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Purpose: Positive expiratory pressure (PEP) breathing has been shown to increase
arterial oxygenation during acute hypoxic exposure but the underlying mechanisms
and consequences on symptoms during prolonged high-altitude exposure remain to
be elucidated.

Methods: Twenty-four males (41 ± 16 years) were investigated, at sea level and at
5,085 m after 18 days of trekking from 570 m. Participants breathed through a face-
mask with PEP = 0 cmH2O (PEP0, 0–45th min) and with PEP = 10 cmH2O (PEP10,
46–90th min). Arterial (SpO2), quadriceps and prefrontal (near infrared spectroscopy)
oxygenation was measured continuously. Middle cerebral artery blood velocity (MCAv,
transcranial Doppler), cardiac function (2D-echocardiography), extravascular lung water
accumulation (UsLC, thoracic ultrasound lung comets) and acute mountain sickness
(Lake Louise score, LLS) were assessed during PEP0 and PEP10.

Results: At 5,085 m with PEP0, SpO2 was 78± 4%, UsLC was 8± 5 (a.u.) and the LLS
was 2.3 ± 1.7 (all P < 0.05 versus sea level). At 5,085 m, PEP10 increased significantly
SpO2 (+9 ± 5%), quadriceps (+2 ± 2%) and prefrontal cortex (+2 ± 2%) oxygenation
(P < 0.05), and decreased significantly MCAv (−16 ± 14 cm.s−1) and cardiac output
(−0.7 ± 1.2 L.min−1) together with a reduced stroke volume (−9 ± 15 mL, all
P < 0.05) and no systemic hypotension. PEP10 decreased slightly the number of UsLC
(−1.4 ± 2.7, P = 0.04) while the incidence of acute mountain sickness (LLS ≥ 3) fell
from 42% with PEP0 to 25% after PEP10 (P = 0.043).

Conclusion: PEP10 breathing improved arterial and tissue oxygenation and symptoms
of acute mountain sickness after trekking to very high altitude, despite reduced cerebral
perfusion and cardiac output. Further studies are required to establish whether PEP-
breathing prophylactic mechanisms also occur in participants with more severe acute
mountain sickness.

Keywords: altitude illness, cardiac function, cerebral perfusion, PEP breathing, tissue oxygenation, extreme
environment, medical expedition, hypoxia
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INTRODUCTION

At high-altitude, the low barometric pressure reduces inspired
oxygen partial pressure (PiO2) in mountaineers, workers and
travellers, leading to reduced arterial oxygenation that can
be responsible for symptoms of acute mountain sickness
(AMS). As a countermeasure, researchers have investigated
a non-pharmacological, lightweight and relatively easy to
implement method to prevent AMS by using positive expiratory
pressure (PEP) in healthy awake (Savourey et al., 1998;
Tannheimer et al., 2009; Agostoni et al., 2010; Nespoulet
et al., 2013) and asleep (Lipman et al., 2015) participants.
Breathing with a PEP is used in critical care medicine to
improve pulmonary gas exchange and compliance (Wang
et al., 2016) and besides, has been shown to increase
arterial oxygen saturation (SpO2) at high altitude (Nespoulet
et al., 2013). It is well known that the severity of hypoxia-
induced disabilities is closely correlated with the degree of
SpO2 reduction. Burtscher et al. (2004) showed that, for a
given altitude (>2,500 m) or equivalent normobaric hypoxic
level, a difference of about 4–5% of SpO2 is a key factor
that distinguishes people who develop symptoms of altitude
intolerance and those remaining clinically healthy. Hence, the
ability to reduce the hypoxemic stress may directly decrease
the probability of subsequent altitude illness as well as mental
and physical performance alterations (Hackett and Roach,
2001). Under heterogeneous experimental designs (e.g., subject
characteristics, altitude level, exposure duration, day-time/night-
time evaluation, level/type of PEP, simulated vs. terrestrial
altitude), 0–23% increase in SpO2 have been reported with
PEP breathing (Savourey et al., 1998; Tannheimer et al., 2009;
Nespoulet et al., 2013; Lipman et al., 2015; Rupp et al.,
2019). However, whether PEP breathing would be a safe and
efficient method to improve SpO2 and AMS symptoms remains
to be assessed in participants reaching very high altitude
(>5,000 m) after several days of trekking, as performed nowadays
by an increasing amount of people in the Himalaya and
Andean Cordillera.

Together with the reduction in arterial oxygenation during
progressive ascents to high altitude, changes in muscle and
brain perfusion and/or oxygenation are known to be of critical
importance and potentially involved in subject’s functional
impairment and AMS (Bailey et al., 2009; Wilson et al.,
2009). Hence, whether an improvement in arterial oxygenation
with PEP breathing at very high altitude would be associated
with beneficial changes in muscle and cerebral oxygenation
needs to be determined. Also, cardiac and macrohemodynamic
adverse effects (e.g., pulmonary hypertension and systemic
hypotension, impaired cardiac filling pressure, depression of
cardiac output and subsequent cerebral hypoperfusion) resulting
from an important increase in intrathoracic pressure with
resembling modalities of airway pressure (e.g., continuous
positive airway pressure, CPAP; positive end-expiratory positive
pressure, PEEP; forced expiratory manoeuvres) have previously
raised important concerns at sea level (Muench et al., 2005)
and deserve attention at high altitude. Echocardiographic and
transcranial Doppler evaluations during PEP breathing at high

altitude would allow determining PEP effects on cardiac and
cerebrovascular functions.

