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Abstract. A subgraph H of a graph G is called a retract of G if it is
the image of some idempotent endomorphism of G. We say that H is
an absolute retract of some graph class C if it is a retract of any G ∈ C
of which it is an isochromatic and isometric subgraph. In this paper, we
study the complexity of computing the diameter within the absolute re-
tracts of various hereditary graph classes. First, we show how to compute
the diameter within absolute retracts of bipartite graphs in randomized
Õ(m

√
n) time. Even on the proper subclass of cube-free modular graphs

it is, to our best knowledge, the first subquadratic-time algorithm for di-
ameter computation. For the special case of chordal bipartite graphs, it
can be improved to linear time, and the algorithm even computes all the
eccentricities. Then, we generalize these results to the absolute retracts
of k-chromatic graphs, for every k ≥ 3. Finally, we study the diameter
problem within the absolute retracts of planar graphs and split graphs.

Keywords: absolute retract · chordal bipartite graphs · split graphs ·
planar graphs · diameter computation.

1 Introduction

One of the most basic graph properties is the diameter of a graph (maximum
number of edges on a shortest path). It is a rough estimate of the maximum de-
lay in order to send a message in a communication network [32], but it also got
used in the literature for various other purposes [2, 74]. The complexity of com-
puting the diameter has received tremendous attention in the Graph Theory
community [1, 14, 18, 20, 26, 25, 24, 29–31, 34, 43–45, 41, 47, 49, 65]. Indeed, while
this can be done in O(nm) time for any n-vertex m-edge graph, via a simple
reduction to breadth-first search, breaking this quadratic barrier (in the size
n + m of the input) happens to be a challenging task. In fact, under plausi-
ble complexity assumptions such as the Strong Exponential-Time Hypothesis
(SETH), the optimal running time for computing the diameter is essentially in
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tion (MCI) 2019-2022.
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O(nm) — up to sub-polynomial factors [71]. This negative result holds even if
we restrict ourselves to bipartite graphs or split graphs [1, 13]. However, on the
positive side, several recent works have identified important graph classes for
which we can achieve for the diameter problem O(m2−ε) time, or even better
O(mn1−ε) time, for some ε > 0. Next, we focus on a few such classes that are
most relevant to our work. Specifically, we call G = (V,E) a Helly graph if ev-
ery family of pairwise intersecting balls of G (of arbitrary radius and center)
have a nonempty common intersection. The Helly graphs are a broad general-
ization of many better-known graph classes in Structural Graph Theory, such
as: trees, interval graphs, strongly chordal graphs and dually chordal graphs [4].
Furthermore, a celebrated theorem in Metric Graph Theory is that every graph is
an isometric (distance-preserving) subgraph of some Helly graph [40, 57]. Other
properties of Helly graphs were also thoroughly investigated in prior works [7, 8,
10, 23, 35–38, 63, 69, 70]. In particular, as far as we are concerned here, there is
a randomized Õ(m

√
n)-time algorithm in order to compute the diameter within

n-vertex m-edge Helly graphs [43].
Recall that an endomorphism of a graph G is an edge-preserving mapping

of G to itself. A retraction is an idempotent endomorphism. If H is the image
of G by some retraction (in particular, H is a subgraph of G) then, we call
H a retract of G. The notion of retract has applications in some discrete fa-
cility location problems [56], and it is useful in characterizing some important
graph classes. For instance, the median graphs are exactly the retracts of hy-
percubes [3]. We here focus on the relation between retracts and Helly graphs,
that is as follows (for other classes related to the Helly graphs and considered
recently, see [42, 21, 39, 28, 15, 45]). For some class C of reflexive graphs (i.e., with
a loop at every vertex), let us define the absolute retracts of C as those H such
that, whenever H is an isometric subgraph of some G ∈ C, H is a retract of G.
Absolute retracts find their root in Geometry, where they got studied for vari-
ous metric spaces [60]. In the special case of the class of all reflexive graphs, the
absolute retracts are exactly the Helly (reflexive) graphs [55]. Motivated by this
characterization of Helly graphs, and the results obtained in [43] for the diameter
problem on this graph class, we here consider the following notion of absolute
retracts, for irreflexive graphs. – Unless stated otherwise, all graphs considered
in this paper are irreflexive. – Namely, let us first recall that a subgraph H of a
graph G is isochromatic if it has the same chromatic number as G. Then, given
a class of (irreflexive) graphs C, the absolute retracts of C are those H such that,
whenever H is an isometric and isochromatic subgraph of some G ∈ C, H is
a retract of G. We refer the reader to [5, 6, 9, 56, 54, 59, 61, 64, 68, 66, 67], where
this notion got studied for various graph classes.

