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Abstract—We focus on the problem of optimal power allocation
for a two user interference channel characterized by mixed
Channel State Information (CSI), which includes instantaneous
information for the direct channels and statistical information for
the interference channels. For this model, we introduce a general
framework for optimizing the power allocation such as to maxi-
mize some generic Quality of Service (QoS) performance metric
(or equivalently minimize some cost function). We model this
problem as a function approximation problem where the function
to be learned is the mapping between CSI and the solution to the
optimization problem. We then tackle this problem borrowing
ideas from ensemble learning. In particular, using generalized
linear models (which are characterized by low complexity and can
be implemented even at network nodes characterized by strong
computational limitations), we produce different weak learners
for learning to solve the considered optimization problem and
based on ensemble learning theory, we combine such learners
to produce stronger learners. We assess the performance of our
framework by applying it on a particular resource allocation
problem, and the obtained performance results indicate that the
proposed approach can deliver near-optimal performance.

I. INTRODUCTION

While Machine Learning (ML) techniques have found sev-
eral applications on the design of physical layer and resource
allocation techniques for wireless communications systems,
the available literature (see for example [1], [2], [3], [4],
[5]) focuses on the use of advanced, computationally de-
manding, deep learning structures. Focusing particularly on
optimal resource allocation, the seminal works in [5] and
[6], propose the use of deep learning techniques following a
“Learn to optimize” strategy in order to learn the association
between channel conditions and optimal resource allocation
(e.g., power allocation PA decisions). Given that deep learning
based resource allocation algorithms proposed in references
mentioned above presume the use of computational equip-
ment capable of implementing deep learning based function
approximators and classifiers on real time, its applications
are limited if communication equipment characterized by very
strict computational constraints is considered. Such very strict
computational constraints can appear mainly in Internet of
Thing (IoT) networks and fog computing environments. In
such environments, the limited computational resources avail-
able to the communication/computation nodes, impose using
low complexity ML based designs. Some approaches to this
problem are discussed in [7] where a “Network as a Computer”

architecture is introduced, where the several neurons of an
Artifical Neural Network (ANN) are mapped to IoT network
nodes. However, when such an approach is followed for deep
learning networks, the process of calculating the output of
the output layers requires an increased number of message
exchanges between the IoT nodes serving as input, hidden and
output layers’ neurons. As a result, the computation can be
influenced by unreliable communication (due to outages) and
may also result to inefficient exploitation of energy resources
available to power hungry IoT nodes.

An alternative to that approach is found if federated learn-
ing strategies are followed. Following such strategies, in
[8], network-aware distributed learning method are proposed
where devices apply local processing and send their learnt
parameters to an aggregator/server. In this process, the devices
have also the option of offloading their local data processing to
each other. However, the work in [8], as well as in [7], consid-
ers generic ML problems and does not focus on ML assisted
treatment of wireless communications related problems (such
as resource allocation problems). Moreover, the system design
proposed in [8], imposes the need for an aggregator/server
meant to coordinate the learning and decision making process.

Deviating by the above sophisticated models, in this work
we investigate the use of a distributed process for optimizing
resource allocation in interference channels. We consider a
two-user interference channel and discuss the problem of
optimal power allocation, such as to maximize some Quality
of Service (QoS) metric (e.g., weighted sum rate), or minimize
some cost function (e.g., the Bit Error Rate). For this problem,
we introduce a generalized ML based framework which is
based on the use of simple statistical/ML tools (such as
Generalized Linear Models GLMs) combined with ensemble
learning techniques. In particular, in our proposed scheme,
the process of learning an optimal power allocation process,
is achieved by employing several low complexity “weak”
learners (i.e., learners that cannot deliver by themselves highly
accurate results) which calculate different approximate solu-
tions to the optimal power allocation problem. Based on these
“weak” learners, using ensemble learning based methods in
order to determine/design these learners, we construct “strong”
learners (i.e., learners that can deliver highly accurate results)
building on the results obtained by the several “weak” learners.
A significant advantage of this approach is the fact that the