Symptoms of AMS may progress to high altitude pulmonary
oedema (HAPE), which is the most common cause of death from
high altitude sickness (Hackett and Roach, 2001; Luks et al.,
2017). HAPE is associated with increased pulmonary arterial
pressure, increased shunts and areas of low ventilation/perfusion
ratio and probable damage of alveolar-capillary membranes,
resulting in the accumulation of extravascular lung water
(Korzeniewski et al., 2015). Thoracic ultrasonography (e.g.,
ultrasound lung comets, UsLC) in studies conducted at high
altitude has shown that extravascular pulmonary fluid shift
has an inverse relationship with oxygen saturation (Fagenholz
et al., 2007). Although diffuse subclinical extravascular fluid
accumulation (i.e., increased UsLC) is frequent in healthy
lowlander climbers (Pratali et al., 2010; Bouzat et al., 2013),
UsLC have been shown to be significantly greater in patients
diagnosed with HAPE than in healthy controls, and resolve
with treatment (Pratali et al., 2010; Agostoni et al., 2013;
Korzeniewski et al., 2015). Breathing with PEP is thought to
improve gas exchange and blood oxygenation mainly due to the
recruitment of collapsed alveoli and increased alveolar pressure
(Duncan et al., 1986; Di Marco et al., 2010). Hence, it can
be hypothesized that PEP may reduce lung fluid accumulation,
not only in patients with pulmonary oedema at sea level (e.g.,
acute respiratory distress syndrome) (Di Marco et al., 2010) but
also in participants ascending to very high altitude. Whether
high altitude-induced UsLC may be reduced with PEP breathing
remains to be investigated.

The present study aimed to comprehensively assess the
effects of PEP on arterial and tissue oxygen saturation,
cardiac alteration, interstitial lung fluid accumulation and AMS
symptoms in trekkers exposed to high altitude for a prolonged
period. We hypothesized that, in such an extremely challenging
environment, PEP breathing would (i) improve systemic as well
as muscle and cerebral oxygenation with minor negative effects
on cardiac function, (ii) decrease subclinical signs of pulmonary
oedema, and (iii) reduce AMS incidence.

MATERIALS AND METHODS

Participants and Ethical Approval
The study group consisted of 24 healthy male trekkers
(mean ± SD; age 41.0 ± 15.6 years, body weight 72.0 ± 11.9 kg,
body mass index 23.3± 3.8 kg/m2, maximal oxygen consumption
59.3 ± 9.8 mL.kg−1.min−1) with no known cardiovascular,
respiratory or cerebral disorders. Inclusion criteria included adult
participants over 18 years of age who planned to take part to the
Manaslu trek organized by MEDEX Medical Expeditions in 2015,
and those willing to provide free, verbal and written informed
and on-going consent. Participants’ maximum living altitude was
450 m and were non-acclimatized nor recently exposed to altitude
(>1,500 m within the last 3 months) and prophylactic medication
for AMS was not allowed before and during the expedition. The
study was approved by the National Institute for Social Care and
Health Research Wales Research Ethics Service (14/WA/1260)
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and conformed with the standards set by the latest revision of the
Declaration of Helsinki, except for registration in a database.

Study Design
The study design consisted in a first visit to the laboratory
of Bangor University, North Wales (65 m above sea level;
SL) where participants completed the baseline anthropological
measurements and were familiarized with PEP breathing and
evaluation procedures. One month later, participants performed
16 to 18 days of trekking from an initial altitude of 570 m to a
high altitude base camp (HABC) where a field laboratory was set
at 5,085 m (Larkye Pass, Manaslu Circuit in the Nepali Himalaya).
Participants were divided into five groups with similar ascent
profiles but delayed departure, to allow the field testing to be done
in each subject the day after arrival to HABC. The precise ascent
profile of the different groups can be found in a previous paper
(Sutherland et al., 2017) and in Figure 1. It has not been designed
to induce exacerbated risks of altitude sickness but to mimic real
exposure in actual trekkers on that tour.

Hence, a repeated measures design was used whereby all
participants were exposed to two altitudes in the following order:
sea level and high altitude. At each altitude participants were
exposed to two conditions in the following order: breathing
without any expiratory pressure and breathing with positive
expiratory pressure (Figure 1). We choose not to randomize the
order in which each modality was performed to avoid previously
reported late effects of breathing with expiration against a
resistance (Tannheimer et al., 2009), that may have led our data
to be misinterpreted.

Experimental Session
At sea level and at HABC, participants laid comfortably in supine
position for 90 min, breathing through a facemask (V2maskTM,
Hans Rudolph Inc., Shawnee, KS, United States) connected to
a three-way valve. The inspiratory side of the valve was open
to ambient air while a mechanical resistance (Ambu R©, Ballerup,
Denmark) was added to the expiratory side of the valve, allowing
breathing with PEP = 0 cmH2O (sham, PEP0) from the 1st to
the 45th min and breathing with PEP = 10 cmH2O (PEP10)
from the 46th to the 90th min. The latter level of pressure was
chosen as it appeared to be the most efficient in a previous
study (Nespoulet et al., 2013) to improve both SpO2 and muscle
oxygenation in healthy participants exposed to acute normobaric
hypoxia without significant discomfort.

Measurements
Experimental design and measurements made at different time
points at sea level and base camp are summarized in Figure 1.

Clinical Examination
SpO2 was continuously recorded during the tests by finger-pulse
oximetry (WristOx2 3150, Nonin Medical, Inc., Plymouth, MA,
United States). One-minute averaged values were calculated at
the end of the PEP0 period and after 15, 25, and 45 min of PEP10.
Particular attention was given to keep participants comfortably
warm (e.g., blankets and gloves when necessary) throughout

the experimental sessions. Systolic, diastolic and mean arterial
blood pressures (SABP, DABP, and MABP, respectively) were
assessed non-invasively (Dinamap, GE Medical Systems Inc.,
Milwaukee, WI, United States) at the end of the PEP0 (45th
min) and PEP10 (90th min) periods. Before and after PEP10
at HABC only, participants were asked to complete a self-
reported questionnaire for AMS evaluation according to the Lake
Louise Score (LLS, 5 items, i.e., “headache,” “gastrointestinal
distress,” “fatigue/weakness,” “dizzy/light-headedness,” “sleep
disturbance”) (Hackett and Roach, 2001). The presence of AMS
was defined as LLS ≥ 3. In addition, a visual analog scale was
used at SL and HABC to assess subject’s headache (from no to
extreme headache) and breathing discomfort (from no to extreme
breathlessness).