Our results. In this paper, we prove new structural and algorithmic properties
of the absolute retracts of various hereditary graph classes, such as: bipartite
graphs, k-chromatic graphs (for any k ≥ 3), split graphs and planar graphs. Our
focus is about the diameter problem on these graph classes but, on our way, we
uncover several nice properties of the shortest-path distribution of their absolute
retracts, that may be of independent interest.
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First, in Sec. 2, we consider the absolute retracts of bipartite graphs and some
important subclasses of the latter. Recall that the diameter of a bipartite graph
can unlikely be computed in subquadratic time. We prove that the diameter of
absolute bipartite retracts can be computed in Õ(m

√
n) time (Theorem 2). For

that, we observe that in the square of such graph G, its two partite sets induce
Helly graphs. This result complements the known relations between Helly graphs
and absolute retracts of bipartite graphs [6]. Then, roughly, we show how to
compute the diameter of G from the diameter of both Helly graphs (actually,
from the knowledge of the peripheral vertices in these graphs, i.e., their vertices
with maximal eccentricity). Absolute bipartite retracts properly contain all cube-
free modular graphs, and so, the cube-free median graphs and chordal bipartite
graphs [5]. Therefore, as a byproduct of our Theorem 2, we get the first truly
subquadratic-time algorithm for computing the diameter within the cube-free
modular graphs. However, the structure of absolute bipartite retracts is far more
complex than cube-free modular graphs: in fact, every bipartite graph is an
isometric subgraph of some absolute bipartite retract [66].

Recently [39], we announced an O(m
√
n)-time algorithm in order to compute

all the eccentricities in a Helly graph. However, extending this result to the
absolute retracts of bipartite graphs appears to be a more challenging task. We
manage to do so for the subclass of chordal bipartite graphs, for which we achieve
a linear-time algorithm in order to compute all the eccentricities. For that, we
use the stronger result that in the square of such graph, its two partite sets
induce strongly chordal graphs.

In Sec. 3, we generalize our above framework to the absolute retracts of k-
chromatic graphs, for any k ≥ 3. Notice that we are not aware of any prior work
showing the usefulness of (efficiently computable) proper colorings for faster
diameter computation. Our positive results in Sec. 2 and 3 rely on some Helly-
type properties of the graph classes considered. We complement those with a
hardness result in Sec. 4, that hints that the weaker property of being an abso-
lute retract of some well-structured graph class is not sufficient on its own for
faster diameter computation. Specifically, we prove that under SETH, there is
no O(mn1−ε)-time algorithm for the diameter problem, for any ε > 0, on the
class of absolute retracts of split graphs. This negative result follows from an
elegant characterization of this subclass of split graphs in [59].

Finally, in Sec. 5, we consider the absolute planar retracts. While there now
exist several truly subquadratic-time algorithms for the diameter problem on all
planar graphs [20, 45, 49] the existence of a quasi linear-time algorithm for this
problem has remained so far elusive, and it is sometimes conjectured that no
such algorithm exists [20]. We give evidence that finding such algorithm for the
absolute retracts of planar graphs is already a hard problem on its own. Specifi-
cally, we prove that every planar graph is an isometric subgraph of some absolute
retract of planar graphs. This result mirrors the aforementioned property that
every graph isometrically embeds in a Helly graph [40, 57].
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Let us mention that all graph classes considered here are polynomial-time
recognizable. For all that, we do not need to execute these recognition algorithms
before we can compute the diameter of these graphs.