several “weak” learners are characterized by low complexity
and can be implemented in a parallel fashion. As a result, the
process of calculating the approximation produced by each
learner can be offloaded even to equipment characterized by
very limited computational resources. Moreover, the fact that
the “weak” learners can be implemented in parallel allows for
exploiting several of the available neighboring network nodes
for computational purposes, and can reduce the number of
communication hops required in order to obtain a “strong”
learner. Another important advantage of our approach, is the
fact that our framework does not consider a predetermined
QoS metric/cost function to be used as an optimal power
allocation problem. In fact, different performance optimization
criteria can be defined, simply by changing the parameters of
the used “weak” learners.

Finally, we also highlight that the proposed framework is
based on a realistic CSI availability scenario where only the
direct channels are instantaneously known for the two users,
while the interference channels are only known statistically.
The advantage of this CSI scenario is that it does not require
some channel estimation process for determining the interfer-
ence channels. As a result, it results in savings/efficiency in
terms of the use of computation and energy resources, which
can be important in IoT networks. Moreover, we note that in
several cases, in wireless communication networks, the statisti-
cal CSI information can be inferred using location information
available to the nodes. Due to these important characteristics
such CSI availability scenarios where direct channel CSI is
instantaneously available and interference related CSI is only
statistically known have been studied in several works (see for
example [9], [10]).

Based on the above, to the best of our knowledge our
work is the first one to propose a generalized framework for
optimal power allocation for the interference channel that can
be applied for different QoS/performance optimization criteria,
and builds on a realistic CSI availability scenario. Moreover, it
is the first one to consider the use of ensemble learning for this
purpose and can benefit from in-network parallel computation
exploiting even nodes characterized by strict computational
resources availability constraints.

The rest of the paper is organized as follows. In Section II,
we introduce our generic system model and the considered per-
user performance metrics. In Section III we present the optimal
power allocation problem and some characteristic performance
metrics that can be used within our framework. In Section IV
we briefly discuss the ensemble learning techniques that we
adopt in this paper. Following that, in Section V we discuss
in detail our method for solving the optimization problem
modeled by our framework. Finally, in Section VI we present
simulation results which illustrate the performance of our
framework for a suitable optimization problem and validate
that our framework can deliver near optimal performance .

Notation: Bold lower case letters are used in order to denote
vectors and bold upper case letters denote matrices. Notation
x ∼ CN

(
0, σ2

)
denotes that random variable x follows a

complex circularly symmetric Gaussian distribution with zero

.
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Fig. 1. The general architecture of our system model

mean and variance σ2. We use notation Ex {·} to denote the
expectation operator of a random quantity over the distribution
of random variable x. Finally we use notation d·e+ for the
operator max {·, 0}.

II. SYSTEM MODEL

We consider a system model such as the one in Fig. 1,
where TX/RX pairs {TX1, RX1} and {TX2, RX2} exploit
the same frequency channel for communication purposes and
seek to optimize the power levels that they use. However,
given strict computational resources limitations, they attempt
to solve this power allocation problem in a distributed manner,
by exploiting their own computational resources, as well as
the computational resources of nearby network entities (e.g.,
neighboring users and/or network infrastructure).

In order to mathematically formulate the considered power
allocation problem, we start by focusing on the signal reaching
RXi, i = 1, 2 and express it as as:

yi = hi,i
√
Pixi + hj,i

√
Pjxj + wi, (1)

where xi,
(
E
{
|xi|2

}
= 1
)

the data signal transmitted by
TXi, i = 1, 2, and xj , j 6= i the data signal transmitted by
TXj . Moreover, in (1), wi ∼ CN

(
0, σ2

)
is the Additive

White Gaussian Noise (AWGN) at RXi, i = 1, 2, and Pi the
transmit power level used by TXi, i = 1, 2. Finally, hj,i, i =
1, 2, j = 1, 2 is the channel formed between TXj and RXi.
Throughout our analysis, we adopt a Rayleigh fading channel
model, and as a result, we assume that hi,j ∼ CN (0, ḡi,j) .
Given this signal and channel model we are now interested in
optimizing power allocation (P1, P2), such as to maximize
a predetermined Quality of Service (QoS) metric. In this
process, we adopt the following system design choices which
determine the structure of our generic optimization framework.