Echocardiographic Data Acquisition
Echocardiographic assessments, including standard
(morphologic and functional) and 2-D strain parameters
and tissue Doppler imaging, were obtained at SL and at HABC,
during PEP0 (15–30th min) and after 30 min at PEP10 (70–85th
min). A fully trained operator (CM) used a commercially
available system (Vivid Q, GE Healthcare, Horten, Norway)
with a 3.5-MHz sector scanning electronic transducer and
participants in the left lateral decubitus position, according to the
recommendations of the American Society of Echocardiography.
Two-dimensional grayscale harmonic images were obtained at a
rate of 65 to 90 frames/s, and colour tissue velocity images were
acquired at a rate of 120 to 140 frames/s. Images were acquired
in cine loops triggered to the QRS complex and saved digitally
for subsequent blinded off-line analysis with dedicated software
(EchoPac 6.0, GE Healthcare). Heart rate (HR), stroke volume
(SV) and cardiac output (Qc) were calculated from an apical
5-chamber view. Specific recommendations of the American
Society of Echocardiography were used to assess systolic
tricuspid regurgitation gradient as surrogate of pulmonary artery
systolic pressure (PASP) with the modified Bernoulli equation
as described previously: Doppler-estimated PASP = 4 × V2

max.
Examination of the inferior vena cava (IVC) was also performed
in the supine position, in a longitudinal plane with the cardiac
transducer in the subxyphoid position. The maximum anterior-
posterior IVC diameter at end-expiration was measured 3 to 4 cm
from the junction of the IVC and right atrium as an estimate
of central venous pressure (Ciozda et al., 2016). Analysis of LV
longitudinal and circumferential strains were conducted with
speckle tracking imaging as previously described (Maufrais et al.,
2017). Left and right ventricle systolic longitudinal strain rates
and systolic basal circumferential strain rates were also used as
indices of myocardial contractility. Due to poor echogenicity and
technical issues at HABC, echocardiographic data are presented
for 18 to 20 participants out of 24.

Thoracic Ultrasonography
Thoracic ultrasonography has been used to show extravascular
lung water accumulation at high altitude (Fagenholz et al.,
2007; Wimalasena et al., 2013). In the present study, UsLC
were assessed by one trained operator (GW) via transthoracic
sonography performed with a portable ultrasound (CX-50,
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FIGURE 1 | Schematic view of the experimental design and measurements performed at different time points at sea level and high altitude base camp. ABP,
systolic-diastolic and mean arterial blood pressure; LLS, Lake Louise Score; TCD, transcranial ultrasound doppler; USD, ultrasonography.

Phillips, Eindhoven, Netherlands) and using an abdominal 5–
2 MHz probe (curvature 40R, field-of-view 75◦) as described
previously (Bouzat et al., 2013). At SL and at HABC,
measurements were made after echocardiography at PEP0 (40th
min) and after 15 min at PEP10 (60th min). With participants
in the supine position, the 28 intercostal lung fields located at
the upper, medium and lower parts of the anterior and lateral
regions of the two chest walls were sequentially examined (i.e.,
video loop recorded for post processing). The total number
of UsLC identified was checked after the expedition, from
the video sequences, by another trained operator (PB) blinded
for the subject identification code, the session (SL or HABC)
and the condition/time point (PEP0 or PEP10). An UsLC was
defined as an echogenic, coherent, wedge-shaped signal that
originated from the hyperechoic pleural line (Picano et al.,
2006) and extended to the edge of the screen. This ultrasound
sign correlates with alveolar-interstitial oedema assessed by
chest radiography, wedge pressure and extravascular lung water
measured by thermodilution (Agricola et al., 2005). A number
of up to 4–5 UsLC is a normal echographic chest pattern since
healthy participants may present a small number of UsLC,
especially confined laterally to the last intercostal spaces above the
diaphragm (Picano et al., 2006). All participants were within this
range at SL, only participants presenting elevated UsLC at HABC

PEP0 (n = 19) were considered to assess the effect of PEP10 on
UsLC at very high altitude.

Cerebral Perfusion
Middle cerebral artery blood flow velocity (MCAv) was
measured at SL and HABC using a 2-MHz pulsed
Doppler ultrasound system (CX-50, Phillips, Eindhoven,
Netherlands). Measurements were performed after transthoracic
ultrasonography at PEP0 (45th min) and after 25 min (70th min)
and 45 min (90th min) at PEP10. Due to poor echogenicity and
technical issues, transcranial Doppler data are presented for
n= 23 at SL and n= 19 at HABC. The Doppler ultrasound probe
was positioned over the right temporal window. Signal quality
was optimized using an M-mode screen shot and probe location
and insonation depth were marked to ensure within-subject
repeatability. MCAv was used as an index of cerebral blood
flow (CBF). The pulsatility index (PI), an indirect measure of
cerebrovascular resistance believed to be positively influenced
by intracranial pressure (ICP), was estimated from transcranial
Doppler measurements as the difference in flow velocities
measured during systole (sysMCAv) and diastole (diaMCAv),
divided by the mean flow velocity (MCAv): PI = (diaMCAv –
sysMCAv)/ MCAv (Wakerley et al., 2015). End tidal partial
pressure of carbon dioxide (EtCO2) was measured and averaged
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during each MCAv measurement (at HABC only) from a cannula
connected to the face-mask (iPM9800, Mindray, China).

Muscle and Cerebral Oxygenation
Cerebral oxygenation in the left prefrontal (PFC) cortex and
muscle oxygenation from the right vastus lateralis (at mid-
thigh) were assessed by monitoring changes in oxy- and deoxy-
haemoglobin concentration (O2Hb and HHb, respectively)
obtained with portable spatially resolved, continuous wave
near-infrared spectroscopy (NIRS) (Portalites, Artinis, Zetten,
Netherlands). Theoretical and performance details of NIRS
have been previously described (Perrey, 2008). PFC NIRS
probe was centred between Fp1 and F3 locations according to
the international 10–20 EEG system. PFC and muscle probe
holders (3.5 cm interoptode distance) were secured to the
skin using double-sided adhesive tape and covered with black
sweatbands for them to be shield from ambient light. Total
haemoglobin change (THb = O2Hb+HHb) was calculated to
reflect changes in tissue blood volume within the illuminated
areas. Tissue saturation index (TSI, expressed in %) as an absolute
measure of oxygenated-haemoglobin saturation was provided
by the equipment based on spatially resolved spectroscopy
(Hoshi et al., 2001). NIRS data were recorded at 10 Hz and
filtered with a 2-s moving Gaussian smoothing algorithm. THb
changes were expressed as relative changes (1µmol) from
the beginning of the PEP0 period and reported after 15 and
25 min of PEP10 (average over 60-s periods). Because TSI is less
sensitive than Hb concentrations to movements (associated with
echocardiographic and thoracic ultrasonography evaluations
between 30 and 45 min of PEP10), it was reported after 15, 25,
and 45 min of PEP10.

