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This paper addresses the parameter estimation issue on mobile robots. A comparison between the state-of-art Least-Squares Technique and the potentially useful Instrumental Variable Method is carried out. With that objective, the whole process of kinematic and dynamic modeling, exciting trajectory design, simulation, parameter identification and cross-validation is done. The results are shown in simulation of a Differential Drive Mobile Robot to show that against possible noises and perturbations on mobile robotics, due to effects as slipping and not perfect rolling, Instrumental Variable gives a better performances. A model considering an unbalanced mass distribution of the mobile robot is derived and validated.

INTRODUCTION

Historically, control in mobile robotics has been based just on the kinematic model of the system [START_REF] Siegwart | Introduction to autonomous mobile robots[END_REF]). This is due to the accuracy of the dynamic model depending on parameters that may change during execution or are difficult to measure. Indeed, this model is much more complex than the kinematic model and normally motors used in mobile robots have already an efficient low-level velocity control loop incorporated whose role is to decouple the kinematics from the dynamics [START_REF] Morin | Motion Control of Wheeled Mobile Robots[END_REF]). However, as applications get more complex, as in mobile manipulators and when it involves high-speeds and heavy loads to be carried, the dynamic model becomes essential [START_REF] Martins | Motion Control and Velocity-Based Dynamic Compensation for Mobile Robots[END_REF] and [START_REF] Martins | An adaptive dynamic controller for autonomous mobile robot trajectory tracking[END_REF]). These models can be derived using basic laws and constitutive relationships, i.e. First-principles Models, or from measured data, i.e. Empirical Models. The combination of these methods lies in the so-called gray-box model, where a parameter estimation (fitting of empirical data) of first-principles models is done [START_REF] Tangirala | Principles of System Identification: Theory and Practice[END_REF]).

For mobile robots, specially differential drive mobile robots (DDMR), the state-of-art on parameter estimation methods of its dynamic model is the well-known Least-Squares (LS) Technique [START_REF] Alves | Parametric identification and controller design for a differential-drive mobile robot[END_REF], [START_REF] Innocenti | Dynamical model parameters identification of a wheeled mobile robot[END_REF], [START_REF] Yoon | Parameter Estimation and Control of Nonholonomic Mobile Robots: A Model-Based Approach[END_REF] and [START_REF] Filipescu | The Annals of[END_REF]). LS has been proved to be the optimal estimator under the defined assumptions. For instance, the error needs to be normally distributed with zero mean and constant variance (homoscedasticity), and there should not exist auto correlation between errors [START_REF] Allen | Assumptions of ordinary least-squares estimation[END_REF], [START_REF] Gautier | Global identification of robot drive gains parameters using a known payload and weighted total least square techniques[END_REF]). These assumptions may be difficult to ensure and not applicable in mobile robots, due to several factors such as sliding, external forces and not-perfect rolling. Moreover, LS requires a well-tuned data filtering, and, even with it, it is not ensured that the estimate is optimal and unbiased.

On the other hand, the Instrumental Variable (IV) method is one of the methods that deals with a noisy observation matrix and is robust against the correlation issue [START_REF] Brunot | Physical parameter identification of a one-degree-of-freedom electromechanical system operating in closed loop[END_REF]). Hence, it imposes less restrictive assumptions on the error, since it uses the simulation of the direct dynamic model (DDM) to generate the instrumental matrix [START_REF] Young | An instrumental variable method for real-time identification of a noisy process[END_REF]). This technique has been successfully applied in robotics and mechanical systems [START_REF] Brunot | A new recursive instrumental variables approach for robot identification[END_REF], Janot et al. (2009a), [START_REF] Janot | Using the instrumental variable method for robots identification[END_REF]), but its potential use in estimation of dynamic parameters of mobile robots has not been addressed yet.

Moreover, dynamic modeling of DDMR has already been approached: [START_REF] Ivanjko | Modelling of mobile robot dynamics[END_REF], Ahmad Abu Hatab (2013), [START_REF] Alves | Parametric identification and controller design for a differential-drive mobile robot[END_REF], Yulin [START_REF] Zhang | Dynamic model based robust tracking control of a differentially steered wheeled mobile robot[END_REF], [START_REF] Boyden | Dynamic modeling of wheeled mobile robots for high load applications[END_REF]. Most of these works consider a balanced mobile robot, where the center of mass is equally distanced to both driving wheels. However, the importance of considering a model in an unbalanced situation grows, as applications with a high and not centered load for transporting or mobile manipulators may lead to. This phenomena has been mentioned in [START_REF] Innocenti | Dynamical model parameters identification of a wheeled mobile robot[END_REF], [START_REF] Albagul | Dynamic Modelling and Adaptive Traction Control for Mobile Robots[END_REF], but there is no formal and complete definition of its dynamic model.

