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 28 

ABSTRACT 29 

 30 

The interest for biofilm-based systems for microalgae and related compounds production 31 

has been increasing lately. Although extensive literature has been reported on productivity, 32 

the physiological characterization (photosynthetic activity and composition) of attached 33 

cells at early stages of biofilm development has seldom been investigated. In this work, the 34 

effect of light intensity and inoculum cell density on 3-days Chlorella vulgaris biofilms 35 

developed on membranes was studied. Biomass production was clearly impacted by 36 

mechanism of photo-limitation occurring in biofilms acclimated to low light intensity (50 37 

µmol m
-2

 s
-1

). A higher electron transport capacity and lower chlorophyll content in 38 

biofilms at high light intensity (500 µmol m
-2

 s
-1

) were also measured which are in line with 39 

patterns observed for suspended microalgae cultures. In addition, optimal conditions in 40 

terms of light (250 µmol m
-2

 s
-1

) combined with low (4.8 ×10
6
 cells cm

-2
) or high inoculum 41 

density (28.8 ×10
6
 cells cm

-2
) were identified to optimize biomass and lipids production, 42 

respectively. On the whole, measuring physiological profiles of immobilized cells at the 43 

initial stages of biofilm development provides information to efficiently operate and 44 

optimize biofilm-based systems. 45 

 46 

Keywords: Chlorella vulgaris, FTIR-spectroscopy, Macromolecular composition, 47 

Microalgae biofilms, Photosynthetic activity 48 

 49 
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1.Introduction 50 

 51 

     Microalgae are a promising source of valuable compounds (e.g. proteins, pigments, 52 

carbohydrates, lipids) produced by the conversion of photons into chemical energy via 53 

photosynthesis [1–4]. Nowadays, biofilm-based systems for microalgae cultivation, where 54 

cells are growing attached to a substrate, have gained attention due to their higher 55 

productivity, lower water requirement and harvesting costs compared with conventional 56 

suspended culture technology [5,6]. These systems have been widely used for 57 

biomass/biofuel production, CO2 fixation, and wastewater treatment [6–9]. Among those, 58 

the twin-layer system [10,11], in which cells grow on porous supports such as membranes, 59 

printing paper or synthetic nonwoven/textile combinations,  is often used at the lab and 60 

pilot scales [12,13]. In particular, a direct exposure to gas and light are supposed to enhance 61 

gas mass transfer and light utilization due to the absence of the liquid phase [14,15] 62 

improving therefore productivity. On the other hand, nutrients are transported by diffusion 63 

through the porous material into the biofilm. Limitation in nutrients can therefore occur in 64 

thick and/or compact biofilms, affecting in turn their behavior and productivity [11,16]. 65 

     Recent studies investigated environmental and operational parameters that typically 66 

affect the formation and development of microalgae biofilms [17,18]. Among those factors, 67 

the impact of light, nutrients availability, temperature, pH and shear stress on growth rate 68 

and productivity have been studied, but mostly over long-term period of development (i.e. 69 

from weeks to months) [6,19–21]. On the other hand, other factors such as substrate 70 

properties (e.g. surface energy, hydrophobicity, micro-pattern, etc.) have been studied on 71 

the short-term formation of biofilms, especially during the initial adhesion phase (from 72 
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several hours to 2-3 days) [18,22–26]. However, little information is available regarding the 73 

influence of process operational factors, such as light intensity and inoculum density, on 74 

biofilm growth, activity and composition at the early stages of biofilm development which 75 

in turn may affect biomass and compounds production. In our work, early stage of biofilm 76 

development refers to a period during which the cells attach firmly to the support, grow and 77 

fully acclimate to the new environmental conditions imposed by the sessile growth 78 

associated to the support. 79 

     Ji et al. [27] have reported that both biomass production and growth rate could be 80 

improved by increasing the inoculum density (from 0.05 to 3 g DW m
-2

). However, it must 81 

be kept in mind that over a certain density threshold, the cells would not grow further due 82 

to light attenuation and nutrients transfer limitation [14,16,18]. In this context, light 83 

attenuation could be buffered by tuning the photon flux density (PFD) used for cultivation. 84 

