first order thermometer for 
the MTZ.

Mapping of mantle discontinuities globally has been achieved through measuring shear-wave reflections 
from underneath these boundaries (e.g., Deuss, 2009; Flanagan & Shearer, 1998; Houser et al., 2008; Huang 
et al., 2019; Shearer, 1993; Waszek et al., 2018). SS is a seismic shear wave phase with two legs in the mantle 
and one reflection from Earth's surface (Figure 1a). Reflections from mantle discontinuities generate pre-
cursors to SS (“SdS,” where E d is discontinuity depth), which arrive prior to the main phase. The SdS-SS travel 
time difference provide information regarding the discontinuity depth.

We use a CNN to train a model capable of identifying SS in seismograms. We use a large handpicked global 
data set of 58,567 SS data (Waszek et al., 2018), implementing a duplication and time-shift procedure to 
produce huge amounts of training data (316,262), described in detail below. Using the trained model, a 
scanning algorithm quantifies the quality of a phase signal within a waveform. We then employ the algo-
rithm to output the arrival times and quality of SS precursors, in both stacked and individual seismograms. 

Figure 1. (a) Ray paths of SS and its precursors, S410S and S660S. The red star denotes the location of the seismic event, and the black triangle a station to 
detect seismic waves. (b) An example of a high-quality seismogram showing the SS, S410S, and S660S arrivals. (c) Global vespagram stack for all data and cross-
section through the theoretical relative precursor time and slowness. The precursor amplitudes have been magnified and normalized to the SS phase amplitude; 
magnification factor is typically around 30 (for the global stack here, it is 30.35).
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Maps of the depths of the 410 and 660 are generated, using the predic-
tions to evaluate model performance. The study provides a new method 
to rapidly and automatically compile large high-quality seismic data sets 
and measurements, with implications for future work, particularly global 
tomography.

2. Seismic Data and Processing
Our study employs a large, handpicked data set of 58,567 SS waveforms 
(Waszek et al., 2018), aligned at the maximum peak (Figure 1b), and nor-
malized to the SS amplitude. The seismograms are corrected for mantle 
and crustal structure using S40RTS (Ritsema et al., 2011) and Crust2.0 
(Bassin et al., 2000), and filtered between 15–50 s. Our sampling rate is 
0.1 Hz. A full description of processing methods is provided in Waszek 
et al. (2018, 2021).

Precursors to SS are typically too small in amplitude to identify on indi-
vidual seismograms. Instead, the data are stacked in regional overlapping 
spherical caps partitioned by common reflection points, weighted by sig-
nal-to-noise ratio, where noise is the root-mean-square amplitude in the 
precursor window (−400 to −100 s). Vespagrams show stacked signals as 
a function of travel time and slowness relative to the main SS arrival (Fig-
ure 1c) (Davies et al., 1971). The cross-section taken along the dotted line 
is the predicted time and slowness of the precursors to SS in a standard 
reference model. Vespagrams are usually analyzed manually to measure 
the time and amplitude of the precursor signals. Here, we partition our 
data according to their bounce points in radii of 5E , 7. 5E , 10E , and 15E . The 
different sizes account for heterogenous data coverage: smaller bin sizes 
in areas of higher data density provide greater resolution.

3. Model Training and Evaluation
The SS data set was divided into a training set of 90% of the seismograms, 
with the remaining 10% left as an unseen testing set to evaluate the model. 
For training, we used data uncorrected for crustal and mantle structure. 
Following the methodology of Ross et al. (2018), a small window (40 s) of 
the original waveform (500 s) was considered for the model input, start-
ing at the theoretical onset time predicted by the 1D Earth model PREM 
(Dziewonski & Anderson, 1981). This smaller window represents the best 
return for minimizing computation time while maximizing pick accura-
cy when training the network (Figure S1). Additionally, it enabled us to 
augment the number of training records by creating variations of these 
segments, to obtain a more accurate model.

For each 40 s segment, we created five duplicate windows and applied a 
random time-shift across a uniform distribution of E 5 s, increasing the 

training set by a factor of six. Although they are the same waveform shifted, to the CNN they appear as 
independent and different signals. This random shift allows the model to account for the variability of the 
location of the peak within a time window, thereby enhancing the spatial invariance of the model. For the 
testing set, only the original 40 s window was used.