The aim of this work is twofold: first, to show the potential use of the IV method on parameter estimation of the dynamic model of mobile robots, and, secondly, to fill the mentioned gap in unbalanced mobile robot dynamic mod- eling towards a more complete and useful model. To do so, the derivation of the mentioned inverse dynamic model (IDM) and DDM is carried out by means of the Newton-Euler formulation. Effects as sliding, slipping, unbalanced load, castor wheels and tools attached to the mobile robot as a robotic arm, are considered with the objective of stating a complete model. Many of these effects are grouped in an uncertainty term, that is depreciated and considered as external perturbations to the system. Therefore, the paper is organized as follows: Section 2 describes the derivation of the kinematic model and direct and inverse dynamics models. Section 3 briefly reviews the theory behind the two identification methods above mentioned and the trajectory selection. Section 4 presents the simulation environment analysis and results, and Section 5 conclusion remarks.

UNBALANCED DIFFERENTIAL DRIVE MOBILE ROBOT MODEL

Figure 1 shows a diagram of the robot, and Table 1 summarizes the meaning of parameters and variables of its model. In this section the kinematic and dynamic models are derived. The first is based on the work of Yulin [START_REF] Zhang | Dynamic model based robust tracking control of a differentially steered wheeled mobile robot[END_REF], but with more importance given to the noncentered center of mass. Then, the DDM is obtained, and afterwards simplified in order to show the IDM in the appropriate form for parameters estimation.

Kinematic Equations of Motion

The velocity equations of the geometrical center (point B) are:

v = 1 2 (v r + v l ); ω = 1 L (v r -v l ); u = u s , (1) 
where v and u are the translational velocities in X and Y directions respectively; ω is the rotational speed of the robot; v r and v l are the longitudinal speed of the left and right wheel center, respectively; and u s is the wheel center's lateral slip speed (lateral speed of both wheels are the same as they are rigidly connected). Therefore, posture of point B in the world coordinate can be described by:

(2)

     ẋB = v cos θ -u sin θ ẏB = v sin θ + u cos θ θ = ω .
Moreover, the longitudinal speeds can be described as:

v l = R φl + v sl ; v r = R φr + v sr , (3) 
where φr and φl are the rotational speed of the right and left wheel respectively, and v sr and v sl are the longitudinal slip speeds of each wheel.

Taking into account this knowledge, the speeds of any point of the robot can be calculated. Specially, the equa-tions regarding the center of mass (point G) are:

(4)

         v G = v -b y ω = 1 2 (v r + v l ) -b y ω u G = u + b x ω = u s + b x ω ω = θ = 1 L (v r -v l )
.

The respective velocities in the global coordinate frame can be obtained in the same way as in (2) but taking into account the velocities from (4).

Dynamic Model

Applying Newton-Euler Formulation to the diagram in Fig, 1, similar to the process done in [START_REF] Boyden | Dynamic modeling of wheeled mobile robots for high load applications[END_REF], the forces and moment equations with respect to point G are:

F xg = m vG = F wlx + F wrx + F ex + F cx , F yg = m uG = F wlx + F wrx + F ex + F cx , M z = I z ω = ( L 2 +b y )F wrx -( L 2 -b y )F wlx -b x (F wry +F wly ) -e y F ex + e x F ey -c y F cx + c x F cy + τ e + τ c , ( 5 
)
where m is the total mass of the robot and I z is the total inertia of the robot around the axis that goes through the point G and is perpendicular to the plane.

The first term of the first two equations of the system in (5) can be expressed in terms of the accelerations and velocities of point B (as an extension of what is presented in Yulin [START_REF] Zhang | Dynamic model based robust tracking control of a differentially steered wheeled mobile robot[END_REF]):

(6) m vG = m( v -b x ω 2 -ωu -b y ω) m uG = m( u -b y ω 2 + ωv + b x ω)
.

On the other hand, the dynamic equations of the wheelrotor combinations are:

I e φi + B e φi = τ i -F wix R; i = r, l, (7) 
where I e is the inertia of the rotor, gearbox and wheel around the wheel axis; B e is its viscous friction coefficient; and τ r and τ l are the torques applied in each motor.