However care must be taken since like for planktonic cultures, the growth rate and biomass 85 

productivity of microalgae biofilms increase with light intensity within a favorable range, 86 

but decrease if the PFD exceeds the light saturation point because of photo-inhibition [28].  87 

In order to avoid such operational problems, monitoring the physiological properties of 88 

cells (activity and composition) in the early stages of immobilized growth might be of great 89 

help to rapidly identify possible limiting operational factors (e.g. light, nutrients, CO2, 90 

humidity, etc.) and thus adjust them to optimize the bioprocess performance [11,14,15,29]. 91 

Nevertheless, although extensive literature has been reported on the productivity of biofilm-92 

based systems as summarized in [30] and reference therein, the characterization of cell 93 

physiological parameters at early stages has seldom been mentioned.  94 
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     The goal of our work was to assess the impact of light and initial cell density on 95 

biofilm/compounds production and on cells physiology at early stages (3 days) of biofilm 96 

formation in a twin layer system. In particular, we aimed at better understanding 97 

photosynthetic mechanisms on biofilms that certainly allow a reasoned choice of process 98 

operational parameters to optimize productivity. In order to do that, we immobilized C. 99 

vulgaris on membranes with two initial cell densities and illuminated the biofilms with 100 

three PFDs. A complete characterization of physiological parameters of the immobilized 101 

cells, from photosynthetic performance to macromolecular composition was conducted 102 

through which biofilm growth patterns and composition under different light and inoculum 103 

density combinations were explained.  104 

 105 

2. Materials and Methods 106 

 107 

2.1. Planktonic culture maintenance  108 

 109 

     Chlorella vulgaris SAG 211–11b (Göttingen, Germany) was cultured at 25°C semi-110 

continuously in 1 L transparent bottles filled with 800 mL 3N-Bristol medium [31]. The 111 

cultures were bubbled with filtered air under a continuous illumination of either 50, 250 or 112 

500 μmol m
-2

 s
-1 

(Viugreum 50W LED outdoor floodlights, the PFDs were measured by 113 

QSL-2100 quantum scalar irradiance sensor, Biospherical Instruments, San Diego, CA, 114 

USA). The cultures were kept in exponential phase with a max cell concentration of 6.9 × 115 

10
6
 cells mL

-1
 (Flow cytometer, Guava EasyCyte HT; Millipore, USA) by daily dilution in 116 

order to maintain a chlorophyll (Chl) a concentration of 0.2-1.5 mg Chl a L
-1

 to ensure 117 
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optimal light penetration. The planktonic cultures were pre-acclimated to each light 118 

condition for at least 8 days before starting any experiment (for C. vulgaris, typically 5 119 

days were enough to have a stabilization of Chl a content and growth rate). 120 

 121 

2.2. Immobilization and growth of C. vulgaris on membranes 122 

 123 

     Sterile Petri dishes (55-mm diameter) filled with 3 mL of 3N Bristol medium were used 124 

as bioreactors for C. vulgaris immobilized growth (Fig. 1). The support system consisted of 125 

two glass fiber filters (working as an absorbing material for the medium; 47-mm diameter, 126 

Whatman) and on top of that a nitrate cellulose filter (0.2-μm pore size; NC membrane, 25-127 

mm diameter, Whatman) on which the cells of C. vulgaris were immobilized. 128 

 129 

Figure 1. Schematic representation of the cultivation system used for the immobilized 130 

culture of C. vulgaris (NC membrane represents cellulose nitrate membrane filter). 131 
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 132 

     In order to test the effect of PFD and the initial cell density on the immobilized growth 133 

of C. vulgaris, the pre-acclimated planktonic cells (grown at 50, 250 and 500 µmol m
-2 

s
-1

) 134 

were vacuum-filtered on the NC membranes with an effective colonization area of 2.01 cm
-