A. The Channel State Information availability scheme

We assume a limited Channel State Information (CSI)
scenario, where TXi, i = 1, 2, has access only to direct
channel state information (i.e., to coefficients h1,1, h2,2) and
only statistical knowledge of channel coefficients h2,1, h1,2,
i.e., knowledge of ḡ1,2 = E

{
|h1,2|2

}
and ḡ2,1 = E

{
|h2,1|2

}
.



B. The considered performance metrics

As our intention is to propose a generic framework able to
tackle power allocation problems for a variety of Quality of
service metrics, in what follows, we summarize the considered
performance metrics that each one of the two users can
consider.

1) User-level performance metrics: For the predetermined
CSI availability scenario, we consider the following user based
performance metrics.

Rate based metrics: Given the signal model in (1), one
can write the instantaneous transmit rate for the {TXi, RXi}
transmitter-receiver pair, i = 1, 2 as:

Ri(Pi, Pj ; gi,i, gj,i) = log2

(
1 +

gi,iPi

gj,iPj + σ2

)
, where j 6= i,

(2)
where gi,i = |hi,i|2 and gj,i = |hj,i|2. However, given the
CSI availability limitations described earlier, calculation of
Ri (Pi, Pj ; gi,i, gj,i) is not possible. Instead, using knowledge
of the fact that hj,i follows a Rayleigh channel model, and
assuming knowledge of ḡi,j , one can calculate the ergodic
(with respect to interference) rate as:

Ri (Pi, Pj ; gi,i, ḡj,i) = Egj,i

{
log2

(
1 +

gi,iPi

gj,iPj + σ2

)}
=

∫ ∞
0

log2

(
1 +

gi,iPi

gPj + σ2

)
e
− g

ḡj,i

ḡj,i
dg,

(3)

where i = 1, 2, and j 6= i. As a result, working as in [9], we
can express Ri(·, ·; ·, ·) as:

Ri (Pi, Pj ; gi,i, ḡj,i) =
1

ln 2

{
U

(
giPi + σ2

ḡj,iPi

)
− U

(
σ2

ḡj,iPj

)}
(4)

where
U (x) = lnx+ exp (x)E1 (x) , (5)

with E1 (x) being the exponential integral [11].
User-level Bit Error Rate (BER) metrics: Besides rate based

metrics, exploiting the signal model in (1) the use of Bit Error
Rate (BER) based performance metrics can also be considered.
For example, assuming (for the sake of simplicity) that both
TX1 and TX2 transmit BPSK signals, focusing on the signal
received by RXi, we can see that random variable hj,ixj

√
Pj

is a complex circularly symmetric gaussian random variable,
with variance per dimension equal to ḡj,iPj/2. Following
standard approaches for determining the BER in the presence
of Gaussian noise, we can then write the average (with respect
to gj,i) BER as:

Pe (P1, P2; gi,i, ḡj,i) = 0.5erfc

(√
gi,iPi

ḡj,i + 2σ2

)
, (6)

with erfc (·) being the complementary error function.
Given the above performance metrics, in the following

section we present in more detail the considered optimization
problem and our approach for solving it.