Using these equations and after several mathematical steps, the direct dynamic model can be expressed as:

(8) v ẇ =   m + 2Ie R 2 -mby 2Ieby R 2 Iz + b 2 x m + L 2 Ie 2R 2   -1            - 2Be R 2 0 0 mbx - 2Beby R 2 - L 2 Be 2R 2 -mbx mbxby        v ω vω ω 2      +   1 R 1 R 1 R ( L 2 + by) - 1 R ( L 2 -by)   τr τ l + δ 1 δ 2          , with (9) 
                     δ 1 = mωus + Be R 2 (vsr + v sl ) + Ie R 2 ( vsr + vsl )+ +Fex + Fcx δ 2 = LIe 2R 2 ( vsr -vsl ) + byIe R 2 ( vsr + vsl )+ + BeL 2R 2 (vsr -v sl ) + Beby R 2 (vsr + v sl ) -bxm us+ -eyFex + exFey -cyFcx + cxFcy + τe + τc .
If b y = 0 the model becomes the same as in Yulin [START_REF] Zhang | Dynamic model based robust tracking control of a differentially steered wheeled mobile robot[END_REF] and [START_REF] Boyden | Dynamic modeling of wheeled mobile robots for high load applications[END_REF]. Also, notice that the equations shown refer to the translational and rotational speed of the geometrical center. The main reason is because its coordinates will not change during motion, while the center of mass coordinates are, a priory, unknown and may change dynamically during the robot operation.

Furthermore, δ 1 and δ 2 are the uncertainties of the model. They gather terms which will be considered as unknown and/or as external perturbations to the system.

If it is assumed that there is an ideal wheel-ground contact (no-slip), no external disturbance forces nor moments, a negligible resistance force of the castor wheels and only the friction due to the motors rotation, then, the uncertainty term disappears, making the model much simpler to study. Therefore, the IDM can be expressed in the following form, suitable for parameter identification:

(10) τ r τ l = v ω v ω -ω 2 vω 0 0 0 0 v -ω -ω 2 -vω v -ω                 β 1 β 2 β 3 β 4 β 5 β 6 β 7 β 8                
, where β is the set of base parameters defined by: (11)

                                                     β 1 = 2IeL + LR 2 m -2R 2 bym 2LR β 2 = 2R 2 b 2 y m -R 2 bymL + 2R 2 Iz + 2R 2 b 2 x m + IeL 2 2LR β 3 = Be R β 4 = BeL 2R β 5 = Rbxm 2 β 6 = Rbxm L β 7 = 2IeL + LR 2 m + 2R 2 bym 2LR β 8 = 2R 2 b 2 y m + R 2 bymL + 2R 2 Iz + 2R 2 b 2 x m + IeL 2 2LR
. The knowledge of this set of base parameters can determine the dynamic model uniquely, even though they may not have a direct physical meaning as they are [START_REF] Gautier | Direct calculation of minimum set of inertial parameters of serial robots[END_REF]).

PARAMETER IDENTIFICATION

Parameter Identification Methods

In a general form, the problem in (10) can be re-expressed as follows:

τ = IDM(ξ, ξ)Θ, (12) 
where ξ and ξ are the vectors of velocities and accelerations respectively; IDM(ξ, ξ) is a matrix corresponding to the IDM and Θ is the vector of base parameters.

After data acquisition, sampling and filtering if needed, (12) can be rewritten as an over-determined linear system in the form of:

Y (τ ) = X( ξ, ξ)Θ + ρ, (13) 
where Y (τ ) is the measurements vector built from actual torques τ ; ξ and ξ are the observation vectors (measured values) of the generalized positions, velocities and accelerations respectively; X( ξ, ξ) is called the observation matrix and ρ is a vector of error terms due to external perturbations and simplifications done to the model, between other reasons [START_REF] Brunot | Physical parameter identification of a one-degree-of-freedom electromechanical system operating in closed loop[END_REF] and Janot et al. ( 2014)).

Parameter identification consists to find the set of parameters Θ that best fits (13) by reducing the error ρ, which enables the simulation, prediction and control of the dynamic system. Two of the possible estimation methods are detailed hereafter.

LS-Method

The LS Method is about estimating parameters by minimizing the squared discrepancies between observed data and their expected values.

If the regression model is assumed to be free noise, ordinary least-squares can be used to deliver the estimates of the parameters as:

ΘLS = (X T X) -1 X T Y . ( 14 
)
In order to consider the model as free of noise, taylor-made filters, decimation and elimination of border effects must be carried out accordingly [START_REF] Briot | Global identification of joint drive gains and dynamic parameters of parallel robots[END_REF]).

IV-Method

In the case that a good filtering stage can't be ensured, an alternative is the IV method. It is robust to data filtering and leads to a statistically optimal estimations. Generally, the instrument set used in robotics is built from data calculated from simulation of the DDM.