Statistics
Data are reported as means and standard deviations (SD). The
statistical analyses were performed with Statistica (version 8,
Tulsa, United States). Data were tested for equality of variance
(Fisher-Snedecor F-test) and for normality (Shapiro-Wilk test).

The effect of altitude on dependent variables at baseline (i.e.,
SL versus HABC with PEP0) and the effect of PEP10 versus
PEP0 (either at SL or HABC) on arterial pressure, subjective
feelings, echocardiographic and transthoracic ultrasound
variables were tested with parametric paired Student t-test or
non-parametric Wilcoxon tests when required. Variables with
several measurement time points (SpO2, HR, EtCO2, transcranial
Doppler, NIRS) were analysed in each condition (SL or HABC)
with one-way ANOVAs with repeated measures (time points:
PEP0 and PEP10 at 15th, 25th, and 45th min). When significant
main or interaction effects were found, Tukey HSD post hoc tests
were used to localize differences. Null hypothesis was rejected at
P < 0.05.

RESULTS

Clinical Examination
SpO2 was decreased at HABC compared to SL (P < 0.001,
Table 1) and increased with PEP10 compared to PEP0 at

HABC (+8.8 to 9.4% on average depending on the time point
throughout the 45 min, P < 0.001; Figure 2A). SABP tended to
be increased by altitude (P = 0.087) and by PEP10 (P = 0.048 at
SL and P = 0.070 at HABC). DABP and MABP were both higher
at HABC compared to SL and increased with PEP10 compared to
PEP0, whatever the altitude condition (all P < 0.001). PASP was
increased at HABC compared to SL (P < 0.001). PEP10-induced
decrease in PASP was significant at SL (P = 0.010) and did not
reach significance at HABC (P = 0.086). EtCO2 did not differ
between PEP0 and PEP10 at HABC (P = 0.39).

Headache and breathing discomfort were slightly increased
with altitude (P = 0.018 and P = 0.008, respectively). At
HABC, PEP10 significantly reduced LLS (from 2.3 ± 1.7 to
1.7 ± 1.8, P = 0.044) and AMS incidence (from 45 to 24% of the
participants, P = 0.043) with no deleterious effect on headache
(P = 0.25) and breathing comfort (P = 0.91) compared to PEP0,
unlike what was observed at SL (Table 1).

Echocardiographic Data
Altitude induced significant changes in several morphological
and functional cardiac parameters with PEP0 (Table 2). HR
was increased at HABC compared to SL (P < 0.001) and was
reduced by PEP10 compared to PEP0 only at SL (P = 0.004).
PEP10 breathing at HABC induced modest but significant
morphological changes, slightly decreasing RA end diastolic
area (P = 0.001) and increasing LV end-diastolic diameter
(P = 0.019) compared to PEP0. Transmitral filling was reduced
with PEP10 both at SL and HABC (peak E, P = 0.002 and
P = 0.016, respectively). LV stroke volume also decreased with
PEP10 at HABC (P = 0.016), inducing a∼9% decrease in cardiac
output (P = 0.015, Figure 2B). LV tissue Doppler imaging at
HABC provided evidence of a reduction in both systolic (e.g.,
S’, P < 0.001) and diastolic (e.g., E’, P < 0.001) function indices
with PEP10, as also observed at SL. From a functional point
of view, RV systolic function also appeared diminished with
PEP10 compared to PEP0 at SL and HABC (e.g., decrease in
Peak S’RV , P = 0.011 and P = 0.001, respectively). Multiple
myocardial indices of contractility were enhanced at HABC
with PEP0 compared to SL and almost all indicators showed
diminished contractility with PEP10 compared to PEP0 at HABC
(e.g., LV longitudinal strain and strain rate, P = 0.020 and
P = 0.026, respectively).

Thoracic Ultrasonography
The number of UsLC was significantly increased at HABC
compared to SL (P < 0.001, Table 1). PEP10 breathing
significantly reduced the amount of UsLC in participants
presenting ≥ 4 UsLC with PEP0 at HABC (n= 19, P = 0.038).

Cerebral Perfusion
Middle cerebral artery blood flow velocity was not
different with PEP0 at SL and HABC (P = 0.30, Table 1).
PEP10 breathing decreased MCAv at SL and at HABC
(∼ −15% and −20%, respectively after 25 min, both
P < 0.001; Figure 3A) compared to PEP0. PI was not
affected by altitude (P = 0.18) or PEP10 breathing
(P = 0.15).
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TABLE 1 | Changes in cardiorespiratory data, subjective feelings and cerebrovascular and tissue oxygenation parameters while breathing with PEP0 and PEP10 at sea
level and at high altitude base camp.

Sea level High altitude base camp

PEP0 PEP10+15 min PEP10+25 min PEP10+45 min PEP0 PEP10+15 min PEP10+25 min PEP10+45 min

Cardiorespiratory parameters

SpO2 (%) 96.8 ± 1.5 97.4 ± 1.3 97.5 ± 1.7 97.5 ± 1.4* 77.7 ± 3.7# 86.5 ± 5.1* 87.1 ± 4.8* 86.5 ± 4.6*

EtCO2 (mmHg) / / / / 21.8 ± 3.1 21.9 ± 9.4 19.9 ± 4.5 20.5 ± 4.4

SABP (mmHg) 115.4 ± 15.8 / / 120.5 ± 10.5* 123.6 ± 14.6 / / 127.4 ± 22.1

DABP (mmHg) 69.6 ± 4.3 / / 77.3 ± 5.9* 76.6 ± 8.5# / / 82.8 ± 10.3*

MABP (mmHg) 84.9 ± 3.4 / / 91.7 ± 5.4* 92.4 ± 9.5# / / 97.7 ± 13.3*

PASP (mmHg, 13.3 ± 5.8 / 7.9 ± 4.5* / 26.6 ± 10.8 # / 21.3 ± 10.3 /

n = 18 at SL, n = 19 at HABC)