Notations. We mostly follow the graph terminology from [12, 33]. All graphs
considered are finite, simple, unweighted and connected. For a graph G = (V,E),
let the (open) neighbourhood of a vertex v be defined as NG(v) = {u ∈ V | uv ∈
E} and its closed neighbourhood as NG[v] = NG(v)∪{v}. Similarly, for a vertex-
subset S ⊆ V , let NG(S) =

⋃
v∈S NG(v) \ S, and let NG[S] = NG(S) ∪ S. The

distance between two vertices u, v ∈ V equals the minimum number of edges
on a uv-path, and it is denoted dG(u, v). Let IG(u, v) = {w ∈ V | dG(u, v) =
dG(u,w)+dG(w, v)}. The ball of center v and radius r is defined as Nr

G[v] = {u ∈
V | dG(u, v) ≤ r}. Furthermore, let the eccentricity of a vertex v be defined as
eG(v) = maxu∈V dG(u, v). The diameter and the radius of a graph G are defined
as diam(G) = maxv∈V eG(v) and rad(G) = minv∈V eG(v), respectively. A vertex
v ∈ V is called central if eG(v) = rad(G), and peripheral if eG(v) = diam(G).
We introduce additional terminology where it is needed throughout the paper.

2 Bipartite graphs

The study of the absolute retracts of bipartite graphs dates back from Hell [53],
and since then many characterizations of this graph class were proposed [5].
This section is devoted to the diameter problem on this graph class. In Sec. 2.1,
we propose a randomized Õ(m

√
n)-time algorithm for this problem. Then, we

consider the chordal bipartite graphs in Sec. 2.2, that have been proved in [5] to
be a subclass of the absolute retracts of bipartite graphs. For the chordal bipartite
graphs, we present a deterministic linear-time algorithm in order to compute
all the eccentricities. Before going further, let us introduce a few additional
terminology. For a connected bipartite graph G, we denote its two partite sets
by V0 and V1. A half-ball is the intersection of a ball with one of the two partite
sets of G. Finally, for i ∈ {0, 1}, let Hi be the graph with vertex-set Vi and an
edge between every two vertices with a common neighbour in G.

2.1 Faster diameter computation

We start with the following characterization of the absolute bipartite retracts:

Theorem 1 ([5]). G = (V,E) is an absolute retract of bipartite graphs if and
only if the collection of half-balls of G satisfies the Helly property.

This above Theorem 1 leads us to the following simple observation about the
internal structure of the absolute retracts of bipartite graphs:

Lemma 1. If G = (V0 ∪ V1, E) is an absolute retract of bipartite graphs then
both H0 and H1 are Helly graphs.
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Next, we prove that in order to compute diam(G), with G an absolute retract
of bipartite graphs, it is sufficient to compute the peripheral vertices of the Helly
graphs H0 and H1.

Lemma 2. If G = (V0∪V1, E) is an absolute bipartite retract such that diam(H0) ≤
diam(H1) then, diam(G) ∈ {2diam(H1), 2diam(H1)+1}. Moreover, if diam(G) ≥
3 then we have diam(G) = 2diam(H1) + 1 if and only if:

– diam(H1) = 1;
– or diam(H0) = diam(H1) and, for some i ∈ {0, 1}, there exists a peripheral

vertex of Hi whose all neighbours in G are peripheral vertices of H1−i.

The remaining of Sec. 2.1 is devoted to the computation of all the peripheral
vertices in both Helly graphs H0 and H1. While there exists a truly subquadratic-
time algorithm for computing the diameter of a Helly graph [43], we observe that
in general, we cannot compute H0 and H1 in truly subquadratic time from G.
Next, we adapt [43, Theorem 2], for the Helly graphs, to our needs.

Lemma 3. If G = (V0 ∪ V1, E) is an absolute bipartite retract then, for any k,
we can compute in O(km) time the set of vertices of eccentricity at most k in
H0 (resp., in H1).

Proof (Sketch). By symmetry, we only need to prove the result for H0. Let
U = {v ∈ V0 | eH0

(v) ≤ k} be the set to be computed. We consider the more
general problem of computing, for any t, a partition Pt = (At1, A

t
2, . . . , A

t
pt) of

V0, in an arbitrary number pt of subsets, subject to the following constraints:

– For every 1 ≤ i ≤ pt, let Cti :=
⋂
v∈At

i
N t
G[v]. Let Bti := Cti ∩ V0 if t is even

and let Bti := Cti ∩V1 if t is odd (for short, Bti = Cti ∩Vt (mod 2)). We impose
the sets Bti to be nonempty and pairwise disjoint.

Indeed, under these two conditions above, we have U 6= ∅ if and only if, for any
partition P2k as described above, p2k = 1. Furthermore if it is the case then U =
B2k

1 . To construct the desired partition, we proceed by induction over t. If t = 0
then, let V0 = {v1, v2, . . . , vp0}. We just set P0 = ({v0}, {v1}, . . . , {vp0}) (each set
is a singleton), and for every 1 ≤ i ≤ p0 let B0

i = A0
i = {vi}. Else, we construct

Pt from Pt−1. Specifically, for every 1 ≤ i ≤ pt−1, we let W t
i := NG(Bt−1i ).