III. THE CONSIDERED OPTIMIZATION PROBLEM

Exploiting the performance metrics described in Section II,
we consider the problem of minimizing a generic cost function
which involves the abovementioned performance metrics. For
this purpose, in this work we start by considering only simple
box constraints, for our optimization problem. As a result, we
can write the optimal power allocation problem in the form:

minimize: C (P1, P2; g1,1, g2,2, ḡ1,2, ḡ2,1)

subject to: 0 ≤ P1 ≤ Pmax, 0 ≤ P2 ≤ Pmax,
(P1)

where Pmax is the maximum allowable power level per user,
and C (P1, P2; g1,1, g2,2, ḡ1,2, ḡ2,1) the considered generic per-
formance metric. In what follows, For the sake of illustration,
we present some typical problems that can be seen as special
case of this problem.

Weighted sum rate maximization: As we know the Weighted
Sum Rate (WSR) can be expressed as:

S = α1R1 (P1, P2; g1,1, g2,1)+α2R2 (P1, P2; g2,2, g2,1) . (7)

where α1, α2 non-negative weights satisfying the constraint
α1 + α2 = 1. Building on the considered CSI availability
scenario, we can then define an analogous to the WSR as the
ergodic (with respect to interference) WSR, as:

S = α1R1 {P1, P2; g1,1, ḡ2,1}+ α2R2 {P1, P2; g2,2, ḡ1,2} .
(8)

Exploiting this definition of S, one can write the optimal
power allocation, with respect to the WSR, for the considered
CSI availabilty scenario as:

minimize: − S
subject to: 0 ≤ P1 ≤ Pmax, 0 ≤ P2 ≤ Pmax.

(P2)

Max-min rate based optimization: As an alterantive to WSR
optimization, several works on optimal power allocation focus
on introducing fairness in the power allocation process by
considering max-min optimization criteria. In case that such
an approach is followed for our proposed CSI availability
scenario, one can consider introducing fairness by introducing
the following optimization problem:

maximize: min {R1(P1, P2; g1,1, ḡ2,1),R2(P1, P2; g2,2, ḡ1,2)}
subject to: 0 ≤ P1 ≤ Pmax, 0 ≤ P2 ≤ Pmax.

(P3)

Reliability and fairness based optimization: Focusing again
on fairness based designs and on reliability based performance
metrics (such as the BER) one can consider the following
problem:

minimize: max {Pe(P1, P2; g1,1, ḡ2,1), Pe(P1, P2; g2,2, ḡ1,2)}
subject to: 0 ≤ P1 ≤ Pmax, 0 ≤ P2 ≤ Pmax,

(P4)

as one more instance of the generic optimal power allocation
problem (P1)

By inspecting optimization problems (P2), (P3) and (P4)
we can easily observe that obtaining the solution to these



problems in closed form (by applying for example KKT
conditions) becomes complicated and requires solving systems
of non linear equations. Moreover, applying, as an alternative,
iterative optimization techniques may also lead to increased
implementation complexity mainly due to the need of calcu-
lating the cost function value at multiple points, as well as
due to the need for calculating the gradient vector of the cost
function, for every point visited by the iterative algorithm (in
case of gradient based iterative algorithms). Therefore, taking
into account the abovementioned complexity requirements of
standard optimization approaches for tackling some standard
problems of the form (P1), in our work we follow a different
strategy that seeks to approximate the solution to optimization
problems of the form (P1), by exploiting simple statistical
based approximations, i.e., GLM based approximations to the
optimal power allocation. As it will become evident in the
numerical evaluation section, using multiple GLMs of this
type and distributing the problem of calculating the resulting
approximations to nodes of our network, we can exploit the
intelligence of each one of the network nodes, and reach
satisfactory power allocation decisions even in cases where
the several collaborating nodes are characterized by strict com-
plexity limitations. When using such an approach, the process
of solving problem (P1), then boils down to appropriately
selecting the strategy for training/determining the GLM model
to be applied at each one of the network nodes participating in
the optimization process. For this process, we propose to use
techniques based on ensemble learning, and more particularly,
boosting. The basic principles of both ensemble learning and
boosting are briefly described in what follows.