The simulation is based on previous estimates of the parameters and assumes the same reference trajectories and control structure for both actual and simulated robots [START_REF] Janot | A generic instrumental variable approach for industrial robot identification[END_REF]). It takes the form of:

ΘIV = (Z T X) -1 Z T Y , ( 15 
)
where Z is the instrumental variable matrix built in the same way as the observation matrix X but with simulated data.

Trajectory Selection

The exciting trajectory plays an important role in the identification process: it needs to adequately excite parameters that are being estimated. In order to do this, a cost function that describes the performance of each trajectory and allows comparison between them must be used. Most of bibliography, uses a cost function mainly based on the condition number [START_REF] Khalil | Chapter 12 -identification of the dynamic parameters[END_REF]).

In this work, in contrast to sequential identification, a global identification is carried out: one trajectory that excites all pertinent parameters is designed.

First of all, a parametrization of the trajectory is needed.

A finite sum of harmonic sine and cosine functions, i.e., a finite Fourier series, was chosen for each wheel [START_REF] Swevers | Optimal robot excitation and identification[END_REF]). The velocity and acceleration are then written as:

   ξ i (t) = Ni l=1 a l,i cos (ω f lt) + b l,i sin (ω f lt) ξi (t) = Ni l=1 -a l,i ω f l sin (ω f lt) + b l,i ω f l cos (ω f lt) , (16) 
where ω f is the fundamental pulsation of the Fourier series and ξ i and ξi are the velocities (v and ω) and accelerations ( v and ω) of the mobile robot.

The problem of selecting the trajectory becomes one of optimization with linear and non-linear constraints. The objective is to find parameters a l,i and b l,i of both input trajectories that lead to a global trajectory that minimizes the condition number of the regressor matrix. SQP (Sequential Quadratic Programming) algorithm was used to solve it. Constraints regarding positions (boundary limits of the robot workspace), maximum velocities, maximum accelerations, pose (in order to avoid the robot to start making circles and have a softer trajectory), and initial position were imposed. The trajectory obtained is, theoretically, a local minimum of the cost function, thus, to different initial values, different results may arise.

SIMULATION AND RESULTS

For simulation, the model provided by the Simscape Multibody Contact Forces Library [START_REF] Miller | Simscape multibody contact forces library[END_REF]) called Two Wheel Robot was used. This model represents a quite real situation as it simulates effects that are difficult to model, such as the contact and friction between wheels and the floor.

The parameters used to run the simulation are shown in the third column of Table 1. Information is based on technical data of the Pioneer LX robot (Omron Adept Mobile Robots). The wheel mass and the robot's total inertia is an estimated value from the available parameters, whereas the friction coefficients and contact values are set to a theoretical value.

The value of the parameters to be estimated are shown in Table 3. β 3 and β 4 depend on the friction coefficient, which is not explicitly defined in the simulation, thus it is not possible to know which is the real value of these parameters.

With regard to the trajectory selection, a five terms Fourier series was used, with an ω f = 0.1 during t = 30s (see ( 16) as explained in Section 3.2, where values are shown in Table 2. The torque inputs needed to follow this trajectory, are shown in Fig. 2 where the path obtained by the mobile robot is shown by Fig. 3. In order to make a cross-validation, two new trajectories were designed: a sum of two sin waves (see Fig. 4) and a sum of steps (see Fig. 5). Moreover, to make the simulation realistic, two types of noise have been added:

• white noise with a SNR (signal-to-noise ratio) of 5. • steps as an external perturbation that represent phenomena as loosing contact of the wheel with the ground (sudden increase and decrease of wheels' rotational speed) or slipping. Their amplitude is around 25% of the peak amplitude of the measured value.

A proper low-pass filter was designed to eliminate the white noise for LS Estimation, whereas no filter is needed for the IV method.

Table 3 and Table 4 show performance indicators of both methods when just white noise is considered in the simulation. Both have good results, although LS gives slightly better results. Maximum relative error between real and estimated parameters is less than 10% for both methods, being less than 1.5% for LS and less than 6% for IV. Moreover, both methods success to predict the two testing trajectories with an accuracy of more than 90% (considering the fitness value equals to the one's complement of the NRMSE (Normalized Root-Mean-Square Error). For prediction of cross-validation trajectories, LS performs better, with a fitness value of more than 99% for both trajectories, which means an almost perfect prediction.

Furthermore, Table 4 shows a comparison between the classical model (without considering an unbalanced situation) and the model presented in this work. Having a fitness value less than 65% is an indication that the model fails to predict the dynamic of the system. This is, partially, a way of validating the new model's equations.

