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Abstract

Of interest in this paper is a modelling framework when constitutive relations are given in incremental form.
This is particularly true for aging concretes due to hydration. Furthermore, having in mind applications to
3D concrete printing, geometrical nonlinearities must be accounted for due to the soft nature of the fresh
material. The kinematics must then be adapted adequately for a theoretically sound formulation. For this,
the multiplicative split is chosen here for the deformation gradient into its known part at an earlier time
and the relative deformation gradient. From the geometric point of view, this gives rise to an intermediate
configuration on which incremental constitutive relations can be ideally defined prior to be transported back
to the reference configuration for a Lagrangian formulation. Model examples are given for the purpose of
demonstration and a set of simulations illustrate the effectiveness of the proposed framework.

Keywords: Additive manufacturing, Large deformations, Incremental formulation, Multiplicative
kinematics, Incremental finite strain elasticity

1. Introduction

The emerging additive manufacturing technology
is gaining more and more interest. Among the fields
of applications, the challenging 3D concrete print-
ing is nowadays receiving considerable attention in
civil engineering due to the potential applications
including, for instance, connection elements, struc-
tural elements, up to complete buildings, see for
example [1, 2, 3] among others.

During the 3D printing, for instance through the
widely used layer-by-layer extrusion technique, the
concrete is still fresh. Its buildability is largely in-
fluenced by the early age mechanical properties and
rheology, e.g. see for example [4, 5, 6]. These infor-
mations are in turn important for efficient theoreti-
cal modelling that will feed numerical tools for pre-
dictive simulations and optimal design. Recently,
maybe the most important numerical model is the
one proposed in [7, 8] where a finite element anal-
ysis has been conducted with time-dependent lin-
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ear elasticity in combination with time-dependent
Mohr-Coulomb failure criterion. The results re-
ported by the authors are promising and seem
in close agreement with the experimental results.
However, the particularity of fresh concrete is its ag-
ing because of the hydration process, e.g. [9]. Con-
sequently, the only possible way to express the con-
stitutive relation would be in incremental form and
not in a direct form, e.g. see for instance [10, 11].
This important restriction will be adopted in this
work as well.

In addition, as fresh concrete must carry its self-
weight with the absence of any confining formwork,
a predictive theory must be able to capture eventual
buckling mechanisms, e.g. [12, 13]. A geometrically
nonlinear formulation will then be a priori adopted.
Moreover, a finite strain approach is necessary for
big area additive manufacturing where the cross-
sectional shape can vary substantially, e.g. see [14].
However, keeping in mind that incremental consti-
tutive relations will be used, the kinematics must
be adapted adequately. Herein, we adopt the multi-
plicative decomposition of the deformation gradient
into its known part at an earlier time and the rela-
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tive deformation gradient with respect to the con-
figuration at that time. This gives rise to an inter-
mediate configuration on which incremental consti-
tutive relations for the stresses can be well defined.
Two model examples are proposed in this work that
are inspired by known hyperelastic models widely
used in the literature: a Saint-Venant-like model
and a compressible neoHooke-like model, e.g. see
[15, 16, 17]. From the theoretical point of view, it
is very important to notice that in this formulation,
one cannot speak of hyperelastic nor elastic mod-
els, but only of hypoelastic ones. Futhermore, even
if the material properties of an aging concrete ba-
sically depend on time-dependent hydration degree
and time-dependent temperature, in this work we
only consider their direct dependence upon time fo-
cusing on the purely mechanical aspects. The topics
of thermo-hydric couplings, and more, will soon be
addressed in future contributions. To go further,
the mechanical equilibrium equation is adapted as
well due to the same reasons. Herein, a Lagrangian
formulation is adopted: the chosen incremental con-
stitutive relations must then be pull-back from the
known intermediate configuration to the reference
(initial) configuration. We show that the above
kinematics is well suited for this transport proce-
dure.

Notations: Throughout the paper, bold face
characters refer to second- and fourth-order tenso-
rial quantities. The notation (�)T is used for the
transpose operator, and the double dot symbol ’:’
is used for double tensor contraction, i.e. for any
second-order tensors A and B, A :B = tr[ABT ] =
AijBij where, unless specified, summation over re-
peated indices is always assumed. The notation ⊗

stands for the tensorial product, i.e. in components,
one has (A⊗B)ijkl = AijBkl.