Then, starting from j := 0 and F := Pt−1, we proceed as follows until we have
F = ∅. We pick a vertex u s.t. #{i | At−1i ∈ F , u ∈ W t

i } is maximized (the
maximality of u ensures that all sets Bti will be pairwise disjoint). Then, we set
Atj :=

⋃
{At−1i | At−1i ∈ F , u ∈ W t

i } and Btj :=
⋂
{W t

i | A
t−1
i ∈ F , u ∈ W t

i }.
We add the new subset Atj to Pt, we remove all the subsets At−1i , u ∈ W t

i from
F , then we set j := j+1. Overall, by using standard lists and pointer structures,
each inductive step takes O(n+m) time.

The base case of our above induction is trivially correct. In order to prove
correctness of our inductive step, we use Theorem 1 in order to prove that for

each 1 ≤ i ≤ pt we get W t
i = Vt (mod 2) ∩

(⋂
v∈At−1

i
N t
G[v]

)
. Doing so, for each
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subset Atj created at step t, we have Btj = Vt (mod 2)∩
(⋂

v∈At
j
N t
G[v]

)
, as desired.

Finally, observe that all the subsets Btj are nonempty since they at least contain
the vertex u ∈ Vt (mod 2) that is selected in order to create Atj . ut

We use Lemma 3 when the diameters of H0 and H1 are in O(
√
n). For larger

values of diameters, we use a randomized procedure.

Lemma 4 (Theorem 3 in [43]). For a Helly graph H s.t. diam(H) > 3k =
ω(log |V (H)|), one can compute with high probability its diameter and all the
peripheral vertices in Õ(|E(H)| · |V (H)|/k) time.

It is important to note that, in the algorithmic procedure of Lemma 4, we
just need to perform a BFS from randomly selected vertices. As any BFS in H0

or H1 can be simulated with a BFS in G, we can implement this procedure in
order to compute diam(Hi), for i ∈ {0, 1}, in Õ(mn/diam(Hi)) time with high
probability. Combined with Lemma 3, we get:

Theorem 2. If G = (V0 ∪ V1, E) is an absolute retract of bipartite graphs then,
with high probability, we can compute diam(G) in Õ(m

√
n) time.

We suspect that Theorem 2 can be derandomized by using a recent technique
from [39, Theorem 3]. This is left for future work.

2.2 Chordal bipartite graphs

We improve Theorem 2 for the special case of chordal bipartite graphs. Recall
(amongst many characterizations) that a bipartite graph is chordal bipartite if
and only if every induced cycle has length four [51]. It was proved in [5] that
every chordal bipartite graph is an absolute retract of bipartite graphs.

Theorem 3. If G = (V,E) is chordal bipartite then we can compute all the
eccentricities (and so, the diameter) in linear time.

We subdivide our proof of Theorem 3 into four main steps.

The chordal structure of the partite sets. A graph is chordal if it has no induced
cycle of length more than three. It is strongly chordal if it is chordal and it does
not contain any n-sun (n ≥ 3) as an induced subgraph [46]. We use the following
characterization of the haf-sets of chordal bipartite graphs:

Lemma 5 ([62]). If G = (V0 ∪ V1, E) is chordal bipartite, then H0 and H1 are
strongly chordal graphs.
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Computation of a clique-tree. The same as in Sec. 2.1, in general we cannot
compute H0 and H1 from G in subquadratic time. In order to overcome this
issue, we use a more compact representation of the latter. Specifically, for a graph
H = (V,E), a clique-tree is a tree T whose nodes are the maximal cliques of H
and such that, for every v ∈ V , the maximal cliques of H containing v induce
a connected subtree Tv of T . It is well-known that H is chordal if and only if it
has a clique-tree [19, 48, 73]. By using standard results on dual hypertrees [11,
72], we obtain that:

Lemma 6. If G = (V0 ∪ V1, E) is chordal bipartite then, we can compute a
clique-tree for H0 and H1 in linear time.