IV. ENSEMBLE LEARNING

The term ensemble learning refers to the set of machine
learning techniques that are produced by training multiple
weak learners, i.e., learners characterized by a low level of
accuracy, in order to solve a machine learning problem and
then combining them. While under this broad category of
methods several subcategories can be found, for our purposes
we will only consider methods based on applying different
statistical models/weak learners to the same training set as
well as boosting methods, i.e., methods where several weak
learners are trained in a manner such that a learner focuses on
producing a model having a good accuracy performance for
the training samples for which all previously trained learners
have been found to perform poorly [12].

V. OUR PROPOSED METHOD

As described in Section II and Fig. 1, in our considered
optimization approach, nodes TX1 and TX2 attempt to solve
a problem of the form (P1) by exploiting their own computa-
tional resources, as well as the computational resources of a set
of “helper” nodes, denoted as H = {H1, . . . ,HK}. Assuming
a strict constraint on the available computational resources
(such as the constraints that correspond to the computational
resources of IoT nodes) we assume that nodes TX1 and TX2

and every node in H uses a different, low complexity weak

learner for the considered optimization problem. However, by
using ensemble learning (i.e., boosting) techniques in order
to properly design these weak learners, one can create strong
learners able to provide highly accurate approximate solutions
to the considered optimization problems. In order to further
explain this process, in what follows, we first describe the
weak learning approaches considered in our work.

A. The considered “weak” learners

Aiming at satisfying strict constraints concerning the avail-
able computational resources, we propose the use of GLMs
[13] and briefly describe them in what follows.

1) Generalized linear models: When a GLM is used, given
a set of independent observations Y1, . . . , YN , along with
corresponding vectors of explanatory variables x1, . . . ,xN ,
where E {Yi} = µi, we assume that for a given monotone,
differentiable function g (·) (the so-called link function in the
GLM terminology) it holds that:

g (µi) = xT
i b, (9)

where b a predictor vector. As a result, the construction of a
GLM requires producing an estimate b̂ for b in (9), given g (·),
observations Y1, . . . , YN and their corresponding vectors of
explanatory variables x1, . . . ,xN . A solution to this estimation
problem can then be found using a Maximum Likelihood (ML)
estimator, following the process described in [13].

Inversely, given a predictor vector b obtained after a GLM
training process and a vector of explanatory variables x, we
can estimate y corresponding to this categorical vector as:

ŷ = g−1
(
xT
i b
)
. (10)

2) Learning power allocation decisions using GLMs:
Based on the previous description of GLMs, we propose
using GLMs for learning the association between the power
allocation that user i, i = 1, 2, should employ and a vector
of explanatory variables depending on values g1,1, g2,2, for
the given average fading conditions ḡi,j , i = 1, 2, j = 1, 2.
Following such an approach, and aiming to capture also the
effect of channel imbalances on the power allocation, we
propose to learn the power allocation decisions for TX1 and
TX2, by training two different GLMs, one corresponding
to the power allocation decision for the TX characterized
by the highest channel gain, i.e., TXi with i such that
gi,i = gmax = max {g1,1, g2,2} and one corresponding to
the power allocation decision for the TX characterized by the
smallest channel gain i.e. TXj with j such that gj,i = gmin =
min {g1,1, g2,2}.

Let us now focus on the design of the GLM used to model
the power allocation decision of TXi, with i such that gi,i =
gmax. Let P̃ be the power allocation decision for this TX .
In order to model the association between random variable P̃
and the GLM we propose to use as candidate link functions
the logit link function, defined as [13]:

logit(µ) = log

(
µ

1− µ

)
, µ ∈ (0, 1) (11)



and the probit link function, defined as [13]:

probit(µ) = Φ−1 (µ) , µ ∈ (0, 1). (12)