Symptoms and sensations

LLS (a.u) / / / / 2.3 ± 1.7 / / 1.7 ± 1.8*

Headache (0–10) 0.1 ± 0.3 / / 0.6 ± 0.8* 1.2 ± 1.5# / / 0.8 ± 1.6

Breathing discomfort (0–10) 0 ± 0 / / 1.5 ± 1.3* 0.9 ± 1.5# / / 0.8 ± 1.3

Cerebrovascular parameters (n = 23 at SL, n = 19 at HABC)

diaMCAv (cm.s−1) 46.3 ± 9.3 / 39.4 ± 8.3* / 48.5 ± 10.6 / 36.7 ± 10.4* 36.9 ± 7.1*

sysMCAv (cm.s−1) 97.2 ± 19.8 / 83.3 ± 15.9* / 98.7 ± 17.2 / 80.6 ± 14.6* 78.9 ± 14.6*

MCAv (cm.s−1) 65.4 ± 13.9 / 55.4 ± 10.6* / 67.9 ± 11.9 / 53.7 ± 12.5* 52.1 ± 9.4*

PI (a.u) 0.82 ± 0.14 / 0.84 ± 0.20 / 0.75 ± 0.21 / 0.80 ± 0.16 0.81 ± 0.12

Thoracic ultrasound (n = 24 at SL, n = 19 at HABC)

UsLC (a.u) 0.6 ± 0.8 0.3 ± 0.5 / / 8.9 ± 5.1# 7.6 ± 4.4* / /

Tissue oxygenation (n = 19 to 23 at SL and n = 18 to 22 at HABC, depending on the location and the parameter)

Muscle TSI (%) 75.3 ± 7.2 75.5 ± 6.3 75.8 ± 6.3 75.7 ± 6.1 65.6 ± 5.6# 67.7 ± 5.7* 67.9 ± 5.4* 67.5 ± 4.2*

Muscle THb (1µmol) / 0.90 ± 2.39 0.47 ± 2.78 / / 1.97 ± 2.85* 1.42 ± 3.46 /

Cerebral TSI (%) 65.7 ± 4.0 64.0 ± 4.4* 63.6 ± 4.4* 63.2 ± 5.1* 60.7 ± 5.2# 61.9 ± 5.9* 61.9 ± 6.0* 62.6 ± 6.2*

Cerebral THb (1µmol) / 2.29 ± 2.45* 0.56 ± 2.89 / / 0.85 ± 3.11 −0.83 ± 2.48 /

Values are Mean ± SD. a.u., arbitrary units; DABP, diastolic arterial blood pressure; diaMCAv, diastolic mean cerebral artery blood velocity; EtCO2, end–tidal partial
pressure of CO2; HABC, high altitude base camp; HR, heart rate; MABP, mean arterial blood pressure; MCAv, mean cerebral artery blood mean velocity; PI, cerebral
pulsatility index; SABP, systolic arterial blood pressure; SpO2, arterial oxygen saturation; sysMCAv, systolic mean cerebral artery blood velocity; THb, total haemoglobin;
TSI, tissue saturation index. * Significantly different from PEP0 of the same session. # Significantly different from SL at PEP0.

Tissue Oxygenation
Muscle TSI was lower at HABC compared to SL (PEP0:∼−10%,
P < 0.001, Table 1). PEP10 did not affect muscle TSI at SL but
significantly increased it compared to PEP0 at HABC (+1.9 to
2.3% on average depending on the time point throughout the
45 min, P = 0.003). Muscle THb was slightly enhanced with
PEP10 at HABC (P = 0.008) but not at SL.

Cerebral TSI was lower at HABC compared to SL (PEP0: ∼
−5%, P = 0.001). PEP10 decreased cerebral TSI at SL (−1.7 to
−2.5% on average depending on the time point throughout the
45 min, P < 0.001) while it increased it at HABC (+1.2 to+1.9%,
P = 0.022, Figure 3B). Cerebral THb was slightly enhanced
after 15 min of PEP10 compared to PEP0 at SL (P = 0.001)
but not at HABC.

DISCUSSION

The main findings of this study were that PEP10 breathing in
trekkers reaching very high altitude (5,085 m) after 18 days
of ascent substantially increased SpO2 (∼+9%) as well as
muscle and cerebral oxygenation (both ∼+2%). These positive

effects on arterial and tissue oxygenation were concomitant
with a significant decrease in interstitial lung fluid accumulation
and AMS symptoms and a reduction in cardiac output and
cerebral blood flow.

Arterial Oxygenation With PEP10
Breathing
To our knowledge only two studies explored the effect of positive
airway pressure at very high altitude (>4,500 m) (Launay et al.,
2004; Agostoni et al., 2010) and only one was designed to explore
its effectiveness in trekkers after prolonged altitude exposure. In
this context, Agostoni et al. (2010) did not show any change
in SpO2 after 30 min of CPAP at 7 cmH2O (administered with
a standard electrical ventilatory device used for sleep apnoea
treatment) after 10 days of acclimatization at 5,400 m. The
authors concluded that CPAP is not useful at altitude after
acclimatization (i.e., disappearance of AMS symptoms together
with SpO2 improvement) but did not provide any information
about the effectiveness of the intervention within 24–72 h after
arrival at high altitude, despite this time frame being critical in
terms of AMS and HAPE occurrence (Hackett and Roach, 2001;
Bärtsch et al., 2005).
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FIGURE 2 | Individual modifications of arterial pulse oxygen saturation (A,
delta SpO2) and cardiac output (B, delta Qc) induced by 25 min of PEP10

breathing compared to PEP0 at sea level in normoxia and the day after
reaching high altitude base camp at 5,085 m. Mean SpO2 increase was
statistically significant at high altitude (P < 0.001) and mean Qc decrease was
statistically significant both at seal level (P < 0.001) and at high altitude
(P = 0.015).