We used the augmented data set to train a 1D CNN through the Keras library (Chollet et al., 2015), using 
the “RossNet” model architecture (Ross et al., 2018). The overall configuration of the layers is visualized 
in Figure 2a. The ReLU activation function (Nair & Hinton, 2010) was used in both the convolutional and 
fully connected layers. Model cost was evaluated with the Huber loss function (Huber, 1964), and the Adam 

Figure 2. (a) Diagram of the “RossNet” architecture used, from Ross 
et al. (2018). (b) Average loss of five models from the architecture used 
across epochs during the training stage (blue line) and testing stage (red 
line). These represent the error in fit of each model to the data. The error 
bars correspond to one standard deviation of the average loss of the models 
on the unseen testing set. The instance that results in the lowest overall 
loss is the set of weights used. (c) Histogram of prediction error (left) and 
cumulative histogram of absolute error (right) for the testing set; the red 
dashed line represents the 95th percentile of the data.
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algorithm used for layer weight optimization (Kingma & Ba, 2014). In order to account for variations in 
model convergence due to random initialization of weights, we trained five different models for 40 epochs. 
The models were trained on two NVIDIA Tesla P100 graphics processing units (GPUs); each epoch took 
approximately three minutes to train.

Figure 2b shows the average and standard deviation of the loss over the models and epochs; this corre-
sponds to the error in fit of the models to the data. Results are shown for the training and test data sets. 
Despite the variability of the errors in the testing data set, likely due to its comparatively small size, there is 
an overall trend of decreasing loss with increasing epoch. We use the best performing set of weights across 
all 200 instances for the remaining analysis. Summary statistics show an average prediction error on par 
with the sampling rate of the seismograms (0.1 s, Figure 2c). The cumulative histogram confirms that 95% 
of the model's prediction for the test data set are within 0.25 s of the picked arrival. This size of error is in-
significant, since the picks are subsequently aligned to the maximum amplitude.

4. Phase Waveform Quality
We desire not only the maximum arrival time of each waveform, but also the quality of the phase. Quality 
of the waveform during handpicking is normally judged visually in a qualitative manner. Here we propose 
a scheme to assign a quantitative description of the quality using the model.

The CNN model was constrained to accept only 40 s time windows as its input. Thus, we create a scanning 
algorithm that iteratively moves along the entire 500 s seismogram in 40 s windows to define the prediction 
quality through a statistical definition. The top three plots in Figure 3 provide an illustrative example of the 
scan algorithm. A 40 s window of data from time t  to  40E t  s is chosen and provided as input to the model to 
find the best matching shape to the ideal SS signal, giving an arrival time prediction for this window. The win-
dow from ΔE t t to  Δ 40E t t  s is then analyzed; this process is repeated for the entire seismogram. The sliding 
window moves in steps of the seismograms' sampling rate, that is, Δ 0.1E t  s, requiring that both training and 
input data sets have the same sampling rate. As the scanning iterates, the SS arrival time will be identified 
consistently if enclosed in the windows. In some cases the model identifies phases outside of the window 
(Movie S1), as it recognizes the characteristics of the phase arrival, and subsequently predicts the location of 
the peak. If no discernible features are present, the best prediction time varies considerably as the scan iterates.

The obtained prediction times for a particular signal are not precisely the same throughout the scan. Due 
to slight differences in information within each window, the predicted time will vary by a value close to the 
sampling time of the data. We employ the DBSCAN algorithm (Ester et al., 1996) implementation in the Py-
thon scikit-learn library (Pedregosa et al., 2011) to perform density-based clustering of the predicted times. 
This way, a large amount of predictions that are close to each other form a tight cluster. Each prediction in 
a cluster is an approximate measure of a time E t  of the signal, with a standard deviation corresponding to 
the error on the prediction E  .

We use the quantity of predictions to define a quality measure for each signal. Let E T  be the window size 
used in the model, and ΔE t the sampling time of the seismogram. An ideal arrival will therefore appear  
T t/  400 times during the scanning process. The quality of a prediction pickE q  is thus calculated:

 pred
pick

ΔN t
q

T
 (1)

with predE N  the number of predictions within a cluster. We retain the prediction with the highest prediction 
frequency, or quality, as the SS “pick” for a particular seismogram. Correct identifications of SS result in 
higher quality of the main arrival compared to other features within the waveform (Figure 3a).