135 

2
. Two initial cell densities corresponding to ~ 4.8 ×10

6
 cells cm

-2
 (low initial cell density, 136 

LC, 0.4 ± 0.1 g m
-2

) and ~ 28.8 × 10
6
 cells cm

-2 
(high initial cell density, HC, 2.6 ± 0.8 g m

-
137 

2
) were obtained by filtrating specific volumes of planktonic cultures on the membranes. 138 

Once the cells were immobilized, the membranes were placed on the glass fiber filters and 139 

placed in Petri dishes illuminated at 50 (low light, LL), 250 (moderate light, ML) or 500 140 

μmol m
-2

 s
-1

 (high light, HL; Hansatech Instruments Quantitherm light meter/thermometer, 141 

Norfolk, England) depending on the experiments. The membranes were incubated for three 142 

days and the medium was completely renewed every day. After three days of growth, the 143 

cells were harvested from the membranes using Bristol medium and further measurements 144 

were conducted to characterize a series of physiological parameters.  145 

 146 

2.3. Microscopic observation of initially immobilized cultures 147 

   148 

     At day 0, the immobilized cultures at two cell density were scanned with a confocal 149 

laser scanning microscope (CLSM) to acquire z-stacks over the whole culture depth (Fig. 150 

S1). The confocal microscope set-up was as described in [19]. An inverted Zeiss LSM700 151 

confocal microscope (Carl Zeiss microscopy GmbH, Jena, Germany) equipped with a LD 152 
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Plan-Neofluar 20×/0.4 Korr M27 was used to acquire images. Microalgae cells were 153 

detected on the base of chlorophyll a auto-fluorescence which was excited at 639 nm. 154 

      155 

2.4. Relative biomass increase  156 

 157 

     Cells were harvested with 10 mL fresh Bristol medium. For the dry weight 158 

determination, the cell suspension was centrifuged and further washed in 10 mL of Bristol 159 

medium. After a second centrifugation step, the pellet was dried at 100 ℃ until a constant 160 

weight over time was reached. The relative biomass increase with respect to the initial level 161 

(Rb) was determined according to Eq. (1): 162 

 163 

Rb = (Xt - X0) / X0                                                                                                                (1) 164 

 165 

     Where Xt is biomass areal density (g m
-2

) after three days (t = 3 days), and X0 is biomass 166 

areal density (g m
-2

) at the beginning of the immobilization.      167 

 168 

2.5. Variable chlorophyll a fluorescence measurements and relative electron transport rate 169 

(rETR) estimation 170 

 171 

     Photosynthetic parameters were determined using a portable pulse amplitude modulation 172 

(PAM) fluorometer (AquaPen, AP 110-C, Photon Systems Instruments, Drasov, Czech 173 

Republic). Measurements were performed in a 4 mL cuvette (light path of 10 mm). 174 

Illumination was provided by a blued LED (455 nm), the measuring light was 0.02 µmol m
-175 



9 
 

2
 s

-1
 and saturation pulses had an intensity of 3000 µmol m

-2
 s

-1
. Prior to measurements, all 176 

samples were diluted to an appropriate concentration (1 × 10
6
 cells mL

-1
). After 10 min of 177 

dark-adaptation, the samples were exposed to a stepwise increase of seven actinic lights 178 

(from 0 to 1000 μmol m
-2

 s
-1

) applied every 60s to construct the electron transport rate 179 

versus photon flux density (ETR/PFD) curves. The maximum quantum yield (Fv/Fm) and 180 

the effective quantum yield (ΔF/F’m) were calculated according to Eq. (2) and Eq. (3):  181 

 182 

Fv/Fm = (Fm-F0) / Fm                                                                                                                                                                    (2)                                           183 

ΔF/F’m   = (F’m-F) / F’m                                                                                                                                                               (3) 184 

 185 

     where F0 and Fm are the minimum and max fluorescence determined after 10 min dark-186 

adaptation, whereas F and F’m are the minimum and max fluorescence during illumination. 187 

     The relative electron transport rate (rETR) was calculated using the Eq. (4):  188 