In the present study, the day after reaching >5,000 m, the
mean increase of ∼9% in SpO2 with PEP10 breathing was highly
significant and exceeds the effect we have previously reported
at lower altitude (+7% SpO2 with PEP10 breathing after 2–
3 days at 4,350 m) (Nespoulet et al., 2013). Loeppky et al. (2008)
demonstrated that participants developing AMS exhibit larger
arterial desaturation at altitude, i.e., 4–5% lower SpO2 at 4,880 m
compared to participants without symptoms. Other authors
confirmed that this range of significant difference is also seen
for altitude as low as 2,300 m (Burtscher et al., 2004). Therefore,
the large effect of PEP10 breathing on SpO2 observed throughout
the 45 min of application in the present study is likely to be
clinically relevant. In addition, compared to electronic medical

device such as CPAP ventilators, PEP breathing appears to be
of special interest as a well-tolerated lightweight, non-electronic
and non-pharmacologic solution to improve oxygenation in such
hypoxically challenging environment.

One may wonder whether part of the increase in SpO2
could result from slightly higher minute ventilation during
PEP10 breathing, as we did not assess minute ventilation
in this study. However, previous studies demonstrated that
mechanisms other than changes in ventilation are responsible
for the PEP-induced improvement in arterial oxygenation in
healthy hypoxic (Nespoulet et al., 2013) or HAPE participants
(Schoene et al., 1985). Furthermore the similar EtCO2 with
PEP0 and PEP10 at HABC indicated the absence of significant
hyperventilation with PEP10. Improved SpO2 during PEP10
breathing at altitude may result at least in part from an
increased alveoli-capillary gradient and improved ventilation in
lung regions with low ventilation/perfusion ratio (e.g., improved
ventilation of hitherto collapsed, fluid-filled or poorly ventilated
alveoli enlarging gas exchange surface), although this remains to
be demonstrated. Alveolar-to-arterial PO2 gradients alterations
with the use of PEP breathing at altitude clearly deserve to be
further investigated.

High altitude pulmonary oedema is a hypoxemia-dependent
altitude sickness that may affect 0.2% to >15% of individuals
reaching 2,500 to 5,500 m depending on the ascent profile
(Luks et al., 2017). Silent high altitude interstitial pulmonary
oedema is likely even more frequent in climbers reaching high
altitude (Pratali et al., 2010; Bouzat et al., 2013) and, although
debated, has been proposed to be a clinically relevant marker
of individual vulnerability to HAPE (Wimalasena et al., 2013;
Pratali, 2018). In the present study, we confirmed that the
majority of the participants presented clear ultrasonographic
signs of extravascular lung water accumulation the day after
arrival at HABC (cf. Table 1). Moreover, we showed for the first
time that among participants with abnormal lung patterns (i.e.,
UsLC≥ 4), PEP10 breathing for only 15 min already significantly
reduces the amount of UsLC and may therefore resorb at
least part of the pulmonary extravascular fluid accumulation.
Whether this may result in improved alveolar-arterial oxygen
diffusion and therefore contribute to a virtuous circle promoting
increased SpO2 remains to be determined. The effect of PEP10
breathing needs also to be evaluated in climbers exhibiting larger
amount of UsLC and more severe pulmonary extravascular fluid
accumulation, as for example in case of more rapid ascent
to high altitude.

Muscle Oxygenation and Cardiac
Adaptations With PEP10 Breathing
In accordance with our previous observation at lower simulated
(Nespoulet et al., 2013; Rupp et al., 2019) or real (Rupp et al.,
2019) altitude, muscle oxygenation (i.e., TSI, Table 1) was
improved by PEP10 breathing at HABC. Although modest,
the concomitant increase in muscle THb suggests this tissue
oxygenation improvement may be at least in part associated
with an increased muscle blood volume. A weakened venous
return due to the increased intrathoracic pressure during PEP
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TABLE 2 | Morphological and functional cardiac parameters while breathing with PEP0 and PEP10 at sea level and at high altitude base camp.

Sea level Statistical High altitude base camp Statistical

PEP0 PEP10 P-value PEP0 PEP10 P-value

Left ventricle

Morphological parameters

LV end-diastolic diameter (cm) 5.2 ± 0.4 5.2 ± 0.4 0.886 5.0 ± 0.4 # 5.1 ± 0.3* 0.019

LV end-systolic diameter (cm) 3.0 ± 0.3 3.1 ± 0.4 0.449 3.0 ± 0.3 3.1 ± 0.3 0.102

LA end-diastolic area (cm2) 15.7 ± 3.7 14.8 ± 3.2 0.060 13.7 ± 3.4 # 13.2 ± 3.2 0.443

Global function

Ejection fraction (%) 60 ± 7 60 ± 6 1.00 62 ± 6 59 ± 7 0.308

Cardiac output (L.min−1) 6.5 ± 1.8 5.8 ± 1.5* <0.001 8.2 ± 2.4 # 7.5 ± 2.2* 0.015

Heart rate (bpm) 61.7 ± 10.8 56.6 ± 8.2* 0.004 77.3 ± 14.7 # 75.9 ± 13.6 0.336

Stroke volume (mL) 108 ± 28 104 ± 30 0.159 109 ± 34 100 ± 27* 0.016

Peak E (cm.s−1) 84 ± 12 75 ± 11* 0.002 78 ± 13 # 69 ± 14* 0.016

Peak A (cm.s−1) 61 ± 18 60 ± 20 0.641 69 ± 16 # 69 ± 16 0.679

E/A ratio (a.u.) 1.46 ± 0.40 1.36 ± 0.40 0.085 1.17 ± 0.25 # 1.03 ± 0.25 0.065

IVRT (ms) 72 ± 17 86 ± 19* <0.001 79 ± 19 # 83 ± 24 0.095

Tissue doppler (n = 18)