Computation of all the eccentricities in the partite sets. Next, we propose a
new algorithm in order to compute all the eccentricities of a strongly chordal
graph H, being given a clique-tree. There already exist linear-time algorithms
for computing all the eccentricities of a strongly chordal graphs, being given
by its adjacency list [17, 39, 43]. However, in general these algorithms do not
run in time linear in the size of a clique-tree. We often use in our proof the
clique-vertex incidence graph of H, i.e., the bipartite graph IH whose partite
sets are the vertices and the maximal cliques of H, and such that there is an
edge between every vertex of H and every maximal clique of H containing it.

Let us first recall the following result about Helly graphs:

Lemma 7 ([35]). If H is Helly then, for every vertex v we have eH(v) =
dH(v, C(H)) + rad(H), where C(H) denotes the set of central vertices of H.

Hence, by Lemma 7, we are left computing C(H). It starts with computing
one central vertex. Define, for every vertex v and vertex-subset C, dH(v, C) =
minc∈C dH(v, c). Following [27], we call a set C gated if, for every v /∈ C, there

exists a vertex v∗ ∈ N
dH(v,C)−1
H [v] ∩ (

⋂
{NH(c) | c ∈ C, dH(v, c) = dH(v, C)})

(such vertex v∗ is called a gate of v).

Lemma 8 ([22]). Every clique in a chordal graph is a gated set.

Lemma 9 ([43]). If T is a clique-tree of a chordal graph H then, for every
clique C of H, for every v /∈ C we can compute dH(v, C) and a corresponding
gate v∗ in total O(w(T )) time, where w(T ) denotes the sum of cardinalities of
all the maximal cliques of H.

For every u, v ∈ V and k ≤ dH(u, v), the set LH(u, k, v) = {x ∈ IH(u, v) |
dH(u, x) = k} is called a slice. We also need the following result:

Lemma 10 ([22]). Every slice in a chordal graph is a clique.

Now, consider the procedure described in Algorithm 1.

Lemma 11 (special case of Theorem 5 in [43]). Algorithm 1 outputs a
central vertex of H.
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Algorithm 1 Computation of a central vertex.

Require: A strongly chordal graph H.
1: v ← an arbitrary vertex of H
2: u← a furthest vertex from v, i.e., dH(u, v) = eH(v)
3: w ← a furthest vertex from u, i.e., dH(u,w) = eH(u)
4: for all r ∈ {deH(u)/2e , d(eH(u) + 1)/2e , 1 + deH(u)/2e} do
5: Set C := L(w, r, u) //C is a clique by Lemma 10
6: for all v /∈ C do
7: Compute dH(v, C) and a corresponding gate v∗ //whose existence follows from

Lemma 8
8: Set S := {v∗ | dH(v, C) = r} //gates of vertices at max. distance from C
9: for all c ∈ C do

10: if S ⊆ NH(c) then
11: return c

By using dynamic programming on a clique-tree in order to compute, for
each candidate vertex c ∈ C, its number of neighbours in S, we get:

Lemma 12. If T is a clique-tree of a strongly chordal graph H then, we can
implement Algorithm 1 in order to run in O(w(T )) time, where w(T ) denotes
the sum of cardinalities of all the maximal cliques of H.

We need one more result about the center of strongly chordal graphs:

Lemma 13 ([35, 36]). If H is strongly chordal then, its center C(H) induces
a strongly chordal graph of radius ≤ 1.

By Lemma 13, given a central vertex c of H, we can compute C(H) by local
search in the neighbourhood at distance two around c. For doing that efficiently,
we also need the following nice characterization of strongly chordal graphs. Recall
that the clique-vertex incidence graph of H is a bipartite graph whose partite
sets are the vertices and the maximal cliques of H, respectively; there is an edge
between every vertex and every maximal clique in which this vertex is contained.

Lemma 14 ([16, 46]). H is strongly chordal if and only if its clique-vertex
incidence graph IH is chordal bipartite.

By Lemma 14, we can apply the techniques of Sec. 2.1 to the clique-vertex
incidence graph of any strongly chordal H. In particular, by combining Lemma 3
with the dynamic programming technique of Lemma 12, we obtain:

Proposition 1. If T is a clique-tree of a strongly chordal graph H = (V,E)
then, we can compute its center C(H) in O(w(T )) time.

Computation of all the eccentricities in G. Before proving Theorem 3, we need
a final ingredient. Let us first generalize Lemma 2 as follows.