This scheme of defining a quality also allows us to determine the correct polarity of the SS signal. Since the 
model is only trained on seismograms with positive polarity SS signals, running the scanning window on a 
seismogram with a negative polarity SS peak results in inconsistent predictions with lower quality around 
the time of the SS arrival (Movie S2). In order to determine the polarity of an unknown seismogram, we 
employ the scanning algorithm on both the waveform and its inverse. For seismograms with an identifiable 
SS signal, the version with a positive polarity SS phase has the highest quality pick. Movie S2 also highlights 
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the complexity in the characteristics of the SS signal onset, which is problematic for autopicking procedures; 
here, we remove some of these complications by training the code to identify the maximum amplitude.

5. Prediction of SS Precursors in Stacked Data
Precursors (“SdS”) may be approximated as lower amplitude versions of the main arrival with a similar 
shape. Thus, a model trained on the main arrival should be able to identify precursory signals in stacked 
waveforms due to their similarity, exploiting the pattern recognition capabilities of CNNs. We find that our 
scanning algorithm does indeed identify precursors as the highest quality predictions prior to the SS arrival 
(Figure 3b; Movie S3).

The handpicking quality criteria requires clear S410S and S660S signals in both the vespagrams and 
cross-sections, with no interfering phases or significant noise in the vespagram. The vespagrams are as-
signed qualities from ”a” to ”d.” The ”a” vespagrams have no noise and clear precursors with waveforms 
very similar to SS, whereas ”d” bins have much noise and the precursor shape is dissimilar to SS, and are 
not retained for analysis of any precursors other than S410S and S660S (see Waszek et al. (2018) for full 
methodology). Here, we use the CNN to obtain predictions of the S410S and S660S times for all of the stacks 
from the bins (corrected for 3D mantle and crustal structure). We retain picks with quality 0.6 or higher; 
following visual inspection, this is the lowest quality for which precursors could be identified (Figure S2). 

Figure 3. (a) Example of iterative prediction for a seismogram, at 0, 15, and 30 s, with the histogram of prediction rate. The portion of the waveform within the 
shaded area is used as input for the model. The red line is the predicted arrival for the given input. The signal is predicted consistently when enclosed by the 
window, and the true SS arrival is at the time of highest prediction rate. (b) Prediction of arrival times in a stacked cross-section and histogram. The four highest 
prediction times are marked on the cross-section. (c) S410S precursor arrival times for 5E  bin stacked data picked using the deep learning model. The minimum 
prediction quality of picks retained is 60%. (d) Corresponding S410S arrival times measured using handpicking and visual quality checks.



Geophysical Research Letters

GARCIA ET AL.

10.1029/2020GL091658

6 of 9

The resulting maps of S410S arrival times for 5E  bins show good agreement in the measurements from the 
CNN (Figure 3c) and handpicking (Figure 3d), with a correlation coefficient of 0.999. This indicates that, 
where both methods retain a bin, they measure the same relative arrival time for the precursor. This is true 
for both S410S and S660S picks in all bin sizes (Figure S3).

The CNN picks retain significantly more bins, which were removed by the handpicking quality procedure. 
The higher retention rates for the CNN is found for S410S and S660S measurements in all bin sizes (Fig-
ures S4–S11). This suggests that stricter visual quality procedures may remove useful information, meaning 
that the CNN can identify seismic signals in noisy data whereas handpicking cannot. Furthermore, the 
CNN model provides numerical measures of quality that the handpicking does not. Average quality of 
handpicked versus autopicked bins confirms that the bins removed by the CNN are indeed of lower quality 
than those retained by handpicking (Table S1). Furthermore, the average CNN quality also corresponds 
well to the handpicked quality, i.e., ”a” quality bins have the highest CNN quality (Table S2). In order for 
the CNN method to retain the same number of bins as the handpicking, the minimum pick quality must be 
increased to as much as 0.86 for S660S in 5E  bins (Table S3). This value drops as bin size increases, to 0.6125 
for S410S in 15E , as the stacked signals become less similar to SS due to averaging over increasingly larger 
regions.