E’mean (cm.s−1) 10.7 ± 2.5 10.3 ± 2.5* 0.060 10.2 ± 2.1 # 9.5 ± 2.1* <0.001

S’mean (cm.s−1) 8.1 ± 1.0 7.6 ± 1.0* 0.013 9.3 ± 1.9 # 8.4 ± 1.7* 0.002

Right ventricle

Morphological parameters

RV end-diastolic area (cm2) 21 ± 4 21 ± 4 0.387 23 ± 6 # 22 ± 5 0.136

RV end-systolic area (cm2) 11 ± 2 11 ± 2 0.695 13 ± 4 # 13 ± 3 0.955

RA end-diastolic area (cm2) 16 ± 4 16 ± 4 0.275 16 ± 5 14 ± 4* <0.001

Global function

Fractional area change (%) 46 ± 5 47 ± 6 0.304 44 ± 7 42 ± 5 0.184

Peak Et (cm.s−1) 68 ± 11 63 ± 12 0.141 64 ± 14 62 ± 10 0.537

Peak At (cm.s−1) 40 ± 9 38 ± 8 0.453 52 ± 12 # 51 ± 11 0.583

Et/At ratio (a.u.) 1.80 ± 0.54 1.74 ± 0.48 0.328 1.25 ± 0.33 # 1.25 ± 0.28 0.962

Tissue doppler

Peak E’RV (cm.s−1) 10.5 ± 2.1 9.6 ± 2.3* 0.028 10.7 ± 2.2 10.4 ± 2.8 0.390

Peak A’RV (cm.s−1) 10.3 ± 3.1 8.9 ± 3.7 0.085 11.0 ± 3.5 10.2 ± 4.1 0.089

Peak S’RV (cm.s−1) 11.0 ± 1.7 10.1 ± 1.5* 0.011 11.9 ± 2.0 # 10.6 ± 2.2* 0.001

STE-derived myocardial contractility indices (n = 18 to 20)

LV longitudinal strain (%) −18.3 ± 2.1 −16.6 ± 1.9* 0.001 −19.2 ± 2.1 −17.7 ± 2.8* 0.020

Apical circumferential strain (%) −25.1 ± 3.6 −23.3 ± 3.1* 0.048 −26.0 ± 3.4 −23.6 ± 3.5* 0.005

Basal circumferential strain (%) −19.6 ± 2.6 −20.2 ± 2.9 0.433 −21.6 ± 3.4 # −19.8 ± 2.6* 0.034

LV longitudinal SR (s−1) −0.98 ± 0.14 −0.90 ± 0.14 0.090 −1.20 ± 0.21 # −1.08 ± 0.19* 0.026

RV longitudinal SR (s−1) −1.55 ± 0.44 −1.40 ± 0.27 0.093 −1.55 ± 0.26 −1.48 ± 0.23 0.415

Basal circumferential SR (s−1) −1.21 ± 0.12 −1.16 ± 0.17 0.204 −1.48 ± 0.26 # −1.36 ± 0.34* 0.041

Apical circumferential SR (s−1) −1.45 ± 0.35 −1.35 ± 0.22 0.189 −1.73 ± 0.35 # −1.47 ± 0.27* 0.001

Inferior vena cava

IVC diameter (cm) 2.2 ± 0.4 2.2 ± 0.4 0.686 2.1 ± 0.6 2.1 ± 0.4 0.394

Values are Mean ± SD. a.u., arbitrary units; IVC, inferior vena cava; IVRT, isovolumic relaxation time; LA, left atrial; LV, left ventricle; PASP, pulmonary artery systolic
pressure; RA, right atrial; RV, right ventricle; SR, systolic strain rate; STE, speckle tracking echocardiography. Bold indicates significant P-values. * Significantly different
from PEP0 of the same session. # Significantly different from SL at PEP0.

breathing (Luecke and Pelosi, 2005) could be responsible for a
slight increase in blood volume in the lower limbs. Although
such slight peripheral venous stasis is in accordance with
the literature underlining macrohemodynamic side effects of
PEEP (Luecke and Pelosi, 2005), our echocardiographic data
do not suggest that venous return was deleteriously affected
with PEP10 at HABC. Sonographic measurement of inferior
vena cava diameter is a valid method of estimating central

venous pressure and RA pressure (Ciozda et al., 2016), but
did not reveal changes with PEP10 breathing in our study.
Also, despite a slight decrease in RA end-diastolic area with
PEP10 breathing at HABC, RV filling (cf. Peak Et and Peak
At, Table 2) and end-diastolic area were preserved, supporting
that RV preload was indeed not affected in the context of
our setup. One may speculate that together with a reduced
number of UsLC, PEP10 at HABC could have been prone to
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FIGURE 3 | Individual modifications of mean cerebral artery blood velocity (A,
delta MCAv) and prefrontal cortex oxygenation (B, delta cTSI) induced by
45 min of PEP10 breathing compared to PEP0 at sea level in normoxia and
the day after reaching high altitude base camp at 5,085 m. Mean MCAv
decrease was statistically significant both at sea level and at high altitude
(both P < 0.001). Mean cTSI decrease at sea level was statistically significant
(P < 0.001) and so did mean cTSI increase at high altitude (P < 0.022).

reduce pulmonary vascular resistance; this is supported by the
trend toward facilitated RV afterload (i.e., lower PASP, increased
LV EDD) but needs to be confirmed in the future. As often
shown in the context of CPAP or PEEP, cardiac output was
depressed with PEP10 at HABC, but with no concomitant
hypotension here. We discussed above that this reduction is
not triggered by a reduced preload to the heart and Table 2
provides evidence that the diminished stroke volume is rather
consecutive to an increase in arterial peripheral resistance, as
suggested by the enhanced mean arterial pressure with PEP10
at HABC. Interestingly, speckle tracking echocardiography-
derived parameters also suggest that part of this depressed
stroke volume might be the consequence of a decrease in

myocardial contractility, the latter remaining, however, in the
range of normal sea level values (Table 2). An explanation
may come from the particular way of breathing with a PEP
(i.e., slow pace and longer expiration phase) and the fact that
during prolonged expiratory breathing, parasympathetic nervous
function is known to be activated (Komori, 2018). An activation
of parasympathetic tone induces a negative inotropic effect
(Lewis et al., 2001) so that the modulation of autonomic nervous
system with PEP10 could explain the decrease in SR observed
both at sea level (although not significant) and at base camp.
The absence of major cardiovascular impairment (according
to arterial blood pressure and biventricular evaluation) during
PEP10 breathing at high altitude suggests that PEP may have
advantages over CPAP and PEEP in this context.