 189 

rETR = ΔF/F’m   × PFD × 0.5                                                                                               (4) 190 

 191 

     Where PFD is the incident light and 0.5 is a factor assuming that two photons are 192 

required for linear electron transfer [32]. Light curves were quantitatively compared using 193 

the parameters of maximum rate of relative ETR (rETRmax), α and Ek (Ek = rETRmax /α) 194 

obtained by fitting the rETR/PFD curves with the function rETR = ETRmax (1 - e 
−α I 195 

/rETRmax
) described by [33]. 196 

 197 

2.6. Determination of cellular compounds 198 
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 199 

     Chl a was extracted from cells using dimethyl sulfoxide (DMSO) [34], and quantified 200 

by measuring the absorption at 649 nm and 665 nm with an Evolution 60S UV–visible 201 

spectrophotometer (Thermo Scientific, Madison, WI, USA). The Chl a concentration was 202 

calculated by Eq. (5) [34]:  203 

 204 

Chl a (μg mL
-1

) = 12.19 × OD665-3.45 × OD649                                                                                                     (5) 205 

 206 

     The Chl a content was normalized to the average cell bio-volume, which was estimated 207 

with an AxioSkop 2 plus microscope (Carl Zeiss, Oberkochen, Germany). 208 

     The macromolecular composition of the cells was analyzed by means of an ATR-FTIR 209 

PerkinElmer Spectrum-two spectrometer (PerkinElmer, Waltham, MA, USA). Biofilm cells 210 

were re-suspended in 1 mL Milli-Q water and washed twice. 1-2 μL of the concentrated 211 

sample was deposited on the crystal of the spectrometer, and dried at room temperature for 212 

20 min. Infrared spectra were recorded in the range of 4000 to 400 cm
-1

 using an 213 

accumulation of 32 scans at a spectral resolution of 4 cm
-1

.
 
Before loading algal samples, 214 

the empty crystal was measured as background. The spectra were baselined and maximum 215 

absorption values in the spectral ranges corresponding to specific macromolecular pool: 216 

carbohydrates (C–O–C; 1200–950 cm
−1

), lipids (C=O; 1750–1700 cm
−1

), proteins (Amide 217 

I; 1700–1630 cm
−1

) were used to calculate the relative carbohydrates and lipids contents 218 

with respect to the proteins signal (Fig. S2) [20,35].  219 

     Carbon and nitrogen contents of the biofilm samples were determined with an Elemental 220 

Analyzer (Organic Elemental Analyzer FLASH 2000 CHNS/O, Thermo Scientific) using 221 
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1~2 mg of dried biomass collected from biofilms that have been previously washed twice 222 

with miliQ water and dried at 100°C.  223 

 224 

2.7. Statistics analysis 225 

 226 

     Statistical analysis was performed using IBM SPSS Statistics 25.0 (SPSS Inc., Chicago, 227 

IL). Two-way ANOVA was used to test the influence of PFD and initial cell density on the 228 

relative biomass increase, photosynthetic performance and cellular compounds of 229 

immobilized microalgae. Bonferroni significant difference test for pairwise comparisons 230 

testing was performed after the tests of normality and variance homogeneity. P＜0.05 231 

indicates a statistically significant difference among tested values. Standard deviations were 232 

calculated from at least four independent biological replicates.  233 

 234 

3. Results and discussion 235 

 236 

3.1. Biomass production as a function of light intensity and initial inoculum density 237 

 238 

     In biofilms, microalgae cell behavior is strongly impacted by the local conditions (light, 239 

nutrients, biofilm properties such as density, thickness, gas exchange, …) imposed by their 240 

new life style (sessile mode) [14,20,21,36]. This may impact biomass and compounds 241 

production and should be therefore studied in-depth.  242 
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     Fig. 2 presents the relative biomass increase for the biofilms grown on membranes. 243 

Overall, our results show that when inoculated with lower cell density (LC), the 244 

immobilized cultures of C. vulgaris presented 3~5 times higher relative biomass increase 245 

than HC regardless of the light intensity (P < 0.05). On the other hand, light intensity 246 

stimulated biomass production,  which is in agreement with other works [14,37].  247 