While in the statistical literature these two functions are mostly
used in order to estimate GLMs for binary, categorical obser-
vations, the fact that they limit the considered values for µ in
the interval (0, 1) is coherent with the box constraints of our
problem. In more detail given the constraints 0 ≤ P1 ≤ Pmax

and 0 ≤ P2 ≤ Pmax if we introduce the variable:

Y =
P̃ + ε

Pmax + cε
(13)

with 0 < ε << Pmax and c → 1, with c > 1, we
obtain that the value µi = E {Yi} will belong in the interval
(0, 1). Therefore this choice for the candidate link functions
is validated. The ML predictor vector b can then be obtained
using the process described in [13, Chapter 4]. Following
a similar approach, the power allocation for the user TXj

where j is such that gj,j = min {g1,1, g2,2} can also be
constructed. Further details in this process are ommited due
to space limitations.

Before proceeding with describing next steps of our pro-
posed method, we comment that while following the above
approach for learning power allocation decisions requires
changing the applied predictors every time that that average
statistics change, in case of low mobility, we can assume
that the channel statistics remain constant for sufficiently long
time intervals, reducing the need for frequent updates of the
predictors. Moreover, we comment that for practical purposes,
the training process for the GLMs, i.e., the calculation of the
predictor vectors can be performed offline for representative
average fading conditions and become accessible to users on
demand through network infrastructure and edge intelligence.

B. Building “strong” predictors by combining different GLMs

As explained earlier, a straight forward way for creating
different learners is by considering different statistical mod-
els for the connection between observations Y1, . . . , YN and
the vector of explanatory variables. Restricting ourselves to
GLMs, this can be ensured by using different link functions
to train different GLMs for the same training dataset. As a
result, with this in mind, we propose employing a number
of at least two GLM based predictors, with at least one
corresponding to a logit link function and one corresponding
to a probit function. Additional predictors can then be derived
by exploiting the concepts of boosting. Further details for
constructing additional GLM based predictors are given in the
numerical evaluation section.

C. The final power allocation learning framework

Having described our GLM based prediction schemes, we
can now summarize our power allocation prediction frame-
work as the sequence of the following three steps:

1) Forwarding CSI to all involved nodes: Clearly, the
first step of the algorithm requires the exchange of all
CSI between TX1 and TX2. Assuming a broadcast

transmission, at the end of this step, values g1,1, g2,2 and
ḡ1,2, ḡ2,1 become available to TX1 and TX2 as well as
to all nodes in H.

2) Calculating candidate power allocations: During this
step, each one of the nodes TX1 and TX2 calculates a
number of candidate optimal power allocations as well
as the corresponding value for the selected cost function
in (P1). The same process (using however different GLM
estimators) is also applied as each one of the “helper
nodes” in H.

3) Selecting the final power allocation As a final step,
TX1 forwards to TX2 its best candidate power allocation
(and the corresponding cost function value) and similarly
TX2 forwards to TX1 its best candidate allocation (and
the corresponding cost function value). Each one of the
“helpers” also forwards its best candidate power alloca-
tion to both TX1, TX2, along with the corresponding
cost function values. Let P be the set of candidate power
values available at both TX1 and TX2 at the end of this
process, and (P̂1, P̂2) ∈ P the allocation which results
in the smallest cost function value. We then select this
power allocation as the one to be used for transmission.

VI. NUMERICAL EVALUATION AND DISCUSSION

We now consider applying our proposed framework for a
power allocation problems of the form (P1). To this end, we
consider a symmetric placement of the {TXi, RXi} pairs. In
more detail, we set TX1 to be the origin of our coordinate
system and place TX2 at coordinates (0, dt) where dt the
distance between the two transmitters expressed in meters.
Furthermore, we place RX1 at coordinates (dr, 0), i.e., at a
distance dr from TX1, and RX2 at coordinates (dr, dt), i.e.,
at a distance dr from RX2. Following such an approach, and
using an inverse power pathloss model, ḡi,j is given as:

ḡi,j =
A

(dist(TXi, RXj)/d0)
p (14)

where dist(TXi, RXj) the distance between TXi and RXj ,
p the pathloss exponent, and A the nominal power attenuation
at a reference distance d0. As a result of this placement, we
obtain that ḡ1,1 = ḡ2,2 and ḡ1,2 = ḡ2,1. Concerning the exact
values of the pathloss parameters, we follow the channel model
used in [14] and set d0 = 1 and A = −30[dB]. Moreover,
we set the pathloss exponent equal to p = 2.5. Finally, as in
[14], we set the noise variance to be equal to −90dB. For
this fading scenario, we consider the following optimization
problem that fall under the umbrella of our framework.

A. BER optimal power allocation

We consider a problem of the form (P4). For this problem,
after setting dr = dt = 10 meters we have considered gener-
ating 103 channel realizations following the Rayleigh fading
assumption discussed earlier. Using these channel realizations,
we have designed separate GLMs for learning the power
allocation of the user characterized by the strongest channel
gain and the user characterized by the weakest channel gain.



For a given channel realization (g1,1, g2,2) we have solved
the optimal power allocation by using function fmincon of
MATLABTM with multiple different initializations such as to
avoid as much as possible the event of being trapped at a
local optimum. For a given channel realization (g1,1, g2,2),
for the GLM for learning the optimal power allocation for the
{TXi, RXi} pair corresponding to the strongest direct channel
we have considered as observed variables Yk, k = 1, . . . , 103,
the normalized power allocation values obtained by applying
the process described in (13). Moreover, for any channel
realization (g1, g2) we defined the explanatory variables as:

x =
[
1, g1,1, g2,2, g

2
1,1, g

2
1,2, g1,1g2,2

]T
. (15)

Concerning the GLMs which we considered, we trained four
different GLM schemes with the first two obtained by using a
logit link function and the two remaining using a probit link
function. Starting from the logit based GLMs, the first one
was trained using the full training dataset. Following that, for
each one of the training examples, the absolute error between
the BER obtained by solving (P4) with fmincon and the
BER obtained by applying the learned power allocation was
calculated. By normalizing this absolute error by the optimal
BER obtained by fmincon, the performance degradation due to
imperfect learning was evaluated for each one of the training
examples. Following that, using a boosting principle, the 25%
of the inital training dataset which corresponded to the worse
performance degradation was used in order to train a second
logit based GLM model. Using the same process the GLMs
for the probit link function were also constructed. Finally in
a similar fashion, the GLMs for learning the power allocation
for the weaker direct channel were also constructed.

For the purposes of assessing the performance of learned
power allocation, we then considered applying the learned
power allocation scheme for a test dataset of 103 examples. For
each one of these examples, we calculated the cost function
value of (P4) for the learned power allocation as well as the
optimal cost function value obtained by solving (P4) using
fmincon. Let ˆBERk be the cost function value obtained by
applying the learning based power allocation for the k-th test
example and BER?

k the cost function value obtained when the
optimal power allocation is applied. Using these quantities, we
can express the relative error (with respect to the optimal cost
function value for the k-th test sample) as:

rk =
ˆBERk −BER?

k

BER?
k

, k = 1, . . . , 1000. (16)

In Fig. 2 we plot the histogram of rk. As we can see from the
plotted results, for the vast majority of channel realizations,
the relative error between the cost function value obtained at
the learned power allocation and the value obtained at the
optimal power allocation is negligible. In fact for nearly 95%
of channel realizations, this error is less than 0.05. As a result
for the vast majority of cases, our approach results in power
allocations characterized by very small suboptimality gap.

Results of the same quality of approximation were also
obtained for other problems of the form (P1). The results are
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Fig. 2. The histogram of the relative error of the cost function value (with
respect to the optimal cost function value) when the learn power allocation
is applied in (P4).

not presented due to space limitations. Finally, we set as future
objective the extension of our model to resource allocation
problems with more complicated constraints and more users.
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