On the other hand, Table 5 shows the fitness values results for both methods and both cross-validation trajectories when the external perturbation noise is included in the simulation and no change in the taylor-made filter is made. Note that, in this case, IV method performs much better 

CONCLUSION

In this paper, a dynamic parameter identification for DDMR was performed on simulation. First of all, a new mobile robot dynamic model with uncertainties and misaligned center of mass was derived, and verified and compared with classical models via parameter identification. It has been shown that the classical model will fail to model the behavior of a mobile robot when the distribution of mass is not uniform.

Moreover, the potential use of IV on mobile robots has been presented. If a proper filter can be designed, it has been shown that although IV has good results, LS Estimate is still better. However, in mobile robots the filter design may be difficult to carry out, as there are many possible perturbations to the data without ensuring a normal distribution of noise. In that case, it has been shown that IV estimation will ensure much better results.
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 1 Fig. 1. Differential Drive Mobile Robot.
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Fig. 2

 2 Fig. 2

Fig. 4 .

 4 Fig. 4. Inputs obtained as a combination of sins.
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 5 Fig. 5. Inputs obtained as a combination of steps.

Table 1 .

 1 Symbols

	Symbol	Meaning	Value

B

Mid point between wheels. -G Center of Mass. -

C

Point where resultant forces of castor wheels is applied.

-

E

Point where resultant forces of tools (e.g. robotic arm) is applied. -R Wheel's Radius. 100 mm L Distance between wheels. 430 mm [X ; Y ] Local coordinate frame fixed on B. -[X G ; Y G ] Local coordinate frame fixed on G. -Fex, Fey, τe Resultant tool forces in X and Y directions and moment exerted on E. -Fcx, Fcy, τc Resultant tire forces in X and Y directions and moment exerted on C by castor wheels. -F wlx , F wly , Fwrx, Fwry Resultant tire forces in X and Y directions of left and right wheels respectively. -[cx; cy]; [ex; ey] Positions of points of interest required for modelling (see Fig. 1). -[bx; by] Position of point G (see Fig. 1) [19;19] mm m Robot's total mass (including wheels). 63.14 kg Iz Inertia around the center of mass. 2.97 kg m 2

Ie

Inertia of the wheel, motor's rotor and gearbox around its axis.

Table 2 .

 2 Trajectory Parameters Inputs obtained via SQP method.

	Parameter	j	
		1	2
	a 1,j	3.1231	-0.0729
	a 2,j	0.3317	-1.5558
	a 3,j	-0.1874	1.0222
	a 4,j	-1.7562	1.2263
	a 5,j	-1.5105	-0.6198
	b 1,j	2.0287	1.2768
	b 2,j	-2.0549	1.6834
	b 3,j	-0.5311	2.2727
	b 4,j	-1.7335	-1.6215
	b 5,j	2.0589	-0.9885
	Fig. 2.		

Table 3 .

 3 Parameters' Values

	Param.	Real	LS		IV	
			Value	Relative	Value	Relative
				Error [%]		Error [%]
	β 1	2956.55	2959.41	0.1	3011.40	1.84
	β 2	658596.20	658397.22	0.03	661786.31	0.5
	β 3	-	0.98	-	1.40	-
	β 4	-	167.43	-	5490.98	-
	β 5	60000	59903.77	0.16	58416.37	1.77
	β 6	279.07	276.14	1.05	296.47	5.57
	β 7	3514.69	3508.01	0.19	3499.09	0.44
	β 8	778596.20	776337.11	0.29	777250.63	0.18

Table 4 .

 4 Cross-Validation: Fitness value (one's complement of NRMSE) between Real Trajectoryand Estimated Trajectory [in %] LS Estimation. IV has a fitness value higher than 75% for both trajectories, whereas LS decreases to 32%. Performance is diminished because the steps are of a considerable amplitude, distorting significantly the signal, in a pessimistic scenario.

	Model	Classical		New	
	Method	LS		LS		IV	
	Trajectory	v	ω	v	ω	v	ω
	sins	93.12	30.68	99.36	99.29	99.34	93.39
	steps	94.31	58.02	99.53	99.54	99.38	97.68

than

Table 5 .

 5 Cross-Validation with external perturbation: Fitness value (complement of NRMSE) between Real Trajectory and Estimated Trajectory [in %]

	Method	LS		IV	
	Trajectory	v	ω	v	ω
	sins	51.75	32.21	82.7	75.34
	steps	52.29	61.29	94.25	85.29