Lemma 15. If G = (V0 ∪ V1, E) is an absolute retract of bipartite graphs then,
the following holds for every i ∈ {0, 1} and v ∈ Vi:
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– If eHi
(v) ≤ rad(H1−i)− 1 then, eG(v) = 2eHi

(v) + 1 = 2rad(H1−i)− 1.
– If eHi

(v) = rad(H1−i) then, eG(v) = 2rad(H1−i) if and only if NG(v) ⊆
C(H1−i) and, for every u ∈ V1−i, we have dH1−i(u,NG(v)) ≤ rad(H1−i)− 1
(otherwise, eG(v) = 2rad(H1−i) + 1).

– If eHi
(v) ≥ rad(H1−i) + 1 then, eG(v) = 2eHi

(v) if and only if we have
eH1−i

(u) < eHi
(v) for some u ∈ NG(v) (otherwise, eG(v) = 2eHi

(v) + 1).

Of the three cases in the above Lemma 15, the real algorithmic challenge is
the case eHi(v) = rad(H1−i), for some i ∈ {0, 1}. We solve this case by using
similar techniques as for Proposition 1, which concludes the proof of Theorem 3.

3 k-chromatic graphs

Recall that a proper k-coloring ofG = (V,E) is any mapping c : V → {1, 2, . . . , k}
such that c(u) 6= c(v) for every edge uv ∈ E. The chromatic number of G is the
least k such that it has a proper k-coloring, and a k-chromatic graph is a graph
whose chromatic number is equal to k. We study the diameter problem within
the absolute retracts of k-chromatic graphs, for every k ≥ 3.

Our approach requires such graphs to be equipped with a proper k-coloring.
While this is a classic NP-hard problem for every k ≥ 3 [58], it can be done
in polynomial time for absolute retracts of k-chromatic graphs [9]. By using a
standard greedy coloring approach, we first improve this result as follows:

Proposition 2. There is a linear-time algorithm such that, for every k ≥ 3,
if the input G is an absolute retract of k-chromatic graphs, then it computes a
proper k-coloring of G.

In the remainder of the section, we always assume the input graph G to be
given with a proper k-coloring. We sometimes use the fact that, for an absolute
retract, such proper k-coloring is unique up to permuting the colour classes [68].
Now, let us recall the following characterization of absolute retracts:

Theorem 4 ([68]). Let k ≥ 3. The graph G = (V,E) is an absolute retract of
k-chromatic graphs if and only if for any proper k-coloring c, every peripheral
vertex v is adjacent to all vertices u with c(u) 6= c(v), or it is covered1 and G \ v
is an absolute retract of k-chromatic graphs.

A special case of Theorem 4 leads to a linear-time algorithm in order to decide
whether an absolute k-chromatic retract has diameter at most two. For those
graphs with diameter at least three, we propose a generalization of Lemma 2.
Specifically, for each colour i, let Vi := {v ∈ V | c(v) = i} be called a colour
class. For every v ∈ Vi, ei(v) := max{dG(u, v) | u ∈ Vi}. A vertex v ∈ Vi is
i-peripheral if it maximizes ei(v). Finally, let di := max{ei(v) | v ∈ Vi}.
1 A vertex v is covered by another vertex w if NG(v) ⊆ NG(w) (a covered vertex is

called embeddable in [68]).



10 G. Ducoffe

Lemma 16. Let G = (V,E) be an absolute retract of k-chromatic graphs for
some k ≥ 3, and let c be a corresponding proper k-coloring. Then, max1≤i≤k di ≤
diam(G) ≤ 1+max1≤i≤k di. Moreover, if diam(G) ≥ 3, then we have diam(G) =
1 + max1≤i≤k di if and only if:

– either max1≤i≤k di = 2;
– or, for some i 6= j s.t. di = dj is maximized, there is some i-peripheral vertex

whose all neighbours coloured j are j-peripheral.

We end up sketching the computation, for each colour i, of the value di and
of the i-peripheral vertices. Our strategy is as follows. First, we prove that we
can reduce our study to the case k = 3. This is done by using another, more
algorithmic, characterization of absolute retracts [9].

Lemma 17. Let G = (V,E) be an absolute retract of k-chromatic graphs for
some k ≥ 3, and let c be a corresponding proper k-coloring. For every distinct
colours i1, i2, i3, the subgraph H := G[Vi1 ∪ Vi2 ∪ Vi3 ] is isometric. Moreover, H
is an absolute retract of 3-chromatic graphs.