 248 

Figure 2. Effect of light intensity and initial cell density on the relative biomass increase of 249 

C. vulgaris biofilms after 3-days cultivation. All the results were shown as mean value ± 250 

SD (n ≥ 4). Bars with different letters represent the statistical differences among 251 

immobilized cultures under different light conditions at level of P < 0.05, while *** depicts 252 

the differences between biofilms with two inoculum cell densities at P < 0.001. 253 

 254 

Indeed, regardless of the initial cell density the immobilized cells under LL showed lower 255 

relative biomass increase compared with biofilms exposed to ML and HL (P < 0.05). This 256 

suggests that the immobilized growth of C. vulgaris under 50 µmol m
-2

 s
-1

 may be photo-257 

limited while that at higher light intensity were photo-saturated. This is not surprising as 258 
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similar results have been reported by Grenier et al.  [28] for Chlorella autotrophica 259 

biofilms. 260 

   It also appears that biomass increase was negatively affected by the initial cell density 261 

(Fig. 2). These data can be explained by the fact that high cell density may affect light 262 

penetration and/or limit the diffusion of nutrients [14,21,38]. Indeed, studies reported that 263 

in immobilized cultures the biomass productivity may depend on the biofilm thickness due 264 

to an exponential decrease of light [21,39]. In our study, the two initial cell conditions did 265 

not produce biofilms with significantly different thickness (40 - 60 µm) but the HC culture 266 

presented a denser initial population as detected by CLSM (Fig. S1) which might have 267 

impacted biofilm growth. Finally, cell density dependent feedbacks (quorum-sensing) in 268 

cyanobacteria are also known to influence biofilm development as a function of the 269 

extracellular concentration of autoinducers (secreted by cells) which in turn affects the 270 

expression of biofilm-related gene [40,41]. Therefore, we cannot rule out that similar 271 

mechanisms may have occurred in our immobilized cultures. Other studies should be 272 

further carried out to test such hypothesis and verify possible synergistic interactions of 273 

light and nutrients availability and, quorum sensing mechanisms. 274 

On the whole, these results show that with the proper combination of light intensity and 275 

initial inoculum size the biofilm growth performance could be improved. For example, by 276 

illuminating the biofilms with 250 µmol m
-2

 s
-1

 at low initial cell density we obtained a 28-277 

fold enhancement of biomass after 3 days of cultivation, whereas in [29], the authors only 278 

obtained a 3-fold increase of Chlorella kessleri after 4-day cultivation.  279 

 280 
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3.2. Monitoring the physiological state of cells in order to improve biomass and energy-281 

rich compounds production 282 

 283 

     Although photosynthetic performance and macromolecular composition of microalgae 284 

have been measured in suspended cultures  [42,43], only few studies estimated these 285 

parameters for microalgae biofilm-based systems [44,45]. Indeed, estimating the health-286 

state of early-stage biofilms by monitoring their physiological state would be of paramount 287 

importance to help the operator identifying stressful parameters in advance and to do 288 

reasoned operation choices. For instance, if limiting factors are identified, cultivating 289 

parameters or production strategies can be rapidly adjusted (light tuning, medium supply, 290 

etc.) to prevent adverse effects in the long-term biofilm cultivation and process productivity. 291 

Moreover, monitoring cell physiology also allows a better understanding of acclimation 292 

strategies in photosynthetic biofilms that still remains unclear (such as the interplay 293 

between photosynthetic activity and pools of macromolecules). 294 

     In biofilms, light availability and nutrient supply vary as a function of the inoculum size 295 

and/or with the biofilm thickness [14,21]. From studies on the phytoplankton, we know that 296 

variations of these two factors induce a physiological reorganization spanning from light 297 

absorption to electron transport and to the final synthesis of macromolecules to acclimate 298 

themselves to the new conditions and maximize growth [46–48]. Interestingly, similar 299 

responses occurred in our immobilized cultures. Like their planktonic counterparts, 300 

immobilized cells appear to acclimate to a range of light intensities and likely nutrients 301 

availability through a series of physiological adjustments in a short term (3 days). This is 302 
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typically done to balance the incoming flux of energy and their energetic demand for 303 

growth in order to increase their fitness under each specific set of conditions [46,47,49].  304 