2. Basic equations

The formulation is a priori developed within the
finite strain range because of the soft nature of the
fresh printed concrete. We give the main governing
equations where we first state the balance equation
that is adapted to an incremental form of the con-
stitutive relations, then we discuss the kinematics
that best matches this particularity. Model exam-
ples will be addressed next in Section 3.

2.1. Mechanical balance

When undeformed and unstressed, the body oc-
cupies the reference configuration B0 with bound-

ary ∂B0. We identify a material particle by its po-
sition vector X ∈ B0 and we trace its motion by its
current position in the spatial configuration Bt at
time t as x = ϕt(X) ∈ Bt where ϕt(�) ≡ ϕ(�, t) de-
notes the deformation map at time t within a time
interval [0, T ]. The deformation gradient is defined
as F ≡ Ft = ∇Xϕ where ∇X(�) is the material
gradient operator with respect to X. The Jaco-
bian of the transformation is given by the deter-
minant J = det[F ] with the standard convention
J > 0. With respect to the initial configuration,
the mechanical equilibrium is equivalently given by
the following weak form in terms of the first Piola-
Kirchhoff stress tensor P ≡ Pt:

∫

B0

P : ∇X(δϕ) dV =

∫

B0

ρ0b̄.δϕ dV , (1)

which must hold for any admissible deformation
variation δϕ. Here the vector ρ0b̄ defines the body
force due to gravitation, i.e. the self-weight, where
ρ0 is the initial density. However, as the first
Piola-Kirchhoff stress tensor P is in general non-
symmetric, it is better to use the second Piola-
Kirchhoff stress tensor S that is symmetric. They
are related by P = FS that when replaced into
(1), this gives:

∫

B0

S : F T∇X(δϕ) dV =

∫

B0

ρ0b̄.δϕ dV . (2)

Now a constituve relation must be appended.
Here the particularity is that the stress tensor is not
directly linked to a strain measure, i.e. for instance
as for a hyperlastic material through a strain energy
function. Within a typical time interval [tn, tn+1],
we make the following choice for the stress tensor
S ≡ St:

S = Sn +∆S , (3)

where Sn is the known second-Piola Kirchhoff stress
tensor at time tn, and ∆S ≡ ∆St is the second
Piola-Kirchhoff stress tensor increment at the ac-
tual time t ∈ [tn, tn+1]. Thus, when replacing (3)
into (2), we end up with the basic balance equation
to be solved in our formulation:
∫

B0

F (Sn +∆S) : ∇X(δϕ) dV =

∫

B0

ρ0b̄.δϕ dV.

(4)

Notice that in this latter: (i) the deformation
gradient F is the actual one at time t, (ii) the grav-
itation force does not need to be incremented, and
(iii) the equation is valid for any incremental con-
stitutive relation through the definition of ∆S.
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2.2. Linearization of the mechanical balance

The incremental form (4) is highly nonlinear, on
the one hand because of the geometrical nonlinear-
ities, and on the other hand because of nonlineari-
ties stemming from the incremental constitutive re-
lations. Its linearization is then necessary if the
problem is to be solved numerically when using a
Newton-type method.

As customary, we denote by u(X) the displace-
ment of the particle X ∈ B0 such that ϕ(X) =
X + u(X). The linearization of Eq. (4) is com-
puted at a deformation map ϕ = ϕn + ∆u where
ϕn is the known deformation at time tn and ∆u

is the iteratively updated displacement increment.
Following standard procedures, e.g. for instance
[15, 16, 18], one obtains:

∫

B0

{

∇X(∆u) (Sn +∆S) : ∇X(δϕ)

+ δE : Ξ : ∆E
}

dV

=

∫

B0

{

ρ0b̄.δϕ − (Sn +∆S) : δE
}

dV ,

(5)

where δE and ∆E are respectively the variation
and the linearization of the Green-Lagrange strain
tensor1 given by,

δE =
1

2

{

F T∇X(δϕ) +∇T
X
(δϕ)F

}

,

∆E =
1

2

{

F T∇X(∆u) +∇T
X
(∆u)F

}

,

(6)

and where Ξ is the fourth-order tangent modulus
that depends on the incremental constitutive rela-
tion, see below in Section 3. The stress tensor in-
crement ∆S and the tangent modulus Ξ have to be
evaluated at ϕ.