Next, we deal with the case when di is sufficiently small. For that, we ex-
tend the techniques of Lemma 3 to the absolute 3-chromatic retracts. Correct-
ness of our approach follows from the following property of these graphs: if
v1, v2, . . . , vt are vertices coloured i then, for any r ≥ 2 and any colour j, the
balls Nr

G[v1], Nr
G[v2], . . . , Nr

G[vt] intersect in colour j if and only if they also
intersect in colour i.

Lemma 18. Let G = (V,E) be an absolute retract of 3-chromatic graphs, and
let c be a corresponding proper 3-coloring. For each colour i and D ≥ 2, we can
compute in O(Dm) time the set Ui := {v ∈ Vi | ei(u) ≤ D}.

Finally, we address the case when di is large. A function is called unimodal if
every local minimum is also a global minimum. It is known that the eccentricity
function of a Helly graph is unimodal [35], and this property got used in [39]
in order to compute all the eccentricities in this graph class in subquadratic
time. We prove that a similar, but weaker property holds for each colour class
of absolute retracts:

Lemma 19. Let G = (V,E) be an absolute retract of k-chromatic graphs for
some k ≥ 3, and let c be a corresponding proper k-coloring. For each colour i
and any u ∈ Vi s.t. ei(u) ≥ (di+5)/2 ≥ 7, there exists a u′ ∈ Vi s.t. dG(u, u′) = 2
and ei(u

′) = ei(u)− 2.

We apply this almost-unimodality property to the computation of the di’s:

Lemma 20. Let G = (V,E) be an absolute retract of k-chromatic graphs for
some k ≥ 3, let c be a corresponding proper k-coloring, and let i be such that
di ≥ 8D + 5 = ω(log n). Then, with high probability, we can compute in total
Õ(mn/D) time the value di and the i-peripheral vertices.

By combining Lemmas 17-20, we get:

Theorem 5. If G = (V,E) is an absolute k-chromatic retract, for some k ≥ 3,
then we can compute its diameter with high probability in Õ(m

√
n) time.
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4 Split graphs

Recall that G = (V,E) is a split graph if its vertex-set V can be partitioned into
a clique K and a stable set S. Such partition, that may not be unique, can be
computed in linear time [50]. In contrast to Sec. 2 and 3, we prove that:

Theorem 6. For any ε > 0, there exists a c(ε) s.t., under SETH, we cannot
compute the diameter in O(n2−ε) time on the absolute retracts of split graphs of
order n and clique-number at most c(ε) log n.

Proof (Sketch). The result holds for general split graphs [13]. Let G = (K+S,E)
be any split graph. In order to decide whether diam(G) ≤ 2 or diam(G) = 3, we
may remove first all vertices v s.t. NG(v) = K \ v (i.e., because eG(v) ≤ 2 and v
is simplicial). By applying this above pruning rule until it can no more be done,
we get a split graph G′ with a unique partition K ′+S′ [50]. All such graphs are
absolute split retracts [59]. ut

5 Planar graphs

Our last (non-algorithmic) section is about the absolute retracts of planar graphs

Theorem 7 ([54]). A planar graph G is an absolute retract of planar graphs
if and only if it is maximal planar and, in an embedding of G in the plane, any
triangle bounding a face of G belongs to a subgraph of G isomorphic to K4.

To our best knowledge, there has been no relation uncovered between the
absolute retracts of planar graphs and other important planar graph subclasses.
We make a first step in this direction. Specifically, we prove the following two
results.

Proposition 3. Every planar 3-tree is an absolute retract of planar graphs.

Theorem 8. Every connected planar graph is an isometric subgraph of some
absolute planar retract. In particular, there are absolute retracts of planar graphs
with arbitrarily large treewidth.

We stress that the proof of Theorem 8 is constructive, and that it leads to
a polynomial-time algorithm in order to construct an absolute planar retract
in which the input planar graph G isometrically embeds. In contrast to our
result, the smallest Helly graph in which a graph G isometrically embeds may
be exponential in its size [52].

The existence of an almost linear-time algorithm for computing the diame-
ter of planar graphs is an important open problem. We see our Theorem 8 as
evidence that answering to this problem for the absolute planar retracts would
be already an important intermediate step toward a full resolution.
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