 305 

Figure 3. Effect of light intensity and initial cell density on Chl a content of C. vulgaris 306 

biofilms after 3-days cultivation. All the results were shown as mean value ± SD (n ≥ 4). 307 

Bars with different letters represent the statistical differences among immobilized cultures 308 

under different light conditions at level of P < 0.05 while ** and * respectively depict the 309 

differences between biofilms with two inoculum cell densities at P < 0.01 and P < 0.05, and 310 

ns represents no difference. 311 

 312 

The first level at which microalgae can regulate excitation pressure is the absorption of 313 

light [50]. This is typically reached by changing the amount of pigment content in the cells. 314 

Fig. 3 shows that Chl a content declined with increasing light intensity (from 7 to 2 fg μm
-315 

3
) (P < 0.05), suggesting a lower amount of photons absorbed by the cells as a protective 316 

strategy to diminish photons absorption and to avoid photo-damage [51,52]. This is well 317 

described for planktonic microalgae cultures but no report of such a mechanism exists for 318 
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microalgae biofilms. However, changes in accessory pigments content in natural biofilms 319 

have been reported as a photo-protective mechanism [53].  320 

 321 

 322 

Figure 4. Effect of light intensity and initial cell density on photosynthetic parameters (a, 323 

Fv/Fm; b, rETRmax; c, α; d, Ek) of C. vulgaris biofilms after 3-days cultivation. All the 324 

results were shown as mean value ±SD (n ≥ 4). Bars with different letters represent 325 

statistical differences among immobilized cultures under different light conditions at P < 326 

0.05 while ns depicts no difference between biofilms with two inoculum cell densities. 327 

 328 
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     Another level at which microalgae can regulate excitation pressure is by modulating 329 

their photosynthetic capacity in order to meet the incoming flux of photons [48]. In this 330 

context, photosynthetic parameters such as Fv/Fm, α, rETRmax and Ek are often used to 331 

describe the photo-acclimation state of microalgae when environmental conditions change, 332 

especially with respect to irradiance and nutrient levels [42,49,54]. As depicted in Fig. 4, 333 

the cells exposed to the LL and ML presented a higher α (c.a 0.4), lower rETRmax and Ek 334 

compared to those of HL acclimated cells, indicating that low-irradiances acclimated cells 335 

modified their photo-physiology to maximize light harvesting efficiency [55]. According to 336 

our expectations, algae photo-acclimated to LL and ML were more efficient in light 337 

utilization than those at HL, as shown by the initial slope (α) of the rETR/PFD curves. 338 

Conversely, the higher rETRmax (180 ±10) and Ek (575 ± 5 μmol m
-2

 s
-1

) typically 339 

associating with HL demonstrated that the cells exposed to 500 μmol m
-2

 s
-1 

presented a 340 

higher electron transport capacity to face the high flux of incoming photons. A similar 341 

acclimation strategy with respect to light intensity has been described for fluvial biofilms 342 

[56],  suggesting that the cells at 500 μmol m
-2

 s
-1 

were in a high-light acclimation state. 343 

The maximum quantum yield (Fv/Fm) is typically used as a stress indicator to evaluate the 344 

health state of suspended cultures and in natural photosynthetic biofilms [52,57,58]. After 3 345 

days, the immobilized cells grown at 500 µmol m
-2

 s
-1 

presented only a 0.14 lower Fv/Fm 346 

value with respect to the cultures grown at LL (P < 0.05, Fig 4a), indicating that the 347 

changes in Chl a content and in the photosynthetic parameters allowed the cells to optimize 348 

their energy harvesting ability and using efficiency to protect from over-excitation and 349 

photo-damage [48,55,59]. 350 
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 351 