6. Prediction of SS Precursors in Individual Seismograms
Following the success of the CNN model for identifying precursors in the stacked data, we next apply it to 
precursors in individual seismograms. Normally, these can only be visually identified in the highest-quality 
waveforms due to their small amplitudes (e.g., Figure 1a). We scan the corrected data set, and consider the 
top 10 picks before the main arrival (Movie S4). Predictions with a quality below 0.6 are discarded, retaining 
a total of 38,985 measurements. This corresponds to multiple picks in some seismograms, and none in oth-
ers. Examining the predictions as a function of epicentral distance (Figure 4a) reveals clusters correspond-
ing to the 410 and 660, in addition to regional-scale discontinuities at 300-km and 520-km depth. The gaps 
with different slowness to the precursors (particularly between 100 and 120E  distance) are interfering phases 
that the model does not pick, namely SdiffS660S which has a negative polarity, highlighting the CNN's abil-
ity to discard non-SdS signals.

The linear trends for both global discontinuities are calculated using the DBSCAN algorithm for densi-
ty-based clustering, to determine statistically the predictions most likely to correspond to S410S and S660S 
based on density of picks. We select arrival time bounds of −185 to −135 s before the main arrival for S410S, 
and −250 to −200 s for S660S. These are selected to fully enclose the observed data trends, while exclud-
ing theoretical arrival times for other discontinuities, to ensure that the most dense cluster corresponds to 
robust picks. A linear fit, using the data identified by DBSCAN weighted by pick quality, is applied as an 
initial estimate for the trends. Subsequently, predictions within E 10 s of this fit are considered to also be 
correct measurements for the discontinuity in question. The weighted linear model is then fit to this new set 
of data points (Figure 4a) and the picks updated to within E 10 s of these new fits. The best fit for the 410 is 
  0.227Δ 127.925E t , and for the 660 is   0.437Δ 172.787E t , where t  is time and ΔE  is epicentral distance. 

Maps of the uncorrected and corrected relative travel time measurements are included in the Supplement 
(Figures S12–S14).

7. Discussion
The task of pattern recognition in seismology is not new. Cross-correlation has previously been used to gen-
erate SS data sets (Houser et al., 2008), measure precursor arrival times in stacked data for the mid-mantle 
(Waszek et al., 2018), and identify precursor signals in individual data (Shearer, 1991). It performs well 
when the two signals are noise and defect-free, but the majority of real data does not fulfill these criteria. 
Hence, a great deal of information is discarded since the automation procedure cannot discern between 
what might be defective data and hard-to-pick data. Setting the cross-correlation approach as our bench-
mark, we repeat the clustering analysis to identify 410 and 660 measurements from cross-correlation pre-
dictions, and compare to the CNN picks. A cutoff cross-correlation score of 0.9379 is required to obtain an 
equal number of precursor signals when using the cross-correlation method as compared to the CNN model 
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(i.e., 38,985 picks), significantly higher than the 0.6 typically used for automatic cross-correlation picking 
(Chambers et al., 2005). This result confirms the improved performance of the CNN model to identify sig-
nals more accurately than simple cross-correlation.

The histograms in Figures  4b and  4c are the number of predictions made between epicentral distances 
of 120 – 130E  in time bins of 1 s. The two large Gaussian distributions correspond to predictions from the 
discontinuities, with the fraction of seismograms within the bin associated to that cluster shown. The CNN 
produces roughly twice as many predictions at this epicentral distance range, and identifies over 50% more 
precursors overall than using cross-correlation; for example, 410 picks are found for 28% of seismograms 
using the CNN compared to 19% from cross-correlation, demonstrating its greater predictive capabilities. 
This is further highlighted in the larger spread of discontinuity picks for the cross-correlation in Figure 4c 
compared to that for the CNN (Figure 4b).