2.3. Kinematic assumption and structure of the in-

cremental constitutive relations

At this point a natural question arises: How in-
cremental finite strain constitutive relations should
look like? To answer to this question, we first have
to make a kinematical choice. Let Fn be the defor-
mation gradient at time tn, the actual deformation

1We recall the definition of the Green-Lagrange strain
tensor: E = 1

2
{C − 1}, where C = F TF is the right

Cauchy-Green tensor and 1 is the second-order identity ten-
sor.

gradient F at time t ∈ [tn, tn+1] is given by the fol-
lowing multiplicative decomposition, e.g. [19, 20],

F = f̃Fn , (7)

where f̃ ≡ f̃t is the relative deformation gradient,
see Fig. 1 for an illustration. This latter is the first
ingredient from which one can define the relative
right Cauchy-Green tensor c̃ with respect to the
intermediate configuration ϕn as,

c̃ = f̃T f̃ . (8)

For later use, one has the following useful relation
connecting c̃ with the right Cauchy-Green tensor
C = F TF :

c̃ = F−T
n CF−1

n . (9)

X

xn

xt

B0

Bn

Bt

Fn

f̃t = FtF
−1
n

F
t

ϕn

Figure 1: Total and relative deformation gradients connect-
ing configurations B0, Bn and B ≡ Bt.

The second ingredient is that the incremental
stress can be first defined on the intermediate con-
figuration ϕn where we define the second Piola-
Kirchhoff-type stress tensor increment that we de-
note here by s̃, and with the form,

s̃ ≡ s̃(c̃) . (10)

We then transform this latter back to the refer-
ence configuration by appropriate tensorial proce-
dure:

∆S = F−1
n s̃ F−T

n . (11)

In a geometric context, one refers to (11) as a
pull-back, e.g. [21]. The result (11) is to be replaced
into the balance equation (4). Except for a Saint-
Venant-like model, see below in Section 3.2, the
procedure (10)-(11) is well adapted for incremen-
tal models inspired from many classical hyperelastic
ones, for instance, neoHooke, Mooney-Rivlin, clas-
sical Hencky, exponentiated Henchy, or even Ogden
like models, e.g. [15, 18].
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3. Model examples

In this section two model examples of incremen-
tal constitutive relations are given. For the sake
of clarity, focus is made on the purely mechanical
aspects where thermo-hydric couplings are not con-
sidered. For both models, the expression of the sec-
ond Piola-Kirchhoff stress tensor increment ∆S and
of the tangent modulus Ξ are given that must be
used within a numerical resolution procedure.

3.1. A compressible neoHooke-like model

Among the many possible model examples, we
choose perhaps one of the most popular in its hy-
perelastic version. Herein, one does not speaks of
strain energy function because of the hypoelastic

character of the constitutive relation, i.e. incre-
mental form. Inspired by a compressible version
of the neoHooke model, let postulate the following
relation for the second Piola-Kirchhoff-type stress
tensor increment with respect to the configuration
ϕn in terms of the relative right Cauchy-Green ten-
sor2:

s̃ = λ(t) log[j̃] c̃−1 + µ(t)
(

1− c̃−1
)

, (12)

where log[�] is the natural logarithm function and
j̃ is the jacobian of the relative deformation gra-
dient: j̃ = det[f̃ ]. Here and in all what follows,
1 is the second-order identity tensor with compo-
nents δij (δij being the Kronecker delta). The
time-dependent parameters λ(t) and µ(t) are Lamé-
like coefficients within the asymptotic infinitesi-
mal limit. They are related to the time-dependent
Young’s modulus E(t) and the Poisson’s ratio ν(t)
as:

λ(t) =
ν(t)E(t)

(1 + ν(t))(1− 2ν(t))
µ(t) =

E(t)

2(1 + ν(t))
.