Figure 5. Effect of light intensity and initial cell density on carbohydrates (a) or lipids (b) 352 

to proteins ratio of C. vulgaris biofilms after 3-days cultivation. All the results were shown 353 

as mean value ±SD (n ≥ 4). Bars with different letters represent statistical differences 354 

among immobilized cultures under different light conditions at P < 0.05 while ***, ** and 355 

* respectively depict the differences between biofilms with two inoculum cell densities at P 356 

< 0.001, P < 0.01 and P < 0.05, and ns represents no difference. 357 

 358 

     In planktonic cultures of microalgae, the photo-acclimation state of the cells is not only 359 

reflected in different pigment contents and photosynthetic efficiency, but often also in 360 

changes of their macromolecular and elemental composition [47]. Storage pools such as 361 

carbohydrates and lipids serve typically as carbon and energy sinks during unbalanced 362 

growth as a results of high excitation pressure and/or nutrient limitation [60,61]. In this 363 

study, a significant increase of the carbohydrates to proteins ratio with light intensity was 364 

observed (46.4% and 24.4% increases at LC and HC biofilms exposed to 500 μmol m
-2

 s
-1

, 365 
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respectively; Fig. 5a, P < 0.05). This is consistent with the high-light acclimation state of 366 

the cells and in accordance with other works  [62,63].  367 

 368 

On the other hand, the relative lipids content (Fig. 5b) and the C/N ratio (Fig. S3), two 369 

parameters that in microalgae are highly sensitive to N concentration in the environment 370 

seemed to be affected by the initial cell density. The lipid to protein ratio increased by 371 

47.3%, 76.3% and 30.4% when biofilms at HC were exposed to LL, ML and HL, 372 

respectively, compared to those at LC (Fig. 5b). These results suggest an uncoupling of 373 

carbon assimilation from nitrogen uptake which could be associated with  nitrogen 374 

limitation, in agreement with data reported in suspended cultures [64–66].  375 

     On the whole, the results show that the Chl a content, photosynthetic activity and the 376 

carbohydrates to proteins ratio were highly related to light intensity, while the initial cell 377 

density mostly affected the C/N and lipids to proteins ratio. In addition, optimal conditions 378 

for biofilm-based cultivation of C. vulgaris were identified. Combined conditions of 250 379 

μmol m
-2

 s
-1 and low inoculum density (4.8 ×10

6
 cells cm

-2
/0.4 g m

-2
) promote biomass 380 

production by avoiding effects caused by photo-limitation at 50 μmol m
-2

 s
-1

 (Fig. 2). On 381 

the other hand, if lipids are the target, combined conditions of 250 μmol m
-2

 s
-1

 and high 382 

inoculum density (28.8 × 10
6
 cells cm

-2
/2.6 g m

-2
) should be applied. In conclusion, 383 

monitoring photosynthetic activity and cellular composition help better understanding 384 

photosynthetic mechanisms in biofilms but also allow to identify optimal strategies for 385 

biomass and compounds production.  386 

 387 

4. Conclusion 388 
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 389 

     In this work, biofilm production and the physiological properties (photosynthetic 390 

activity and composition) of sessile cells were assessed in response to two culture 391 

operational factors, PFD and inoculum cell density. Results showed that light intensity 392 

impacts biomass production. Mechanism of photo-limitation of biofilms exposed to LL was 393 

highlighted. Acclimation of sessile cells to light and probably to nutrients were confirmed 394 

by changes in the photosynthetic activity parameters and microalgae composition (Chl a 395 

content and relative lipid/carbohydrates pools). Optimal conditions to produce biomass or 396 

lipids were determined: 250 µmol m
-2

 s
-1 

combined with LC or HC initial inoculum, 397 

respectively. On the whole, monitoring physiological profiles at the early stage of biofilms 398 

development provides information to better understand photosynthetic mechanisms in 399 

biofilms and to operate efficiently biofilm-based systems in order to optimize biomass and 400 

macromolecules productions.  401 
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