Figure 4. Predicted precursor relative arrival time as a function of epicentral distance for the individual seismograms, with theoretical (IASP91 and PREM) 
and fitted trends for the S410S and S660S measurements, comparing CNN and cross-corrrelation. (a) Visualization of the procedure for determining real 
measurements. By using density-based clustering, the most dense cluster consists of points that correspond to the observed trend, shown in blue. An initial 
linear fit using these points estimates the trend (red line). Points within an uncertainty cutoff are considered to be real measurements (light blue shading). A 
final linear fit is performed on this new set of points (yellow). Note the small difference between the initial and final linear models. (b) Predicted differential 
time as a function of epicentral distance for individual seismograms, with a histogram of picks between 120 and 130E , for the CNN models. Lines are predictions 
from IASP91 (Kennett & Engdahl, 1991) (red dotted), PREM (Dziewonski & Anderson, 1981) (red solid), and the best fit (yellow solid). Cluster quantities 
represent the proportion of picks in each cluster. (c) As in (b), for cross-correlation. (d) A random selection of seismograms and precursor picks for the CNN 
model. The width of the pick (red line) is proportional to 2E  of the predicted arrival.
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Plotted in Figure 4d are a random selection of precursor picks from the CNN model with various epicentral 
distance and phase quality. These picks were considered by the clustering analysis to be true identification 
of precursors, and highlight the ability of the code to extract small signals from the noise. A correspond-
ing examination of picks with a range of qualities confirms the marked improvement in waveform shape 
with increasing quality (Figure S2), and justifies our lower quality limit of 0.6. We note, however, that the 
CNN occasionally picks signals that appear to be sidelobes from negative amplitude interfering phases (Fig-
ure 4b). This is because the code picks the best-matching signal in a window regardless of shape, relying on 
the moving window to produce quality. A future goal is the implementation of a null output. In the mean-
time, the DBSCAN clustering analysis could be applied to remove interfering signals and their sidelobes. 
This would be particularly useful for mid-mantle precursors which have both positive and negative polar-
ities (Waszek et al., 2018). The cross-correlation picks do not display the interfering negative signal gap, 
instead showing significant noise, highlighting its poorer performance.

SdS-SS differential travel time measurements from individual seismograms are a new type of measurement 
that is not yet widely used, primarily due to the difficulty in detection of the precursors. The measurements 
provide new, single path, unstacked observations of the MTZ discontinuities (Figures S12–S14), allowing 
for refinement of existing global and regional-scale seismic velocity models. For example, our preliminary 
global analysis presented here reveals that IASP91 (Kennett & Engdahl, 1991) provides a better fit to both 
the 410 and 660 (Figure 4). PREM uses 400 and 670 km for the discontinuity depths, and our measurements 
here are deeper and shallower than these values respectively. In consequence, the outputs and future de-
velopments from our algorithm represent a critical contribution to global seismology, in particular for to-
mography modeling efforts which require measurements from millions of seismograms. In theory, a model 
could be trained to identify any seismic phase, across various frequencies, representing a huge advance for 
compilation of data sets.

In addition to consistency of picking, and extraction of seismic signals from noise, the CNN technique 
provides a remarkable time saver in its capability to automatically process and pick seismic phases. Once a 
model is trained, the methods developed here allow for very rapid acquisition of new seismic data sets. The 
scanning algorithm picks a 140 s subset of a seismogram in approximately six seconds, which is similar to 
handpicking times, however the computer will continue to pick data constantly. Using a high performance 
computer, the scanning algorithm picked the entire data set of 58,567 signals in 10 h. In comparison, the 
same data set required several months for compilation via handpicking (Waszek et al., 2018). Naturally, the 
trained model will inherit any biases from the original data set, however the main advantage here is the con-
sistency and reproducibility, as well as the overall benefits that an automated method provides. This method 
requires a significantly larger computational time than basic automatic algorithms (cross-correlation), but 
provides a much improved performance.

8. Conclusions
We have demonstrated the significant capabilities of CNNs for the task of picking seismic phases and ex-
ploiting the pattern recognition capabilities of these deep learning models. A trained model picks new data 
accurately and efficiently. It is able to identify other phases with similar features, and extract small-ampli-
tude signals that typically appear masked by noise to the human eye. Thus, a CNN model trained on SS data 
can produce data sets of directly measured travel times for SS precursors in both stacked data and individual 
seismograms, the latter representing a new measurement to constrain Earth's upper mantle. Further con-
sideration of deep learning models and potential applications to seismology could revolutionize the field by 
automatically picking waveforms as they become available. We encourage the use of and welcome contri-
butions to our open-source Autopicker code.

Data Availability Statement
A list of the data used, and all travel time measurements, is available at https://doi.org/10.31905/DCPG-
TRCH. The Autopicker code is available at https://doi.org/10.5281/zenodo.4827005.
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