(13)

Now using the pull-back relation (11), we end-up
with the following expression for the second Piola-
Kirchhoff stress increment:

∆S = λ(t)
(

log[J ]− log[Jn]
)

C−1

+ µ(t)
(

C−1
n −C−1

)

,
(14)

2For the hyperelastic version of the model of Eq. (12),
the strain energy function would be W = 1

2
λ log2[J ] −

µ log[J ] + 1

2
µ(C : 1 − 3) in terms of the right Cauchy-

Green tensor C and with the state law S = 2 ∂W

∂C
this gives

S = λ log[J ]C−1 + µ(1−C−1).

where Jn = det[Fn], Cn = F T
n Fn, and use has

been made of the relation J = j̃Jn. The fourth-
order tangent modulus is obtained by computing
the derivative with respect to the right Cauchy-
Green tensor as,

Ξ =
∂∆S

∂E
≡ 2

∂∆S

∂C

= λ(t) C−1 ⊗C−1

+ 2
(

µ(t)− λ(t) log

[

J

Jn

]

)

IC−1 ,

(15)

where the fourth-order tensor IC−1 is such that
IC−1 : A = C−1AC−1 for any second-order tensor
A, in components, e.g. [15]:

IABCD =
1

2

{

C−1
AC C−1

BD + C−1
AD C−1

BC

}

. (16)

3.2. A Saint-Venant-like model

As a second model example, the Saint-Venant-
like model is by construction directly written with
respect to the reference configuration B0. To do so,
we first define a Green-Lagrange-like strain tensor
ẽ on the configuration ϕn as,

ẽ =
1

2

{

c̃− 1
}

, (17)

which, when pull-back to the reference configura-
tion with Fn, this gives:

F T
n ẽ Fn =

1

2

(

C −Cn

)

≡ E −En , (18)

where use has been made of relation (9). Let us
stress that we refrain from denoting the Green-
Lagrange strain tensor difference E − En by ∆E,
i.e. E − En 6= ∆E. This latter is kept for the
widely used notation in the literature for the lin-
earization of the Green-Lagrange srain tensor, e.g.
relation (6)2.

Next, the second Piola-Kirchhoff stress tensor in-
crement can simply be written as,

∆S = λ(t)
[(

E −En

)

: 1
]

1+ 2µ(t)
(

E −En

)

,

(19)
and, hence, the tangent modulus is then simply
given by:

Ξ = λ(t)1⊗ 1 + 2µ(t) I , (20)
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where I is the fourth-order unit tensor such that
I : A = A for any second-order tensor A, in com-
ponents:

IABCD =
1

2

{

δAC δBD + δAD δBC

}

. (21)

The time-dependent material parameters λ(t)
and µ(t) are here again given by Eq. (13).

4. Numerical simulations

For illustrative purposes, we give a set of nu-
merical simulations inspired by the very recent lit-
terature, e.g [8, 13]. We consider straight walls
manufactured layer-by-layer at different speeds,
each layer with cross-sectional dimensions of 60mm
width and 9.5 mm height. The layers are added
step-by-step until divergence of the computational
procedure due to structural buckling is observed.
To trigger this buckling, we a priori perform a ge-
ometrical imperfection by slightly tilting the cross-
section of the wall: each layer is tilted about 0.06
mm, i.e. 10−3 times the width of one layer. For
the fresh concrete, and for all the simulations be-
low, the following time-dependent Young’s modulus
and a constant Poisson ratio are used:

E(t) = 2.94 t + 25.023 [kPa] , ν = 0.3 , (22)

where the time t is here expressed in minutes. For
the gravity loading, the reference density is taken
as ρ0 = 2020 kg/m3. Here the neoHooke-like incre-
mental model of Section 3.1 is used.

For the finite element simulations, each layer is
discretized with isoparametric 8-node hexahedral
elements with two elements through the layer thick-
ness, ten elements along its width, and 25 elements
each 1m length, i.e. a total of 500 elements for
each layer of 1m length. Fig. 2 illustrates the ini-
tial mesh of a 1m straight wall with 25 layers.