Cerebral Hemodynamics and
Oxygenation With PEP10 Breathing
Ventilation strategies involving positive airway pressure, as
commonly used in patients with acute respiratory distress
syndrome, are concomitantly potentially increasing the risk of
intracranial hypertension and undesirable effects on cerebral
function. These are likely caused by impeded cerebral venous
return, decreased mean arterial pressure, cerebral perfusion
pressure and CBF (Scala et al., 2003). Therefore we aimed to
assess the effect of PEP breathing on cerebral hemodynamics
and oxygenation, which can already be significantly impaired
by altitude exposure and contribute to functional impairment
and increased risk of cerebral (sub)oedema (Wilson et al.,
2009; Verges et al., 2012; Luks et al., 2017). Our results show
for the first time a significant decrease in MCAv with PEP10
breathing at very high altitude. This effect was also observed
at SL (Table 1) and confirms what we recently reported in
acute moderate hypoxia (simulated and real altitude of 3450 m)
(Rupp et al., 2019). Since EtCO2 did not change during PEP10
breathing at HABC, this decrease was unlikely the consequence
of hypocapnia and subsequent cerebral arteriole constriction
(Markwalder et al., 1984). Because MCAv was reduced by PEP10
breathing both at SL and at HABC, whilst arterial oxygenation
was enhanced at altitude only, other mechanisms than the
change in arterial oxygenation are probably responsible for the
reduction in MCAv. At HABC, however, the substantial increase
in arterial oxygenation with PEP10 may allow CBF (as well as
cardiac output) to decrease while tissue oxygen delivery would be
maintained or even enhanced as shown by muscle and cerebral
TSI (e.g.,∼40% of the altitude-induced cerebral deoxygenation is
reversed with PEP10 at HABC, Table 1). It should be emphasized
that MCAv is a measure of blood velocity, not flow, so it is a
reliable index of CBF when assuming a constant MCA diameter.
The literature still questions the assumption of a constant MCA
diameter within a wide range of EtCO2 and hypoxic conditions
(Poulin and Robbins, 1996). This might be the case at low to
high altitude but not at very high altitude (>5,000 m) (Willie
et al., 2014) or when oxygen is administered (Wilson et al.,
2011). Whether MCA diameter changes with PEP10 breathing
at high altitude was not assessed in the current study and needs
further investigation.
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Theoretically, high levels of intrathoracic pressure (e.g.,
with CPAP or PEEP > 15 cmH2O) can increase the ICP
through a reduced cerebral venous outflow (i.e., increased central
venous pressure and cerebral blood volume). The TCD-derived
pulsatility index (PI) is an indirect index of vascular resistance
and is believed to be positively influenced by ICP. Even if the
strength of this relationship remains contentious and varies
between studies (Wakerley et al., 2015), a PI value between 0.8
and 1 is widely considered as “normal” and likely to exclude
the presence of exaggerated ICP. Hence, PI values in the present
study do not suggest a clinically relevant increase in ICP due
to PEP10 breathing as previously hypothesized (Oelz, 1983). The
lack of increase in cerebral THb during PEP10 breathing at HABC
reinforces the idea that PEP is unlikely to promote an increase
in cerebral blood volume due to impaired venous return in the
context of our study.

Acute Mountain Sickness and PEP10
Breathing
Interestingly, symptoms of AMS were significantly decreased
after 45 min of PEP10 breathing at HABC. The amount of
participants having a LLS ≥ 3 (i.e., a positive AMS diagnosis)
was also significantly reduced after PEP10 breathing. This
reduction in AMS symptoms is in accordance with the significant
improvement in arterial oxygenation associated with PEP10.
Additionally, the decrease in symptoms may relate to the
reduction in MCAv. A widespread traditional paradigm indeed
considers AMS symptoms are primarily driven by ICP (Hackett
and Roach, 2001; Wilson et al., 2009) and one would expect
the substantial decrease in MCA flow observed herein to reduce
pulsatile ICP, although only a «gold standard» measure of ICP
could confirm this assumption.

It should be acknowledged, however, that the mean LLS score
was relatively low in this group of trekkers having reached
5,085 m within 18 days allowing progressive acclimatization.
Future studies should evaluate the effect of PEP10 breathing on
more symptomatic participants in order to establish whether PEP
breathing could be considered as a useful tool also for moderate to
severe AMS management. Despite PEP breathing with 10 cmH2O
requiring some respiratory effort which might be unpleasant at
high altitude, especially for trekkers presenting symptoms such
as headache or dizziness, PEP10 breathing was well tolerated in
the present study, as shown for example by the lack of increase in
breathing discomfort compared to PEP0 at HABC.

CONCLUSION

This study demonstrates in the context of a trek to very high
altitude (as commonly performed by an increasing number
of people worldwide) that breathing with PEP10 significantly
increases arterial, muscle and cerebral oxygenation and decreases
interstitial lung fluid accumulation and AMS symptoms. PEP10
breathing is well tolerated by trekkers and does not induce
deleterious cardiac or cerebral consequences at least when applied
for 45 min. Hence, PEP breathing appears to be a useful
tool able to improve oxygenation and symptoms at rest at

high altitude. As a perspective, development of individualized
devices based on this principle may contribute to widespread
alternative/complementary clinical practice regarding mild
altitude illness, and future research should assess whether PEP
breathing may also be relevant during walking/trekking on the
one hand and in participants experiencing more severe AMS
on the other hand.

PHYSIOLOGICAL RELEVANCE

Ascent to very high altitude induces a critical reduction
in human arterial saturation that put individuals at risk
of developing acute mountain sickness (AMS), high-altitude
pulmonary or cerebral oedema. As a non-pharmacological
countermeasure to hypoxemia, breathing with positive expiratory
resistance (PEP) has been shown to quickly increase arterial
oxygenation during acute hypoxic exposure, due to an increased
intrathoracic pressure facilitating pulmonary gas exchanges.
Cardiovascular and cerebral side effects of PEP breathing have,
however, been reported at sea level and remain unknown in
individuals trekking to high altitude (as commonly performed
by an increasing number of people worldwide). Following
a 18-day trek to 5,085 m, we found that PEP breathing
increased participants’ arterial, muscle and cerebral oxygenation
and decreased symptoms of AMS and subclinical signs of
pulmonary oedema, with no deleterious cardiac or cerebral
consequences. PEP breathing may be a relevant and safe
alternative/complementary clinical practice to manage AMS in
this context of extreme environment.
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