4.1. A 1m wall at two different printing speeds

We consider a 1m printed wall at two printing
speeds. As buckling is expected, let make the fol-
lowing assumption: we consider that buckling oc-
curs when the maximum out of plane deformations
exceeds half layer-width, i.e. that is when the dis-
placement component v in the Y -direction (see Fig.
2) is such that vmax ≥ 30mm.

As a first computation, we consider the speed
of 0.3min per layer. The simulations results show

Z

Y
X

Figure 2: Finite element mesh of a 1m straight wall with 25
layers. The nodes of the bottom wall are fixed. The layers
are activated one by one starting from the bottom during
the printing process.

that buckling occurs at layer 18 where the maxi-
mum out-of-plane displacement is vmax = 50.2mm,
see Fig. 3(b). We show in Fig. 3(a) the deformed
configuration just before buckling: after 17 layers,
and where we find that the maximum displacement
is vmax = 7.31mm. And for illustrative purposed,
Fig. 3(c) shows the post-buckling configuration af-
ter 19 layers where vmax = 180.36mm.

The same computation is now performed at a
three times slower speed of 0.9min per layer. The
result shows that this time buckling occurs after 22
layers with a vmax = 49.98mm. Here again, for il-
lustrative purposes, Fig. 4(a) shows the deformed
configurations after 21 layers just before buckling
where vmax = 14.57mm, and Fig. 4(c) after 24 lay-
ers where vmax = 208.54mm, i.e. two layers after
buckling criterion has been reached.

4.2. A 2m wall printed concrete

By using the same mesh shown in Fig. 2, we can
compute a 2m printed wall with adequate bound-
ary conditions. Here the face on the (Y,Z)-plane is
fixed in the X-direction.

With the same velocity of the printing nozzle as
for the 1m-wall of Fig. 3, this leads to a speed
of 0.6min per layer in the present example. The
computation show that in this case, the buckling
occurs after 20 layers with a vmax = 40.38mm, Fig.
5(b). Here again for illustrative purposes, Fig. 5(a)
shows the deformed configurations after 19 layers
just before buckling where vmax = 10.1mm, and
Fig. 5(c) after 21 layers where vmax = 155.32mm.
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107.478
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143.921

162.143

180.365

(a) 17 layers

(b) 18 layers

(c) 19 layers

v

v

v

Figure 3: Deformed configurations and displacement field v

for the 1m wall: (a) after 17 layers, (b) after 18 layers and,
(c) after 19 layers. Here the printing speed is 0.3min per
layer.

5. Conclusions and perspectives

We have presented a theory for the modelling of
the 3D concrete printing problem. The fresh con-
crete has been described through time-dependent
incremental constitutive relations in the finite
strain range. As an ingredient, a kinematic choice
has been made that is based on the multiplicative
decomposition of the deformation gradient. Model
examples have been detailed and a set of numer-
ical examples has shown the effectiveness of the

−.805799

.732306

2.27041

3.80852

5.34662

6.88473

6.88473

8.42283

9.96094

11.499

13.0371

14.5753

−.651725

4.41212

9.47596

14.5398

19.6036

24.6675

24.6675

29.7313

34.7952

39.859

44.9229

49.9867

−1.11081

19.8549

40.8206

61.7863

82.752

103.718

103.718

124.683

145.649

166.615

187.581

208.546

(a) 21 layers

(b) 22 layers

(c) 24 layers

v

v

v

Figure 4: Deformed configurations and displacement field v

for the 1m wall: (a) after 21 layers, (b) after 22 layers and,
(c) after 24 layers. Here the printing speed is 0.9min per
layer.

proposed framework. In particular, influence of
the printing speed on the structural responses can
be captured when buckling instability can happen.
This latter feature could certainly help the opti-
mization of the printing process.

Further work is still in progress toward more re-
alistic modelling. Among others, the coupling with
the hydration of concrete that, in turn, is strongly
coupled to the exothermy of the hydration reac-
tion. Furthermore, it goes without saying that the
present framework can easily be applied to the man-
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Figure 5: Deformed configurations and displacement field v

for the 2m wall: (a) after 19 layers, (b) after 20 layers and,
(c) after 21 layers. Here the printing speed is 0.6min per
layer.

ufacturing of classical 3D printed polymers.
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